1 |
以1998年至2012年健保資料庫分析流感疫苗施打成效 / The performance of influenza vaccine policy from 1998 to 2012 by National Health Insurance Database吳宥柔 Unknown Date (has links)
流行性感冒是一種容易快速傳染且造成地區性大流行的疾病,雖然政府宣導接種流感疫苗可以有效的防治流行性感冒的疫情,然而接種流感疫苗的人並不多,因此本研究將探討疫苗的有效性,以解決一般民眾對施打疫苗的疑慮。
我們以1998年至2012年的健保資料庫分析疫苗的有效性,分析方法以Python程式將資料分類並做運算,其中一方法以有打疫苗者和未打疫苗者的平均流感就醫次數作為判別疫苗的有效性,另一方法則是用bootstrapping來判別疫苗之有效性。
透過本研究的結果可以知道,6歲以下兒童和6歲以上65歲以下成人類別疫苗都是呈現有效的,但在65歲以上老人則是呈現疫苗無效,雖然如此,在死亡率的比較上,有打疫苗的老人死亡率則是低於沒打疫苗的老人,故仍建議民眾施打疫苗。
|
2 |
女性乳癌醫療成本估計研究 / Estimating medical costs of female breast cancer曹仲愷 Unknown Date (has links)
近年來台灣國人十大死因以慢性疾病為主,其中惡性腫瘤(俗稱之癌症)自1982年起已連續32年位居國人死因首位;而在台灣人民所罹患之惡性腫瘤中,女性乳癌為發生率最高之病症。本研究自國衛院全民健保資料庫所提供之2005承保抽樣歸人檔,使用承保資料檔(ID)、住院醫療費用清單明細檔(DD)、住院醫療費用醫令清單明細檔(DO)、門診處方及治療明細檔(CD)、門診處方醫令明細檔(OO),對台灣女性乳癌患者進行病症相關分析,以國際疾病分類號的病症編號,挑選診斷代碼為174到1749,共10種類型之女性乳癌診斷結果之患者資料,藉由從2005年至2011年的資料,逐年分析其乳癌患者年齡分佈及患症趨勢、就醫後門診與住院所使用之相關診療方式、所花費之成本,進行資料彙整與分析,並分析乳房造影術及超音波兩種診療方式篩檢乳癌之成效,以及利用歷年資料推估未來一年的罹癌人數與死亡人數。
本研究結果顯示,台灣女性乳癌患者主要在40歲以上,好發年齡層為40~59歲之間,乳癌之盛行率逐年漸增,但死亡率卻無特別趨勢。門診部份,費用集中於用藥明細與診療明細點數,並以50~59歲為花費最高的年齡層;門診的診療方式主要以乳癌篩檢的項目為主。住院方面,費用集中在葯費、檢查費、病房費與手術費,各年齡層各年花費的波動很大,但主要以40歲以上的三組年齡層花費比例較高;而住院的診療方式則是以切除乳房的手術為主。乳房造影術與超音波在50~59及60歲以上兩組年齡層的篩檢率最高。在估計未來一年患病與死亡人數上,利用類似中央極限定理概念的CLT法以及無母數的拔靴法兩種方式來估計,其中以CLT法的估計方式對未來的人數估計較為準確。
|
3 |
以全民健保資料庫探討長期照顧需求 / Using Taiwan National Health Insurance Database to Explore the Need of Long-term Care鄭志新 Unknown Date (has links)
近年來,隨著我國國民的壽命持續增長,人口老化愈加明顯。預期臺灣在2021年將進入人口零成長,2025年65歲以上人口比例也將超過20%(來源:國家發展委員會2014年人口推估)。人口老化帶來許多問題,如老年生活、醫療、以及長期照顧等需求,其中照顧需求與年齡正相關,預期需求將隨壽命延長而增加,需要及早規劃及因應,這也是今年通過長期照護法的原因。由於各國國情不同,對於長期照護的定義、補助及需求也不盡相同,有必要發展適用於臺灣特性的,推估長期照顧需求的所需之資源。重大傷病中的許多疾病與失能、甚至長期照護有關,由於全民健保實施至今已逾20年,重大傷病的認定標準及程序相對客觀、中立,受到民眾、學術、政府各界肯定。
有鑑於此,本文以全民健保資料庫的重大傷病資料庫為基礎,挑選八類引發長照的重大傷病,作為規劃長期照護保險的參考。本文以這些傷病的發生率、罹病後死亡率、罹病後存活率等,結合國發會所人口推估的結果,利用年輪組成法(Cohort Component Method)推估長期照顧的未來需求。研究發現:未來需求人口從2013年約10萬人,迅速增加至2060年的21萬人,增加速度相當快。而參考「長期照顧保險法」草案的給付內容,若聘請一名外籍看護每月20,000元計算,每人分擔將從2012年的$530元/月升至2060年的2,728元/月;若不調整保費且以隨收隨付計算,每人每月繳交400元長照保費,長照給付將從2012年每月13,353元降至2060年每月3,556元,由此可知壽命延長、人口老化將造成長照保險的財務問題。另外,本文考量的八項重大傷病較為保守,沒有加入老化、遺傳等因素的長照需求,預期將不足以因應實際需求,未來有必要引入商業保險來彌補社會保險的不足。 / In recent years, with the sustainable growth of the life expectancy in our country, population aging becomes more apparent. Taiwan’s population of ages 65 and over will exceed 20% within 10 years, before 2025. (Source: National Development Council - Population Projection on 2014). The population aging an prolonging life incurs a big demand for caring the elderly, such as the economic need after the retirement, medical cost, and long-term care. Among these needs, the demand of long term care was under-estimated and is only recognized recently.
