181 |
Restricting Invariants and Arrangements of Finite Complex Reflection GroupsBerardinelli, Angela 08 1900 (has links)
Suppose that G is a finite, unitary reflection group acting on a complex vector space V and X is a subspace of V. Define N to be the setwise stabilizer of X in G, Z to be the pointwise stabilizer, and C=N/Z. Then restriction defines a homomorphism from the algebra of G-invariant polynomial functions on V to the algebra of C-invariant functions on X. In my thesis, I extend earlier work by Douglass and Röhrle for Coxeter groups to the case where G is a complex reflection group of type G(r,p,n) in the notation of Shephard and Todd and X is in the lattice of the reflection arrangement of G. The main result characterizes when the restriction mapping is surjective in terms of the exponents of G and C and their reflection arrangements.
|
182 |
Generating high confidence contracts without user input using Daikon and ESC/Java2Rayakota, Balaji January 1900 (has links)
Master of Science / Department of Computing and Information Science / Torben Amtoft / Invariants are properties which are asserted to be true at certain program points. Invariants are of paramount importance when proving program correctness and program properties. Method, constructor, and class invariants can serve as contracts which specify program behavior and can lead to more accurate reuse of code; more accurate than comments because contracts are less error prone and they may be proved without testing. Dynamic
invariant generation techniques run the program under inspection and observe the values that are computed at each program point and report a list of invariants that were observed to be possibly true. Static checkers observe program code and try to prove the correctness of annotated invariants by generating proofs for them. This project attempts to get strong invariants for a subset of classes in Java; there are two phases first we use Daikon, a tool that suggests invariants using dynamic invariant generation techniques, and next we get the invariants checked using ESC/Java2, which is a static checker for Java. In the first phase an ‘Instrumenter’ program inspects Java classes and generates code such that sufficient information is supplied to Daikon to generate strong invariants. All of this is achieved without any user input. The aim is to be able to understand the behavior of a program using already existing tools.
|
183 |
[en] SURFACE DIFFEOMORPHISMS WITH NON-TRIVIAL INVARIANT MEASURES / [pt] DIFEOMORFISMOS DE SUPERFÍCIE COM MEDIDAS INVARIANTES NÃO-TRIVIAISANDRE RUBENS FRANCA CARNEIRO 07 October 2008 (has links)
[pt] Alguns difeomorfismos de superfícies fechadas possuem
apenas medidas invariantes triviais, isto é, medidas cujo
suporte está contido no conjunto de pontos fixos.
Resultados dessa natureza fazem uso fundamental da
classificação dos homeomorfismos de superfície, tornando-os
típicos da dimensão 2. Nós atacamos esse problema mostrando
que difeomorfismos de superfícies que admitem medidas
invariantes não-triviais exibem uma forma de crescimento
linear positivo. As técnicas utilizadas são elementares
e uma parte significativa dos resultados continua válida em
dimensões mais altas. / [en] Some diffeomorphisms of closed surfaces only have trivial
invariant probabilities, i.e., those supported on the set
of fixed points. Results of this nature make extensive use
of the classification of surface homeomorphisms, making
them typical of dimension 2. We attack this problem by
showing that surface diffeomorphisms admiting non-trivial
invariant probabilities exhibit some sort of positive
linear growth. The techniques used are elementary and
a significant part of the results remains valid in higher
dimensions.
|
184 |
Abelian BF theory / Théorie BF abélienneMathieu, Philippe 02 July 2018 (has links)
Cette thèse porte sur la théorie BF abélienne sur une variété fermée de dimen-sion 3. Elle est formulée en termes de classes de jauge qui sont en fait des classes de cohomologie de Deligne-Beilinson. Cette formulation offre la possibilité d’extraire les quantités mathématiquement pertinentes d’intégrales fonctionnelles formelles. La fonction de partition et les valeurs moyennes d’observables sont ainsi calculées. Ces calculs complètent ceux effectués pour la théorie de Chern-Simons abélienne et ces résultats sont liés entre eux de même qu’avec les invariants de Reshetikhin-Turaev et de Turaev-Viro abéliens. Deux extensions de ce travail sont discutées. Premièrement, une approche graphique est proposée afin de traiter l’invariant classique SU(N) de Chern-Simons. Deuxièmement, une interprétation géométrique de la procédure de fixation de jauge est présentée pour la théorie de Chern-Simons abélienne dans mathbb{R}^{4l+3}. / In this study, the abelian BF theory is considered on a closed manifold of di-mension 3. It is formulated in terms of gauge classes which appear to be Deligne-Beilinson cohomology classes. Such a formulation offers the possibility to extract the quantities mathematically relevant quantities from formal functional integrals. This way, the partition function and the expectation value of observables are computed. Those computations complete the ones performed with the abelian Chern-Simons theory and the results appear to be connected together and also with abelian Reshetikhin-Turaev and Turaev-Viro topological invariants. Two extensions of this study are also discussed. Firstly, a graphical approach is proposed to deal with the SU(N) classical Chern-Simons invariant. Secondly, a geometric interpretation of the gauge fixing procedure is presented for the abelian Chern-Simons theory in mathbb{R}^{4l+3}.
