• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 8
  • 4
  • 4
  • Tagged with
  • 16
  • 16
  • 16
  • 16
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

在常微分方程下利用二次逼近法探討人口成長模型問題 / On the Parabola Approximation Method in Ordinary Differential Equation - Modelling Problem on The Population Growth

李育佐, Li,Yu Tso Unknown Date (has links)
在人口統計領域中,早期習慣將人口變化視為時間的函數,企圖以Deterministic Function來刻劃,例如:1798年Malthus提出的Malthusian Growth Model ;1825年Gompertz提出的Gompertz Model以及1838年Verhulst主張以Logistic Function描述人口成長。而近年來則是傾向於逐項分析各種因素的隨機性模型,例如:1983年Holford加入世代的APC模型;1992年Lee 和Carter提出的Lee-Carter死亡率模型以及2003年Renshaw與Haberman提出改善Lee-Carter死亡率模型的Reduction Factor模型。 人口變化主要分成自然增加與社會增加,而自然增加是為出生扣掉死亡,社會增加則為移入扣掉移出。首先,本文先不考慮遷移的部分,各別以出生與死亡人口的變化為研究對象,視其變化為一隨時間變動的動態系統,以常微分方程來刻劃。由台灣地區人口統計資料顯示,出生率或死亡率都有逐年下降的趨勢,而且隨著時間而變化加劇的傾向,使得以往使用的模型不易捕捉變化,因此我們提出「二次逼近法」,從出生、死亡人數對時間的變化率與曲度利用數值分析的方式來估計出生與死亡數,進而從中找出在此動態系統背後隱藏的規則。而後再同時考慮其他各種變項,以偏微分方程來刻劃,最後即可建立台灣地區人口變化模型。 / In early population statistics, the population changes were regarded as a function of time so that people tended to describe the variations by deterministic functions. For instance, Malthus proposed the Malthusian Growth Model in 1798; Gompertz presented Gompertz Model in 1825; Verhulst advocated using logistic function to describe an increase in population. In recent years, people tend to use the stochastic forecast method to analyse every factor term by term. For instance, the Age-Period-Cohort (APC) Model which was proposed by Holford in 1983; Lee and Carter proposed the Lee-Carter Mortality Model in 2003; and Renshaw and Haberman proposed the Reduction Factor Model in 2003 that improve the Lee-Carter Mortality Model. The population changes equal to nature and social increase, where the nature increase is the difference between birth and death population, and the social increase is the difference between immigrants and emigrants. First, we focus on natural increase rather than social increase. Moreover, we use ordinary differential equation to decribe the variation as a dynamic system over time. From the data obtained from the Ministry of Interior Taiwan, we know that the fertility and mortality has been decreasing, and the change is getting more violent year by year. Under the consideration that previous models are not able to accurately present the changes of birth and death, we proposed "second-order (or parabola) approximation method." From the variation rates and curvatures of birth and death population, we estimated the population size. Furthermore, we want to find the rule in the dynamic system. Later we will consider other factors simultaneously, and describe them by partial differential equation. Finally, the population model is constructed.
2

二階橢圓型偏微分方程式解的不存在性之研究 / On nonexistence of second order elliptic partial differentail equations

