11 |
不同單因子結構模型下合成型擔保債權憑證定價之研究 / Comparison between different one-factor copula models of synthetic CDOs pricing黃繼緯, Huang, Chi Wei Unknown Date (has links)
1990年代中期信用衍生信商品開始發展,隨著時代變遷,演化出信用違約交換(Credit Default Swaps, CDS)、擔保債權憑證(Collateralized Debt Obligation, CDO)、合成型擔保債權憑證(Synthetic CDO)等商品,其可以分散風險的特性廣受歡迎,並且成為完備金融市場中重要的一環。在2007年金融海嘯中,信用衍生性商品扮演相當關鍵的角色,所以如何合理定價各類信用衍生性商品就變成相當重要的議題
以往在定價合成型擔保債權憑證時,多採取單因子結構模型來做為報酬函數的主要架構,並假設模型分配為常態分配、t分配、NIG分配等,但單因子結構模型的隱含相關係數具有波動性微笑現象,所以容易造成定價偏誤。
為了解決此問題,本文將引用常態分配假設與NIG分配假設下的隨機風險因子負荷模型(Random Factor Loading Model),觀察隨機風險因子負荷模型是否對於定價偏誤較其他模型有所改善,並且比較各模型在最佳化參數與定價時的效率,藉此歸納出較佳的合成型擔保債權憑證定價模型。 / During the mid-1990s, credit-derivatives began to be popular and evolved into credit default swaps (CDS), collateralized debt obligation (CDO), and synthetic collateralized debt obligation (Synthetic CDO). Because of the feature of risk sharing, credit-derivatives became an important part of financial market and played the key role in the financial crisis of 2007. So how to price credit-derivatives is a very important issue.
When pricing Synthetic CDO, most people use the one-factor coupla model as the structure of reward function, and suppose the distribution of model is Normal distribution, t- distribution or Normal Inverse Gaussian distribution(NIG). But the volatility smile of implied volatility always causes the pricing inaccurate.
For solving the problem, I use the random factor loading model under Normal distribution and NIG distribution in this study to test whether the random factor loading model is better than one-factor coupla model in pricing, and compare the efficience of optimization parameters. In conclusion, I will induct the best model of Synthetic CDO pricing.
|
12 |
因子相關性結構模型之下合成型擔保債權憑證之評價與避險 / The Pricing and Hedging of Synthetic CDO Under Factor Copula Models林恩平 Unknown Date (has links)
近年全球市場出現一些以信用違約交換(CDS)為基礎來編列之信用指數(credit indices),如DJ iTraxx Europe與DJ CDX.NA等,而以這些信用指數為參考資產組合之合成型擔保債權憑證(Synthetic CDO)契約也定期被推出,由於其為標準化契約,故次級市場相當具有流動性,使得全球合成型擔保債權憑證無論在交易量或發行量皆成長快速。
本研究在單因子相關性結構模型之架構下,利用Hull & White (2004)所提出之機率杓斗法則(Probability Bucketing Method)建立合成型擔保債權憑證之評價模型,並於評價之外增加分券(Tranche)風險衡量指標之計算,我們發現額外得到分券之風險衡量指標僅需增加約4%的程式運算時間。本研究之評價模型同時可用於分券避險參數之求算,且不會有蒙地卡羅模擬法(Monte Carlo Simulation)之下避險參數不穩定的情形。