|
185 |
Geração automática de módulos VHDL para localização de padrões invariante a escala e rotação em FPGA. / Automatic VHDL generation for solving rotation and scale-invariant template matching in FPGA.Nobre, Henrique Pires Almeida 26 March 2009 (has links)
A busca por padrões em imagens é um problema clássico em visão computacional e consiste em detectar a presença de uma dada máscara em uma imagem digital. Tal tarefa pode se tornar consideravelmente mais complexa com a invariância aos aspectos da imagem tais como rotação, escala, translação, brilho e contraste (RSTBC - rotation, scale, translation, brightness and contrast). Um algoritmo de busca de máscara foi recentemente proposto. Este algoritmo, chamado de Ciratefi, é invariante aos aspectos RSTBC e mostrou-se bastante robusto. Entretanto, a execução deste algoritmo em um computador convencional requer diversos segundos. Além disso, sua implementação na forma mais geral em hardware é difícil pois há muitos parâmetros ajustáveis. Este trabalho propõe o projeto de um software que gera automaticamente módulos compiláveis em Hardware Description Logic (VHDL) que implementam o filtro circular do algoritmo Ciratefi em dispositivos Field Programmable Gate Array (FPGA). A solução proposta acelera o tempo de processamento de 7s (em um PC de 3GHz) para 1,367ms (em um dispositivo Stratix III da Altera). Esta performance excelente (mais do que o necessário em sistemas em tempo-real) pode levar a sistemas de visão computacional de alta performance e de baixo custo. / Template matching is a classical problem in computer vision. It consists in detecting the presence of a given template in a digital image. This task becomes considerably more complex with the invariance to rotation, scale, translation, brightness and contrast (RSTBC). A novel RSTBC-invariant robust template matching algorithm named Ciratefi was recently proposed. However, its execution in a conventional computer takes several seconds. Moreover, the implementation of its general version in hardware is difficult, because there are many adjustable parameters. This work proposes a software that automatically generates compilable Hardware Description Logic (VHDL) modules that implement the circular filter of the Ciratefi template matching algorithm in Field Programmable Gate Array (FPGA) devices. The proposed solution accelerates the time to process a frame from 7s (in a 3GHz PC) to 1.367ms (in Altera Stratix III device). This excellent performance (more than the required for a real-time system) may lead to cost-effective high-performance coprocessing computer vision systems.
|
186 |
Cohomological Invariants of Quadratic FormsHarvey, Ebony Ann January 2010 (has links)
Thesis advisor: Benjamin V. Howard / Given a field <italic>F</italic>, an algebraic closure <italic>K</italic> and an <italic>F</italic>-vector space <italic>V</italic>, we can tensor the space <italic>V</italic> with the algebraic closure <italic>K</italic>. Two quadratic spaces of the same dimension become isomorphic when tensored with an algebraic closure. The failure of this isomorphism over <italic>F</italic> is measured by the Hasse invariant. This paper explains how the determinants and Hasse Invariants of quadratic forms are related to certain cohomology classes constructed from specific short exact sequences. In particular, the Hasse Invariant is defined as an element of the Brauer group. / Thesis (MA) — Boston College, 2010. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Mathematics.
|
187 |
Upsilon Invariant, Fibered Knots and Right-veering Open BooksHe, Dongtai January 2018 (has links)
Thesis advisor: Julia E. Grigsby / "Ozsváth, Stipsicz and Szabó define a one-parameter family {ϒᴋ(t)}t∈[₀,₂] of Heegaard Floer knot invariants for knots K ⊂ S³ . We generalize ϒᴋ (t) to knots in any" "rational homology sphere. We study the ϒ−invariant of a fibered knot. We prove that the ϒ−invariant can never reach its minimum slope if the monodromy of the fibration is not right-veering. / Thesis (PhD) — Boston College, 2018. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Mathematics.
