• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 6
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 7
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

尾端風險衡量指標:吸納比率在台股上的應用 / An Application of Tail Risk Measure Indicator: Absorption Ratio on TAIEX

游佳勲 Unknown Date (has links)
金融市場愈來愈容易發生金融動盪,近年來最嚴重事件的像是全球金融危機,除了造成經濟層面的衝擊外,往往也造成投資人的重大虧損。有鑑於此,政府與投資人更加重視風險管理,若有一可預先衡量系統風險的指標,將能夠使投資人的損失降到最低,甚至能使投資人獲利。此外,政府亦能有效控管風險並預防金融動盪的發生,使金融市場穩定發展。   本研究是利用主成分分析,並使用Kritzman, Li, Page and Rigobon(2010)提出吸納比率(absorption ratio, AR)去衡量系統風險。當吸納比率上升時,對應的是較高的系統風險,此時市場的壓力將會增加,因為隱含著風險的來源較一致。但這不代表必然會造成金融動盪,而是表示市場間的緊密連結的程度較高,當市場面臨衝擊時會較脆弱,導致風險傳遞的更快且更廣。   本研究的實證是應用至台灣的股票市場,將吸納比率及其變動率與台股大盤月報酬率做比較,實證結果顯示當期吸納比率、當期及前一期的吸納比率之變動率與股票大盤月報酬率有顯著相關,意即在前一期時,吸納比率之變動率可做為下一期的預先風險衡量指標。此外,本篇於文末亦提出未來的研究方向,期望能將吸納比率應用至其他市場,例如債市與房市等,亦希望能夠將此應用至台灣股市的交易策略上,有效地降低投資人的損失並使金融市場發展得以更健全。
2

不動產投資風險衡量之研究

黃瓊瑩, Huang , Chiung-ying Unknown Date (has links)
由於國民財富增加,對於不動產投資一事越來越熱衷,房屋不再只是供人居住使用,而成為重要的投資工具之一,但一般購屋投資者只考量投資『報酬』,卻忽略其『風險』,且由於傳統上對於投資不動產之風險只能以報酬率的標準差或變異數作計算,僅能知道其風險高或低,並不能夠確實知道其『風險值』,此外,投資者必須有分散風險之觀念,選擇適合的投資工具,以建立最佳的投資組合來分散風險。 本文以『市場風險』為主,並以『購屋者投資』角度,探討國內外衡量不動產投資風險之估計方法、模型,找出風險因子以建立一套衡量不動產投資風險因子之模式,並估計風險值,以評估投資之可行性。以1975第1季年至2003年第4季之預售屋平均房價季資料為主軸之時間範圍,並以台北市為研究的地理範圍,以預售屋住宅為研究標的,並以購屋消費者角色作分析,運用各種風險衡量方法,包括樣本變異數法、指數加權移動平均法、GRACH模型、歷史模擬方法、蒙地卡羅結構法、拔靴法、GRACH-拔靴法及VAR-拔靴法等估計風險值。 本文之實證結果顯示: 一、以考量風險因子之VAR模型Ⅰ-拔靴法及VAR模型Ⅱ-拔靴法所估計之風險值最小,表示投資淨值一千萬元,有5﹪的機率可能的最大損失會大於591,218元或577,564元。 二、以未考量風險因子之歷史模擬法及GARCH-拔靴法所估計風險值較大,表示投資淨值一千萬,有5﹪的機率可能的最大損失會大於2,816,827元或2,344,946元,因此,考量風險因子之VAR模型-拔靴法為較適當之模型,因有考量影響風險之因子,較能準確估計出實際之風險值。 三、假設個案中估計調整後報酬率,在95﹪的信賴水準之下,未考慮風險因子模型估計之調整後報酬率為1.80﹪及2.32﹪,即持有一季後,調整後報酬約18及23萬元左右,而以考量風險因子之模型估計之調整後報酬率為2.37﹪及2.38﹪,即持有一季後報酬約24萬元左右。 四、顯示投資組合於三種不同之投資工具時,當投資預售屋比例較大時,風險值是較小,而投資營建股價比例較大時,其風險值是較大。 / As a result of national wealth increased, regarded real estate investment more and more desires, houses not only supply to live but also become one of investment tool, but general purchase investors only considered invest return but ignored risk at invest, as a result of traditional just estimated standard or variance of return represented risk, just to know the high or low of risk, but should not indeed to know the value at risk, investors must had concept of diversification, choose a appropriate investment tool and built the better portfolio to decrease risk. The current thesis was considered market risk and designed to examine the method or model of measure real estate risk, and looked for risk factors to build a set of model of real estate investment risk factors, and estimated value at risk to evaluate the feasible of investment. The current thesis used dates of time range are from 1975Q1 to 2003Q4, geography range is Taipei, pre-sales residential housing, and role of purchase consumer, apply many kinds of methods of measure risk, including Sample Variance, Exponentially Weighted Moving Average, Generalized Autoregressive Conditional Heteroskedasticity(GRACH), Historical Simulation Method, Monte Carlo Simulation, Classical Bootstrap, GARCH-Bootstrap and VAR-Bootstrap, to estimate value at risk. The empirical result showed that the first, there had minimum value at risk by considering VAR-Bootstrap of risk factors, represented investitive net value are NT 10,000,000, maximum loss of 5﹪probability will greater than NT 591,218 or NT 577,564. Secondly, there are bigger value at risk by Historical Simulation Method of risk-factors free, represented investitive net value are NT 10,000,000, maximum loss of 5﹪probability will greater than NT 2,816,827 or NT 2,344,946. So used considering VAR-Bootstrap of risk factors were more appropriated model, because model of considering risk factors were able to accurate estimate reality value at risk. The third, case study estimated adjusted return, at 95﹪confidence level, risk-factors estimated rate of adjusted return were 2.37﹪and 2.38﹪, hold one quarterly period the return about two hundred and forty thousand dollars, If we have not consider risk-factors, estimated rate of adjusted return were 1.80﹪and 2.32﹪, hold one quarterly period the return about one hundred and eighty thousand dollars or two hundred and thirty thousand dollars. The last, invest portfolio three kinds of investment tool, if invest ratio of pre-sales residential housing were bigger, then value at risk were smaller, and if invest ratio of construct stock were bigger, then value at risk were bigger.
3