我們發現分券已實現之損失會使分券所面對之風險下降,而分券的信用增強(Credit Enhancement)遭受損耗則使分券所面對之風險上升,故權益分券(Equity Tranche)於契約前期所面對之信用風險大於契約後期,次償分券(Mezzanine Tranche)則是於契約後期面對較大之信用風險。關於分券避險,我們可選擇利用標的信用指數或單一資產信用違約(Single-name CDS)交換來進行避險。最後我們對分券進行違約相關性(Correlation)與違約回復率(Recovery Rate)之敏感度分析,發現權益分券的信用價差與資產違約相關性呈反向關係,而與違約回復率呈正向關係;相反的,先償分券(Senior Tranche)的信用價差則與相關係數呈正向關係,與違約回復率呈反向關係;兩參數對次償分券信用價差之影響則沒有一定的趨勢。
|
13 |
雙重保護之羅網-雙層擔保債權憑證之評價與避險李蕙君 Unknown Date (has links)
雙層擔保債權憑證(CDO-squared)是目前全球資產證券化商品市場相當熱門之商品,回顧國內對信用風險之研究,極少有相關文獻或研究被提出。本研究乃以合成型雙層擔保債權憑證(synthetic CDO-squared)為主體,試圖以一套毋須進行蒙地卡羅模擬之半解析式評價模型為基礎,目的旨在探討雙層擔保債權憑證具有高投資收益的背後,所隱含之風險程度為何?廣泛探索各種不同分券(tranches)之風險特徵,透過比較分析使各個分券間之相互關係能環環相扣,進而對此商品之風險/報酬特性有全面性之瞭解並規劃合適避險策略。本研究在違約事件為條件式獨立的假設下,運用遞迴法則(recursive algorithm)及一個多維超立方體結構(hyper-cube)建構出雙層擔保債權憑證之損失分配,並以求得之評價模型為風險分析之基礎,得到下列發現與避險涵義:(1)雙層擔保債權憑證雖然標榜具有雙重的信用違約保護且能達到更大程度的投資組合分散,同時兼顧利潤與風險的平衡,但實際上卻是高槓桿程度的商品。(2)名目本金數額及分券信用評等之揭露無法反映分券風險本質,市場參與者需要仔細區分風險金額移轉數目與內含風險移轉程度之差異。(3)應用delta避險策略可以規避分券所面臨之市場風險,而使避險組合價值不受標的資產市場價差波動之影響,繼而經由避險成本之求算,可適當選用數個單一信用違約交換(single name CDS)或信用違約交換指數來進行有效之避險。
|
14 |
以不同關聯結構模型對合成型抵押擔保債券憑證評價之研究 / Pricing Synthetic CDOs with different copula models蘇煒融 Unknown Date (has links)
在合成型抵押擔保債券憑證評價上,Kalemanova et al. (2007) 提出應用大樣本一致性資產組合(large homogeneous portfolio ; LHP)假設之單因子NIG關聯結構模型,配適比常態分配好。林聖航(民101)分析結果顯示NIG(2)模型優於MIX模型、NIG(1)模型、Gaussian模型與CSN模型。本文透過Lee and Hu(1996)提出的F分配線性組合之近似方法模擬出穩定摺積性質和封閉性以縮短計算時間。導出新的單因子F關聯結構模型與過去的模型做比較,並且會使用26期報價資料。文中將常態分配、F自由度10、、F自由度200、F自由度100000四種單因子關聯結構模型作模型比較分析。最後實證分析結果顯示F分配模型大部分資料配適都不佳,但是2008/11/25以及2009/3/31中配適比高斯分配還佳,2009/3/31甚至配適的比單因子NIG(2)模型、MIX模型以及、NIG(1)模型、高斯模型與CSN模型更佳,2008/11/25以及2009/3/31中市場報價的特色為0-3%分券的報價分別為64.03%及66.83% 而其他時期的0-3%分券報價均未超過50% 。各期當3-6%分券報價有負值時,單因子F(10, 10)關聯結構模型雖然表現不佳尤其在但0-3%分券表現很差,但3-6%分券都配適的很理想,顯示單因子F關聯結構模型在某些特殊狀況時可以表現出良好配適。
|
15 |
遠期生效信用擔保憑證之評價─跨期因子相關性結構模型之運用 / Intertemporal Loss Dependence in Factor Models--Pricing of Forward-Starting CDO鄭如恬, Cheng, Ju-tien Unknown Date (has links)
近年來,信用衍生性金融商品蓬勃發展,市場上陸續出現不同特色的信用擔保憑證。過去評價信用衍生性金融商品多採用Hull & White (2004)年所發表的因子相關結構型模型(factor copula approach)。由於因子相關模型在描述違約事件,可降低處理維度,使得計算更容易處理,更方便建立出損失分配,讓評價工作更順利進行。但是,降低維度的便利,卻犧牲了違約時點的動態描述,在因子模型中,我們無法掌握損失分配的期間結構,所以只能處理單一到期日的信用衍生性金融商品。
但市場上逐漸出現具有時間相關性的信用金融商品,例如:遠期生效型信用擔保憑證(Forward-starting CDO)、信用擔保憑證分券選擇權(Option on CDO tranches)、重設型信用擔保憑證等。其中遠期生效契約的特色在於,在生效日之前,標的資產若違約,並不構成損失的發生,只會將此商品從投資標的中剔除。故投資人在生效日之前,受到一層信用保護,所以相較於同天到期的信用擔保憑證,會使遠期契約的信用價差會比較低,可降低發行商的成本。在加上近年來,信用曲線出現越來越陡峭的情形,代表到期日相差越長,報酬差異越大,所以投資較長天期的商品,相對報酬提高較多。而次順位分券信用價差近年來下降許多,不少投資人為了達到報酬目標,轉而投資較長天期的信用投資產品。而且信用曲線過於陡峭,投資人預期未來違約環境會呈現平緩或變佳的趨勢,可以透過購買遠期契約,來獲得投資利潤。