|
188 |
Aspectos da teoria invariante e equivariante para a ação do grupo de Lorentz no espaço de Minkowski / Aspects of the invariant and equivariant theory for the action of the Lorentz group in Minkowski spaceOliveira, Leandro Nery de 30 June 2017 (has links)
Neste trabalho, introduzimos a teoria invariante e equivariante para a ação do grupo de Lorentz no espaço de Minkowski. Na teoria clássica, muitos resultados são válidos somente para a ação de grupos compactos em espaços Euclideanos. Continuamos o estudo para alguns subgrupos de Lorentz compactos e apresentamos uma forma de calcular as involuções de Lorentz em O(n;1). Fazemos uma empolgante discussão sobre uma classe de matrizes centrossimétricas polinomiais com aplicações em teoria invariante, estabelecendo um rumo para a pesquisa em subgrupos de Lorentz não compactos. Por fim, apresentamos alguns resultados da teoria equivariante para subgrupos de Lorentz. / In this work, we introduce the invariant and equivariant theory for the Lorentz group on the Minkowski space. In the classical theory, many results are valid only for compact groups on Euclidean spaces. We continue the study of some compact Lorentz subgroups and present a way of calculating the Lorentz involutions in O(n;1). We make an exciting discussion about a class of polynomial centrosymmetric matrices with applications in invariant theory, setting a course for research in non-compact Lorentz groups. Finally, we present some results for the equivariant theory of Lorentz subgroups.
|
189 |
Forever Young : Convolution Inequalities in Weighted Lorentz-type SpacesKřepela, Martin January 2014 (has links)
This thesis is devoted to an investigation of boundedness of a general convolution operator between certain weighted Lorentz-type spaces with the aim of proving analogues of the Young convolution inequality for these spaces. Necessary and sufficient conditions on the kernel function are given, for which the convolution operator with the fixed kernel is bounded between a certain domain space and the weighted Lorentz space of type Gamma. The considered domain spaces are the weighted Lorentz-type spaces defined in terms of the nondecreasing rearrangement of a function, the maximal function or the difference of these two quantities. In each case of the domain space, the corresponding Young-type convolution inequality is proved and the optimality of involved rearrangement-invariant spaces in shown. Furthermore, covering of the previously existing results is also discussed and some properties of the new rearrangement-invariant function spaces obtained during the process are studied. / <p>Paper II was a manuscript at the time of the defense.</p>
|
190 |
Medidas invariantes para aplicações unimodais / Invariant measures for unimodal maps.Belmiro Galo da Silva 21 February 2014 (has links)
Neste trabalho estudamos medidas invariantes para aplicações unimodais. Estamos especialmente interessados em detectar as situações que levam uma aplicação unimodal a não possuir uma medida piac, ou seja, uma medida de probabilidade invariante e absolutamente contínua em relação à medida de Lebesgue. Mostramos que a ordem do ponto crítico e a sua capacidade de recorrência são os fatores mais relevantes nesta questão. Os valores das derivadas da aplicação nos pontos periódicos tem uma infuência menor, mas suficiente para garantir que numa mesma classe de conjuga ção topológica podem existir duas aplicações unimodais com ponto crítico de mesma ordem, sendo que uma delas possui medida piac e a outra não possui. A capacidade de recorrência do ponto crítico, talvez o principal fator nesta questão, depende de aspectos combinatórios bem sofisticados. As ferramentas principais para analisar estes aspectos envolvem os conceitos de tempos de corte e de aplicações kneading. A existência ou não de medidas piac é uma propriedade de natureza métrica, e por isto, é necessário que tenhamos controle de como os iterados da aplicação unimodal distorcem a medida de Lebesgue. Então precisamos usar ferramentas de controle de distorção que incluem principalmente os Princípios de Koebe. Um ponto culminante deste trabalho diz respeito a relação entre existência de mediada piac e existência de atratores selvagens, isto é: atratores métricos que não são atratores topológicos e vice versa. Usamos aqui um argumento probabilístico de rara beleza. / In this work we study invariant measures for unimodal maps. We are especially interested in detecting situations that cause a unimodal map not to have a piac measure, i.e., a measure that is Probability Invariant and Absolutely Continuous with respect to Lebesgue measure. We show that the order of the critical point and its capacity for recurrence are the most relevant factors in this matter. The values of the derivatives of the map at periodic points have a small inuence, but enough to ensure that within a single class of topological conjugacy, there can be two unimodal maps with critical points of the same order, one of which has a piac measure and the other does not. The recurrence capacity of the critical point depends on very sophisticated combinatorial aspects and is probably the main factor in this issue. The main tools to analyze these aspects involve the concepts of cutting times and kneading maps. The existence of piac measures is a property of metric nature, and for this reason we need to have control of how iterations of the unimodal map distort the Lebesgue measure. We therefore need to use distortion control tools, including especially the Principles of Koebe. A culmination of this work concerns the relationship between existence of piac measures and the existence of wild attractors, i.e., metric attractors that not are topological attractors. Here we use a probabilistic argument of rare beauty.
|
Page generated in 0.0693 seconds