吳水利, WU, SHUI-LI Unknown Date (has links)
本文主要在考慮某類二階橢圓型偏微分方程式解的不存在問題,共分為三部分。 在第一部分中,首先利用均值函數之方法(此法曾見於〔N〕及〔C〕等多篇文獻 )來研究如下之二階積分-微分方程式, ╭ (0.1) △u = K(x)h(u)+H(│x│)│ a(│y│)q(u(y))dy ╯R□ ,x R□,n > 2 ,在此 ▔ (1) △表示n維的拉氏(Laplace) 運算子。 (2) K(.),H(.) 及 a(.) 是局部赫德 (Holder) 連續的非負函數。 σ δ (3) h(.) 及 q(.) 滿足適當的條件,如 〞h(u) = u 及q(u)=u ” δu σu 或 ”h(u)=e 及 q(u)=e ” 。 當 H(.)≡0 時,鄭國順教授及林震燦教授〔C〕,已証明當γ足夠大時,若存在 某一正常數C,使得 __ C K(γ) > ── ▔ γ□ __ (在此K表示函數K之均值函數),則方程式(0.1) 在R□中不存在任何正〔有界 〕的解。 令我們感興趣的是當 H(.)≡0 時,在那些條件下會有類似的結果發生。本文證明 ,當γ足夠大時,若存在某正常數C使得 __ ╭ ∞ n-1 C K(γ) + H(γ) │ a(ρ)ρ dρ > ─── ╯γ ▔ γ□' 則可經由詹森氏(Jensen's)不等式及赫德不等式,利用反證法去得到類似的結果。 在第二部份中,將研究下列之擬線性微分方程式解的不存在問題, ╭ (0.2) .[g(│ u│) u]=K(│x│)h(u)+H(│x│)│ a(│y│) ╯R□ q(u(y))dy, x R□,n > 2 ,在此 ▔ (1) u 表示u的梯度。 __ (2) g:R ──→R 屬於 C〔0,p□〕∩C□(0,p□),p□ 為區間〔0,∞〕 □ □ 中之某一常數。 (3) (pg(p))'>0 對所有的p (0,p□)。 (4) K(.),H(.) 及a(.) 均為局部赫德 (Holder)-連續的非負函數。 σ δ (5) h(.)及 g(.) 滿足適當的條件,如”h(u)=u 及 q(u)=u 〞 或〞h(u)= σu δu e 及 q(u)=e ”。 首先定義函數ψ如下 ψ=pg(│p│) p R. 若ψ的反函數存在,則可經由赫德不等式推導出一積分不等式,接著可利用此不等 式經由反證法得到下列的結果: (Ⅰ)在下列條件下 (a) 0 < g(p) < kp□ ,對任意非負常數m及正常數k以及所有p>0均成立 。▔ ▔ (b) m及n滿足〞m>0 且 n>2〞 或〞m=0 且 n> 3〞。 ▔ ▔ C (c) 當γ足夠大時,存在正常數C,使得 K(r) > ──── 成立。 ▔ γm+2 ,當 H(.)≡0 時,方程式(0.2) 在 R□中不存在正〔有界〕的放射性解。 (Ⅱ)如果 g(.),K(.),H(.)及a(.) 滿足 (a) 對任意正常數k及所有實數 p, 0 < g(p) < k < ∞ 恆成立。 ▔ ▔ (b) 在γ足夠大時,存在正常數C使得 ╭ ∞ n-1 C K(γ)+H(γ) │ a(ρ)ρ dρ > ─── ╯γ ▔ γ□ ,則當 H(.)≡0 時,方程式(0.2) 在 R□中不存在正〔有界〕的放射性解。 在第三部份中,主要在處理如下之擬線性微分方程式的正放射解之不存在問題, ╭ │ .[g(│ u│) u]=f(│x│,u) x Ω, (0.3) < u(x)=0 x Ω, │ u(x) 0 x Ω, ╰ 在此Ω為 R□中之一球。 在[NT],[NM] 及 [NS] 中,作者利用波氏 (Pohozaev) 不等式去證明方程式(0.3) 在f只含變數u時,解的不存在結果。 在本文,將去探討當f含變數u及r時,在何種條件下會使方程式(0.3) 不存在正 放射性解。首先,經由假設方程式(0.3) 存在正放射性解,吾人得到一個一般化的 波氏不等式,然後將其應用於部份擬線性橢圓型偏微分方程式上(如拉氏運算子, 平均曲率運算子及一般化平均曲率運算子),並去證明這些方程式在Ω上不存在任 何正放射性解。
3

二階非線性微分方程與應用 / Nonlinear differential equation of second order and its applications

陳仁發, Chen, Ren Fa Unknown Date (has links)
在這篇論文當中,我們引用`海岸綠堤--水筆仔'網站上的研究資料並且藉由Matlab程式軟體的幫助建構數學模型,我們討論以下的二階非線性微分方程 (i) u''(t)=f(u(t)), u(t_0)=u_0, u'(t_0)=u_1. (ii) u''(t)=f(u'(t)), u(t_0)=u_0, u'(t_0)=u_1. 我們比較拋物線函數,立方函數,傅立葉和函數,正弦和函數並且從這些函數中選出最好的一個當作我們的模型,我們得到一些主要的結果。 / In this paper, we use the real data from website of `Seacoast Green Bank--Kandelia' and construct mathematical models with the help of Matlab, we discuss the following nonlinear 2nd order differential equation (i) u''(t)=f(u(t)), u(t_0)=u_0, u'(t_0)=u_1. (ii) u''(t)=f(u'(t)), u(t_0)=u_0, u'(t_0)=u_1. We compared with the functions of parabolic, cubic, Fourier summation, sum of sine and choose the best one from them as our model, we have obtained main results.
4