由於我們不想放棄因子相關性結構模型在使用上簡便的優勢,所以試圖將跨期相關因子引入因子模型,將期間之間的相關性考慮進去,讓遠期生效信用擔保憑證的評價工作得以運行。除此之外,我們分析各分券對參數的敏感性,並加以探討其中的經濟意涵,最後以討論遠期信用擔保憑證避險的策略作結。
|
16 |
離散型動態回復率模型之建構與應用 / Discrete dynamic recovery rate modeling and its application邵惠敏, Shao, Hui Min Unknown Date (has links)
本文主要研究動態回復率之建構。並搭配使用機率勺斗法,將資產之離散損失分配建構出合成型擔保債權憑證分劵損失分配。歸納出離散動態回復率對合成型擔保憑證分劵之風險承擔與信用價差變化。本文發現在動態回復率中,即使在相同條件下有一樣預期損失,能使其債權群組損失分配之標準差較固定回復率小,且可使投資組合巨額損失部份產生厚尾分配現象。動態回復率對各分劵面臨共同存活與違約機率具有緩和或增強分劵承擔風險之作用。在單因子高斯連繫結構靜態違約下,透過隨機回復率能增加動態系統性風險因子之描繪。類似於將系統風險因子分配由標準常態分配改成t分配或是債權群組間違約相關係提高。
|
17 |
時間數列模型應用於合成型抵押擔保債務憑證之評價與預測 / Time series model apply to price and predict for Synthetic CDOs張弦鈞, Chang, Hsien Chun Unknown Date (has links)
根據以往探討評價合成型抵押擔保債務憑證之文獻研究,最廣泛使用的方法應為大樣本一致性資產組合(large homogeneous portfolio portfolio;LHP)假設之單因子常態關聯結構模型來評價,但會因為常態分配的厚尾度及偏斜性造成與市場報價間的差異過大,且會造成相關性微笑曲線現象。故像是Kalemanova et al.在2007年提出之應用LHP假設的單因子Normal Inverse Gaussian(NIG)關聯結構模型以及邱嬿燁(2007)提出NIG及Closed Skew Normal(CSN)複合分配之單因子關聯結構模型(MIX模型)皆是為了改善其在各分劵評價時能達到更佳的評價結果
,然而過去的文獻在評價合成型抵押擔保債務憑證時,需要將CDS價差、各分劵真實報價之資訊導入模型,並藉由此兩種資訊進而得到相關係數及報價,故靜態模型大多為事後之驗證,在靜態模型方面,我們嘗試使用不同概念之CDS取法以及相對到期日期數遞減之概念來比較此兩種不同方法與原始的關聯結構模型進行比較分析,在動態模型方面,我們應用與時間序列相關之方法套入以往的評價模型,針對不同商品結構的合成型抵押擔保債券評價,並由實證分析來比較此兩種模型,而在最後,我們利用時間序列模型來對各分劵進行預測。
|
18 |
探討合成型抵押擔保債券憑證之評價-非大樣本一致性資產組合 / Pricing the Synthetic CDOs - non Large Homogeneous Portfolio許義欣 Unknown Date (has links)
在評價合成型抵押擔保債券憑證時,需考慮多個標的資產間之違約相關性。根據過去評價合成型抵押擔保債券的文獻研究,發展高斯分配等單因子關聯結構模型,在給定LHP假設之下,執行各分券評價時,僅有在權益分券(equity tranche)得到好的配適結果,還會造成相關性微笑曲線(correlation smile)等問題。文獻研究,單因子關聯結構模型若能加入厚尾度或偏斜性能夠改善以上問題,且對於分券評價時也會有較好的效果,像是Kalemanova et al. (2007)提出應用LHP假設之單因子NIG關聯結構模型,或是Dezhong et al. (2006)提供之單因子關聯結構延伸模型,來評價抵押擔保債權憑證。進一步發現,全世界主要的信用違約指數的標的資產個數不一,最少有14個標的資產(CDX.EM),最多有125個標的資產(iTraxx Europe),事實上標的資產個數均不多,而過去文獻常建立在大樣本假設下進行抵押擔保債券之評價,本文研究目的在於,針對單因子高斯關聯結構模型,建立單因子高斯關聯結構延伸模型,假設在非大樣本性質下,評價合成型抵押擔保債券憑證,嘗試觀察是否有較佳的估計結果,改善相關性微笑曲線的現象。本文將利用常態分配、NIG分配以及非大樣本之常態分配作為不同的單因子關聯結
構模型,藉由絕對誤差極小化方法,針對不同商品結構的合成型抵押擔保債券評
價,並進行模型比較分析。實證結果顯示,非大樣本之常態分配關聯結構模型與LHP假設下的單因子高斯關聯結構模型有類似的評價結果,但在近兩年(2012年、2013年)的實證分析結果顯示,非大樣本之常態分配關聯結構模型於前四分券評價結果上符合同質性假設,即各個資產對共同因子的相關性近乎相同。
|
19 |
探討合成型抵押擔保債券憑證之評價 / Pricing the Synthetic CDOs林聖航 Unknown Date (has links)