Thus, this study focuses on predicting the need of long-term care in Taiwan. Specifically, the definition and standard (as well as types and amounts of subsidy) for juding whether one needs long-terma care is not yet determined, although Taiwan’s government passed the long-term care law (Long-Term Care Insurance Law) earlier this year. We should adapt the notion of catastrophic illness (CI) and use certain CI categories, which are related to long-term care, to design the long-term care insurance.
Catastrophic illness (CI) is one of the key features of Taiwan’s National Health Insurance (NHI), and the definition and process of evaluating if one is with the CI is quite complete. We choose eight categories of CI and use the NHI database to obtain their incidence rates, mortality rates, and survival probability. Together with the population projection from National Development Council in 2014 and the cohort component method to predict the long-term care demand in Taiwan. The syudy result shows that the population needing long-term care will rise from about 100 thousands in 2013 to about 210 thousands in 2060. Moreover, if the long-term care insurance is funded via pay-as-you-go, the individual premium required will rise 5 times from 2012 to 2060. This indicates that the long-term care might be too expensive and the commercial insurance can play an important role as a supplement.
|
4 |
在商業智慧系統中雲端行動運算應用之研究 / A Research into the Applications of Cloud-ready Mobile Computing with Respect to Business Intelligence楊瑞涵, Yang, Rui Hn Unknown Date (has links)
全球每日產出的資料量持續成長,龐大的資料量、雜亂的資料檔案格式造成資料處理的困難;此外,全球智慧型手機的出貨量持續上升,未來將會至少人手一台行動裝置,同時行動網路的效能提升將可負荷更多的資料流量,行動工作者的數量也因此逐年增加。對商業智慧系統而言,透過企業資料的分析可以發現資訊之間的關連與隱藏其中的事實,讓使用者掌握更多的知識用於決策,分析的資料來源越豐富,其可提供做為決策用的訊息就更為準確。
過往商業智慧透過關聯式資料庫處理資料來源及電子郵件的通知使用者,但是龐大的巨量資料遠超過前者所能有效處理的數量,進而造成對資料擷取、保存、使用、分享以及分析時的處理難度;後者對於外出的使用者來說,電子郵件僅只是收到通知而已,使用者依然得需要電腦才能觀看分析報表。
故本研究使用雲端運算分散儲存及運算的技術及行動裝置隨手可得的特性解決前述的兩個問題,先透過雲端資料庫加速處理巨量資料的存取並製作成資料倉儲供商業智慧使用,接著透過行動應用程式即時接收推播訊息並呈現分析報表於行動裝置上。
在實作中,利用非結構化資料庫進行資料的存取,比起過往的關聯式資料庫確實可以有效提升巨量資料處理的速度;透過行動裝置的報表呈現,在平板電腦有較佳的成效,在手機上則是因為螢幕大小的關係,畫面呈現效果較差,這方面則有待改善。
本研究透過非結構化資料庫及行動應用程式設計新的行動商業智慧解決方案,實作雛型系統,並且透過異常申報健保費用醫院為案例,進行系統整體的測試,證明其架構及運作模式之可行性。經過驗證,本系統將能提供使用者使用巨量資料做為分析數據,並且透過行動應用程式立即取得分析報表。 / The volume of daily output data continues to grow world- widely. The huge amount of data and the disorder of data format cause the difficulty of data processing. Additionally, the number of smartphone sales is continuously growing, so everyone will own at least one smartphone in the future. In the meantime, the effectiveness of mobile internet and wireless is largely improved, so it can be loaded with more data flow. Because of this phenomenon, the number of mobile workers will be increasing per year. For business intelligence systems, through the analysis of enterprise's data we can find the relevance and facts hidden in information, allowing users to acquire more knowledge for decision-making. The more data sources we analyze, the more accurate information can be used to make decision.