動態系統與生育率及死亡率的估計 / Using dynamic system to model fertility and mortality rates

李玢 Unknown Date (has links)
人口統計學家在傳統上習慣將人口的種種變化視為時間的函數,皆試圖以決定型(deterministic)的函數來刻劃,例如:1825年Gompertz提出的死力法則、1838年Verhulst以羅吉斯函數描述人口成長。近年則傾向於逐項(item-by-item)分析各種可能因素,例如:1992年Lee-Carter提出的死亡率模型、目前英國實務上使用的Renshaw與Haberman(2003)提出改善Lee-Carter模型的Reduction Factor模型、加入世代(Cohort)因素的Age-Period-Cohort模型等。但台灣地區近年來生育率與死亡率皆不斷下降,且有隨著時間而變化加劇的傾向,使得以往使用的模型不易捕捉變化。 本文以另一個角度思考生育與死亡變化,將台灣人口視為一隨時間變化的動態系統,使用微分方程來刻劃,找出此動態系統的背後所隱含的規則。人口動態系統的變化,主要來源是出生、死亡與遷移,在建模的過程中,我們先各別針對其中一項,在其他條件不變的情況下,以常微分方程建模,之後再同時考慮各項變動,以偏微分方程建模,找出台灣人口變化的模型。在本文中,我們先介紹使用微分方程模型分別配適與估計出生與死亡。 由台灣地區人口統計資料顯示,不論總生育率或各年齡組的死亡率都有逐漸下降的趨勢,但是每年之間的震盪很大,因此我們提出「二次逼近法」,從出生或死亡對時間的變化率與曲度來估計生育率與死亡率,對於此種震盪幅度較大的資料,可以得到頗精確的估計。唯在連續幾年資料呈現近似線性上升或下降處,非線性的模型容易出現較大的估計誤差,針對此問題我們也提出一些可能的修正方法,以降低整體的模型誤差率。 / Conventionally the change of population is considered as a function of time and described by using deterministic functions. The well-known examples are Gompertz law of mortality (1825) and Verhulst’s logistic growth model (1838). Recently demographers favor stochastic models when analyzing factors in an item-by-item fashion. Since 1992, Lee-Carter model is a most commonly used stochastic model in demographic studies. But empirical studies indicate that the rapid declines in both fertility and mortality rates are against the assumptions of Lee-Carter model. In this study we treat Taiwan population as a dynamic system which changes over time and characterize it by differential equations. Since the changes are from birth, death and migration, we first separately build models using ordinary differential equations. Afterwards the model of Taiwan population can be built by using partial differential equations considering the three main factors simultaneously. Total fertility and age-specific mortality rates in Taiwan decline over time but with shakes between years. Consequently we propose‘parabola approximation method’and apply it to velocity and acceleration of birth or death to solve the differential equations of Taiwan fertility and mortality. Empirical study shows the method allows us to get accurate estimates of mortality and fertility when the data change a lot in a short period of time. But we found the model may over-fit the data at some time point where the function does not seem to be very continuous.
5

農產品價格目標區之經濟穩定性:理論研究與數值模擬分析

楊琇雲 Unknown Date (has links)
No description available.
6

關於非線性微分方程的正則性 / The Regularity of Solutions for Non-linear Differential Equation u'' - u^p = 0

林俊宏, Lin, Jiunn-Hon Unknown Date (has links)
本研究中討論了非線性微分方程式之解的正則性。在這之中發現了一些有趣的現象,得到了方程式解可以做任意次的微分,並且得到對該解任意次微分後其值趨近到無限大時之爆破速率、爆破常數及當其值遞減至零時的爆破速率、爆破常數。 / In this paper we work with the regularity of solutions for the non-linear ordinary differential equation u''-u^p=0 for some well-defined functions u^p. We have found some interesting phenomena, u belongs to C^q for any q in positive integer, blow-up constant, blow-up rate, null point and decay rate of u^(n) are obtained in this work, through that we get the characterization for these equations in this case.
7

美式新奇選擇權之相關研究

周奇勳 Unknown Date (has links)
美式態型的新奇選擇權在現今金融市場逐漸扮演重要的角色,但是由於其性質較歐式複雜,在評價上尚未發展出公式解(Closed Form Solution)。本文以解析近似模型(Analytical Approximation Pricing Model)為評價觀念,求解提前履約溢酬的價值,推導出評價模型,從而運用在三種不同型式的新奇選擇權上;包括次方選擇權、匯率連動選擇權、與數據選擇權。另外,在數值結果分析上,藉由給定不同水準的參數,與不同的評價模型進行比較分析,本文之評價模型具有精確且計算效率的特點,提供投資雙方在契約訂定上參考依據。
8