根據以往探討評價合成型抵押擔保債券之文獻研究,最廣為使用的方法應用大樣本一致性資產組合(large homogeneous portfolio portfolio ; LHP)假設之單因子常態關聯結構模型來評價,但會造成合成型抵押擔保債券憑證與市場報價間的差異過大,且會造成相關性微笑曲線現象。由文獻顯示,單因子關聯結構模型若能加入厚尾度或偏斜性能夠改善以上問題,且對於分券評價時也會有較好的效果,像是Kalemanova et al. (2007) 提出應用LHP假設之單因子Normal Inverse Gaussian(NIG)關聯結構模型以及邱嬿燁(2007)提出NIG及Closed Skew Normal(CSN)複合分配之單因子關聯結構模型(MIX模型)在實證分析中得到極佳的評價結果。自2008年起,合成型抵押擔保債券商品結構開始出現變化,而以往評價合成型抵押擔保債券價格時,商品結構皆為同一種型式。本文將利用常態分配、NIG分配、CSN分配以及NIG與CSN複合分配作為不同的單因子關聯結構模型,藉由絕對誤差極小化方法,針對不同商品結構的合成型抵押擔保債券評價,並進行模型比較分析。由最後實證分析結果顯示,單因子NIG(2)關聯結構模型優於其他模型,也證明NIG分配的第二個參數 β 能夠帶來改善的評價效果,此項證明與過去文獻結論有所不同,但 MIX模型則為唯一一個符合LHP假設的模型。 / Based on the literature of discussing the approach for pricing synthetic CDOs, the most widely used methods used application of Large Homogeneous Portfolio (LHP) assumption of the one factor Gaussian copula model, however , it fails to fit the prices of synthetic CDOs tranches and leads to the implied correlation smile. The literature shows that one factor copula model adding the heavy-tail or skew can improve the above problem, and also has a good effect for pricing tranches such as
Kalemanova et al (2007) proposed the application of LHP assumption of one factor NIG copula model and Qiu Yan Ye (2007) proposed the application of LHP assumption of one factor NIG and CSN copula model. This article found that the structure of synthetic CDOs began to change since 2008. The past of pricing synthetic CDOs, the structure of synthetic CDOs are the same type, so this article will use different one factor copula model for pricing different structure of synthetic CDOs by using the absolute error minimization. This article will observe whether the above model can be applied in the new synthetic CDOs and implement of different type model for comparative analysis. The last empirical analysis shows that one factor NIG (2) copula model is superior to other models, more meeting the actual market demand, also proving the second parameter β of the NIG distribution able to bring about improvements in pricing results. This proving is different for the past literature conclusions. However, the MIX model is the only one in line with the LHP assumptions.
|
20 |
圧縮・せん断複合負荷による高機能軽金属粉末の組織制御成形法金武, 直幸, 伊藤, 孝至, 小橋, 眞, 佐野, 秀男, 小池, 俊勝 03 1900 (has links)
科学研究費補助金 研究種目:基盤研究(B)(2) 課題番号:11555183 研究代表者:金武 直幸 研究期間:1999-2001年度
|
Page generated in 0.0147 seconds