In the past, business intelligence processes data sources through relational database and uses e-mail to notify users. However, the huge amount of data exceeds the number that can be effectively processed by relational database. On account of this, it becomes difficult regarding data acquisition, storage, application, sharing, and analysis. As far as the users are concerned, they only receive notifications by emails, so they still need a computer to view the analysis report.
In this study, I use cloud computing technology and mobile devices to solve the two aforementioned issues. First, we speed up the process of big data in data acquisition through Hadoop Hbase, and made it into data warehouse for Business Intelligence use. Secondly, we use mobile applications to receive push messages instantly and present analysis reports.
In the practical work, I use NoSQL database to acquire and store data. Compared with relational database, we can indeed effectively enhance the speed of big data processing. In reports’ presentation on mobile devices, the Tablet has better user experience then the phone. The phone is displayed comparatively poorly because of its small screen. This part needs to be improved.
In this research, I conceive a new solution of mobile business intelligence through NoSQL database and mobile applications, and implement this method into a prototype system. Moreover, through an example of the analysis of hospitals which have anomalous health-insurance reporting expenses we can test the whole system. It proves that this system’s structure and the mode of operation are feasible. The system will be able to provide big data as the source of analysis and present reports immediately through mobile devices to users.
|
5 |
運用雲端運算於智慧型健保費用異常偵測之研究 / A Research into Intelligent Cloud Computing Techniques for Detecting Anomalous Health-insurance Expenses黃聖尹, Huang, Sheng Yin Unknown Date (has links)
我國健保費用逐漸增長,進而衍生出許多健保問題,其中浮報、虛報及詐欺等三種情況,會造成許多醫療資源的浪費。然而,目前電腦檔案分析只能偵測出浮報、虛報的行為,無法偵測出詐欺情況。對於健保詐欺之偵測只能仰賴傳統隨機抽樣檢驗及人力分析,而我國健保平均一年門診審查申報量約3.5 億件,其人力的負擔非常沉重。故本研究將探討如何利用電腦工具初步判別醫事機構之費用申報情況。
本研究透過大量文獻回顧,發現美國有研究指出結合Benford’s law 與智慧型方法來進行詐欺偵測,可獲得很好的效果(Busta & Weinberg 1998)。Benford’s law 指出許多數據來源皆會呈現特定的數字頻率分佈,近年來Benford’s law 亦被應用在許多不同領域的舞弊或詐欺的審查流程中。
本研究使用Apache Hadoop 及其相關專案,建構出一個大量資料儲存分析之環境,針對大量健保申報費用資料來進行分析。此系統結合了Benford’s law 數字分析方法並運用支持向量機(Support Vector Machine)來對健保費用申報進行大規模電腦初步審查,判別該醫事機構是否有異常申報之情況發生,並將初步判別之結果提供給健保局相關稽查人員,進而做深入的審查。