人壽保險公司之風險及清償能力評估:檢視利率變動型年金 / Risk and Solvency Assessment of the Life Insurer:An Examination of the Interest-Sensitive Annuity Policies

郭俊良, Kuo, Chun Liang Unknown Date (has links)
保險公司之雙率風險發酵,除了高預定利率保單,使得保險公司承擔利率風險,造成保險公司高額的利差損外。自2007年修法,提升保險業國外投資限額不得超過保險業資金45%,當年度國外投資佔31.21%。2014年修改保險法第146條之4,增設「投資於國內市場之外幣計價股權或債券憑證之投資金額可以不計入國外投資限額」之規定,當年度國外投資部位增加至50.27%。至2016年底壽險業國外投資部位已達12.59兆元,占全體壽險業可運用資金62.71%。 然而,利差交易能帶來收益的前提是匯市波動必須平穩,因為利差交易得承擔匯率波動風險,如果匯率大幅波動,匯差損失可能侵蝕利差收益。2017年前四個月新台幣驟升約6.8%,影響壽險業淨匯兌損失837億元,外匯準備金水位從441億元降至231億元。匯率的變動使得壽險業面臨極大的匯損壓力,一再地顯示檢視匯率風險的重要性。 本研究建構隨機資產負債管理模型,提供公司內部模型之參考。以市場統計資訊及市場保險公司之經驗資料建構模型,嘗試複製市場實際狀況,藉此模擬未來時點之公允價值,最後以風險指標評估保險公司之清償能力,得到以下結論: (1)財務槓桿比例愈高時,違約機率及幅度愈高,建議控制在約15倍左右。 (2)匯率風險增加時,違約機率及幅度增加,應建立適當避險策略。 (3)躉繳型利變型年金在沒有宣告利率保證下,違約風險較傳統型年金低。
4

金融危機與產業共動性之研究:以臺灣股市為例 / Study of the Financial Crisis and the Connectivity of Taiwan’s Industries

鄭郁蓁, Cheng, Yu Chen Unknown Date (has links)
有鑑於美國次貸危機引發的金融風暴席捲全球,造成了大型金融機構倒閉、全球經濟衰退以及投資人的鉅額虧損,政府與投資人開始重視風險的控管,學術界及實務界也建構出各種能夠衡量金融風險的指標,期能達到防患未然的功效。本研究將Billio, Getmansky, Lo, and Pelizzon (2011)使用的主成分分析(Principal Components Analysis)與Granger因果關係檢定(Granger Causality Test)兩種統計方法應用至臺灣股市,證實臺灣各產業指數的連動性高,尤其在金融不穩定的情況下共動性會大增,使危機容易在體系內擴散。而在金融危機時期,食品工業和紡織纖維產業是其他產業最主要的影響者,金融保險業、觀光產業及貿易百貨業則最容易受到其他產業的影響。
5

國外金融機構違約預警模型--Merton模型之應用 / The Default Predicted Model of Foreign Financial Institutions--An Application of Merton Model