堰型構造物周辺の河床変動予測手法に関する研究

太田, 一行 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第20345号 / 工博第4282号 / 新制||工||1663(附属図書館) / 京都大学大学院工学研究科社会基盤工学専攻 / (主査)教授 中川 一, 教授 藤田 正治, 准教授 川池 健司 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
9

非線性微分方程的數值解

余世偉, YU, SHI-WEI Unknown Date (has links)
在本篇論文中,我們主要是探討有邊界值的二次微分一積分方程式的解的存在性及唯 一性的問題。在LAKSHRNIKANTHAN 和KHAVANIN的“二次微分一積分方程式及單調法“ (THE METHOD OF MIXED MONOTONY AND SECOND ORDER INTEGRO-DIFFERENTIAL SYSTE M, ANAL.28(1988),199-206)中,他們利用到混合單調法的技巧: 將不具有任何單調性質的函數擴充到一混合單調函數(亦即此函數對某些變數是單調 非遞減,而對另外某些變數是單調非遞增),然後利用其上解及下解(UPPER, LOWER SOLUTION)來生成兩個單調數列,而此二單調數列具有同時均勻的收斂到原方程式的 解的性質,而完成其存在性,其唯一性則是利用最大原則法(MAXIMUM PRINCIPLE ) ,而完成了他們對二次微分一積分方程式的解的探討。 在上述中,我們認為作者給予擴充函數的性質太強了,故我們對條件放寬,允許它不 是混合單調函數,而另外給了較弱的限制條件,此時我們與證明方法有了改變,我們 用到了SCHAUDER的定點定理(FIXED POINT THEOREM ):若T是一區間映到相同區間 的緊緻運算子(COMPACT OPERATOR),則存在一點X使得T(X)=X。於是解便可 得到,其唯一性亦是利用最大原則法得到。 最後,我們必須確定我們所使用的擴充函數確實存在,所以我們給了一個關於擴充函 數存在的充分條件來保證它的確存在,而不只是一種理想函數而已。到此,再加上一 些數值結果,我們就完成了整篇的論文。
10

積分微分方程的數值解

吳舜堂, WU, SHUN-TANG Unknown Date (has links)
本論文是以探討積分微分方程數值解的問題為主。此文中吾人皆先對問題本身做分析 ,討論其存在解,然後再用有限元素法,對連續性的問題做分解,使其變為一非線性 的方程組。而後藉由同倫(HOMOTOPY)法來解此非線性方程組。最後吾人可得到當區 間分割得愈小,真實解與數值解的誤差會愈小。也就是吾人所用之方法,為一個收斂 的方法。 本文共分兩部分,第一部分中,吾人討論一維的微分積分方程在有限區間的問題。於 此部分中,我們分了6個章節。第一節中,給了關於此問題的簡單介紹,並給序一些 必需的假設。第二節中,吾人可得到在第一節的假設下,假如原問題有真實解的話, 那麼此真實解絕對值的極大值(SUPREMUM)必不大於某個大於零的常數。第三節中, 吾人討論原方程的存在解,而證此存在解是經由LERAY-SCHAUDER DEGREE 定理得來的 。且在更強的條件下,會有存在唯一解。更而證明假如原來問題中函數不滿足所給予 的假設,那麼可經由修正(MODIFIED)原來的問題,也可得到原問題存在有解。第四 節中,對原來的方程,經由變分法(VARIATIONAL )的方法,把它變成一非線性的方 程組,而在某些條件下,吾人亦可得到此方程組有解。第五節中,吾人討論此非線性 方程組的數值解。並可得知,當區間分割的愈小,此數值解會更趨近實實的解。第六 節中,吾人給予平滑的多項式子空間來逼近真實解,結果可得到假如每個區間以(k +1)個點的LAGRANGE多項式來做內插(INTERPOLATION ),可知其收斂速度為O(Hk (big O),h 是分割區間的最大距離。 第二部分中,吾人所討論的是二維以上的積分微分方程在有界區域的問題,於此部分 中討論的與第一部分中類似,探討其存在,數值解等等問題。 最後吾人並給予一些例子,來加以印證我們所得到的結果。

Page generated in 0.329 seconds