本研究所建構的智慧型健保費用異常偵測模型結合了Benford’s law 衍生指標變數與實務指標變數,並利用SVM 分析健保申報費用歷史資料,產生出預判模型,之後便可藉由此模型來判別未來健保費用申報資料是否有異常情況發生。在判別異常資料方面,本研究所建構的模型其整體正確率高達97.7995%,且所有的異常申報資料皆可準確地預測出來。
因此,本研究希望能結合Benford’s law 與智慧型運算方法於健保申報異常偵測上,如此一來便可藉由電腦進行初步審查,減少因傳統隨機抽樣調查所造成的不確定性以及審核大量健保資料時過多的人力資源浪費。
|
6 |
全民健保資料庫分析:重大傷病及癌症之研究 / A Study of Cancer and Catastrophic Illness based on Taiwan National Health Insurance Database蘇維屏, Su Wei Ping Unknown Date (has links)
重大傷病是我國全民健康保險的重要特色之一,透過社會保險的風險分擔機制,病患享有免部分負擔等優惠,降低因為罹病帶來的財務負擔,但重大傷病同時也成為全民健保的主要支出項目。民國102年領取重大傷病證明者不過98餘萬人(約總人口的4%),但其一年的醫療費用多達一千五百多億元(接近總支出的27%),平均每位重大傷病患者的醫療費用約為平均值的7.34倍,其中癌症又是重大傷病中人數最多者,大約佔了49%(資料來源:衛生福利部中央健康保險署)。因為許多重大傷病的發生率、盛行率與年齡成正比(黃泓智等人,2004),未來隨著人口老化,全民健保支出也將跟著上升。
本文使用全民健保資料庫,探討近十年重大傷病(尤其是癌症)趨勢,估計重大傷病的年齡別發生率、死亡率,評估人口老化對全民健保造成的影響,其中承保資料檔(ID)、重大傷病檔(HV)為本研究主要的依據資料。而由於健保資料庫的資料種類及數量龐雜,在初期資料的偵錯及處理上非常重要但也相當費時,至於發生率、死亡與否的判斷亦十分棘手,因此過程中我們將一一說明資料分析步驟及注意事項。本文發現癌症及重大傷病的盛行率逐年上升,但發生率並沒有明顯變化,加上近年癌症死亡率幾乎不變(但台灣全體國民的死亡率逐年遞降),因為台灣的人口老化,預期未來罹患癌症人數會逐年增加,癌症將繼續蟬聯十大死因之首,但罹癌死亡率的下降也可發現近年醫療進步所造成的影響。此外,我們也考量隨機死亡模型(Lee-Carter Model),發現無論是癌症死亡率、或是罹癌死亡率都有不錯的估計結果。而在文末也提出癌症病患的就醫行為以供後續研究者參考。 / Catastrophic illness (CI) is one of the key features of Taiwan’s National Health Insurance (NHI). Through risk-sharing mechanisms of social insurance, it can reduce the financial burden of the CI patients since treating the CI is usually expensive. However, the CI also becomes a major expenditure item of NHI. The people receiving the CI card are just 0.98 million in 2013 (about 4% of the total population), but their smedical costs are over 150 billion NT dollars (nearly 27% of total expenditures). The average medical cost per CI patient is about 7.34 times of the national average. (Source: Department of Health and National Health Insurance Agency). Because the incidence and prevalence rates increase with age (Huang et al, 2004), the total NHI expenditure is expected to increase in the future due to population aging.
This study intends to use the NHI database, including the records of personal identification and out-patient visit from all CI patients, to explore the incidence and mortality rates, for example, of CI patients. Because the NHI database is big and messy, we shall first debug and clean them. Also, since the death of CI patients are not fully reported in the NHI database, we propose a method to identify the deaths and use the official statistics to evaluate. The results show that the prevalence rates of all CI increased every year, but their incidence rates did not change significantly. The mortality rates of cancer patients also did not change much. Based on these findings, we expect the proportion of CI patients and their size will continue to grow. In addition, we applied the Lee-Carter model to the cancer mortality rates, and the fit is pretty good.
|
Page generated in 0.0289 seconds