郭名峻 Unknown Date (has links)
有鑑於信用風險衡量模型之廣泛使用,以及預測金融機構違約事件之重要性,本研究欲建立能有效預測金融機構違約事件之模型。其中Merton模型之概念被廣泛的應用,包含著名之KMV公司亦以Merton模型之概念建立信用風險管理機制,因此本研究選擇Merton模型之產出-預期違約機率(Expected Default Frequency, EDF)作為預測違約事件之主要變數。 本研究以國外56家金融機構,於2007至2009年共140筆樣本資料,資料內容包含股價以及財務變數。實證方法為先以各公司之股價資訊透過Merton模型計算各樣本之預期違約機率,作為Logistic迴歸模型之自變數進行分析。之後另外加入財務變數嘗試增進模型之解釋能力。此外,本研究亦修正模型之設定以檢視在更貼近真實世界的假設下,模型之預測能力是否有提升。本研究之實證結果發現,單以預期違約機率所建立之違約預測模型即有良好之預測能力,即使再加入其他變數並進行假設的修正,對於模型預測效果提升並不顯著。因此本研究肯定Merton模型以公司之股價資訊衡量違約風險之概念。
6

授信風險分析方法對企業財務危機預測能力之研究--以logit模型驗證

吳樂山 Unknown Date (has links)
授信風險分析是決定授信品質的關鍵。不管是聯合貸款、企業授信或消費性貸款,所有申貸案件必定經過徵信程序(credit analysis)來評估授信風險,再決定是否准予貸放。尤其企業授信一般貸放金額甚高,必須藉著嚴謹的審查過程來分析授信戶的借款用途是否合理、還款來源是否無虞。而這又必須瞭解其財務狀況、產銷情形、產業前景、研發創新、營運模式、經營者專業素養、管理能力等構面來分析風險成分。 傳統授信風險分析方法、理論,如五P分析、產業分析、財務分析等已行之多年,亦是國內商業銀行最普遍採用。然而隨著統計學、計量工具的發展,各種衡量信用風險的模型model被架構推出,世界知名銀行亦投注人力物力發展計量分析為主的風險管理部門,建立授信風險量化指標。除消費金融業務已藉著評分(credit scoring)作為准駁依據外,企業授信則因basel II即將公佈實施,亦使銀行業近幾年亦積極投入發展計量模型以建立IRB。然而計量分析與專家分析目前在國內銀行並未結合。我們將在文中探討主要授信分析工具並以89-92年間發生下市及打入全額交割股事件之公司為選樣範圍作為倒帳率分析基礎。
7

二次擔保債權憑證之評價及其風險衡量-條件機率獨立模型 / The Valuation and Risk Measure of CDO-Squared under Conditional Independence

陳嘉祺 Unknown Date (has links)
本文的主旨在評價二次擔保債權憑證。在條件獨立機率的假設下,我們使用factor copula的方法去刻劃違約事件間的相關係數,並提供了一個有效率的迴圈演算法去建構損失分配。本方法同時考慮違約數目及違約位置,同時亦可解決重疊性的問題。本文所建構的是Hull and White(2004)的延申模型。我們也對各參數作敏感度分析,以求得其對分券價差的影響。文中亦主張一些風險衝量指標,以量化重疊性的程度等風險議題。 / In this paper we address the pricing issues of CDO of CDOs. Underlying the conditional indepdence assumption we use the factor copula approach to characterize the correlation of defaults events. We provide an efficient recursive algorithm that constructs the loss distribution. Our algorithm accounts for the number of defaults, the location of defaults among inner CDOs, and in addition the degree of overlapping between inner CDOs. Our algorithm is a natural extension of the probability bucketing method of Hull and White (2004). We analyze the sensitivity of different parameters on the tranche spreads of a CDO-squared, and in order to characterize the risk-reward profiles of CDO-squared tranches, we introduces appropriate risk measures that quantify the degree of overlapping among the inner CDOs. Hull and White (2004) presents a recursive scheme known as probability bucketing approach to construct conditional loss distribution of CDO. However, this approach is insufficient to capture the complexities of CDO². In the case of the modeling of CDO, we are concerned for the probabilities of different number of defaults upon a time horizon t, e.g., the probabilities of 3 defaults happened within a year. With the mentioned probabilities, we can then calculate the expected loss within the time horizon, which enables us to figure out the spreads of CDO. However, in the modeling of CDO², an appropriate valuation should be able to overcome two more difficulties: (1) the overlapping structure of the underlying CDOs, and (2) the location where defaults happened, in order to get the fair spreads of CDO².

Page generated in 0.0238 seconds