151 |
Représentations associées à des graduations d'algèbres de Lie et d'algèbres de Lie colorées / Representations associated to gradations of Lie algebras and colour Lie algebrasMeyer, Philippe 09 January 2019 (has links)
Soit k un corps de caractéristique différente de 2 et de 3. Les algèbres de Lie colorées généralisent à la fois les algèbres de Lie et les superalgèbres de Lie. Dans cette thèse on étudie des représentations V d'algèbres de Lie colorées g provenant de structures d'algèbres de Lie colorées sur l'espace vectoriel g⨁V. En premier lieu, on s'intéresse à la structure générale des algèbres de Lie simples de dimension 3 sur k. Puis, on classifie à isomorphisme près les superalgèbres de Lie de dimension finie dont la partie paire est une algèbre de Lie simple de dimension 3. Ensuite, pour un groupe abélien ᴦ et un facteur de commutation ɛ de ᴦ, on développe l'algèbre multilinéaire associée aux espaces vectoriels ᴦ-gradués. Dans ce contexte, les algèbres de Lie colorées jouent le rôle des algèbres de Lie. Ce langage nous permet d'énoncer et prouver un théorème de reconstruction d'une algèbre de Lie colorée ɛ-quadratique g⨁V à partir d'une représentation ɛ-orthogonale V d'une algèbre de Lie colorée ɛ-quadratique g. Ce théorème fait intervenir un invariant qui prend ses valeurs dans la ɛ-algèbre extérieure de V et généralise des résultats de Kostant et Chen-Kang. Puis, on introduit la notion de représentation ɛ-orthogonale spéciale V d'une algèbre de Lie colorée ɛ-quadratique g et on montre qu'elle permet de définir une structure d'algèbre de Lie colorée ɛ-quadratique sur l'espace vectoriel g⨁sl(2,k)⨁V⨂k². Enfin on donne des exemples de représentations ɛ-orthogonales spéciales, notamment des représentations orthogonales spéciales d'algèbres de Lie dont : une famille à un paramètre de représentations de sl(2,k)xsl(2,k) ; la représentation fondamentale de dimension 7 d'une algèbre de Lie de type G₂ ; la représentation spinorielle de dimension 8 d'une algèbre de Lie de type so(7). / Let k be a field of characteristic not 2 or 3. Colour Lie algebras generalise both Lie algebras and Lie superalgebras. In this thesis we study representations V of colour Lie algebras g arising from colour Lie algebras structures on the vector space g⨁V. Firstly, we study the general structure of simple three-dimensional Lie algebras over k. Then, we classify up to isomorphism finite-dimensional Lie superalgebras whose even part is a simple three-dimensional Lie algebra. Next, to an abelian group ᴦ and a commutation factor ɛ of ᴦ, we develop the multilinear algebra associated to ᴦ-graded vector spaces. In this context, colour Lie algebras play the rôle of Lie algebras. This language allows us to state and prove a theorem reconstructing an ɛ-quadratic colour Lie algebra g⨁V from an ɛ-orthogonal representation V of an ɛ-quadratic colour Lie algebra g. This theorem involves an invariant taking its values in the ɛ-exterior algebra of V and generalises results of Kostant and Chen-Kang. We then introduce the notion of a special ɛ-orthogonal representation V of an ɛ-quadratic colour Lie algebra g and show that it allows us to define an ɛ-quadratic colour Lie algebra structure on the vector space g⨁sl(2,k)⨁V⨂k². Finally we give examples of special ɛ-orthogonal representations and in particular examples of special orthogonal representations of Lie algebras amongst which are: a one-parameter family of representations of sl(2,k)xsl(2,k) ; the 7-dimensional fundamental representation of a Lie algebra of type G₂ ; the 8-dimensional spinor representation of a Lie algebra of type so(7).
|
152 |
Invariant subspaces of certain classes of operatorsPopov, Alexey 06 1900 (has links)
The first part of the thesis studies invariant subspaces of strictly singular operators. By a celebrated result of Aronszajn and Smith, every compact operator has an invariant subspace. There are two classes of operators which are close to compact operators: strictly singular and finitely strictly singular operators. Pelczynski asked whether every strictly singular operator has an invariant subspace. This question was answered by Read in the negative. We answer the same question for finitely strictly singular operators, also in the negative. We also study Schreier singular operators. We show that this subclass of strictly singular operators is closed under multiplication by bounded operators. In addition, we find some sufficient conditions for a product of Schreier singular operators to be compact.
The second part studies almost invariant subspaces. A subspace Y of a Banach space is almost invariant under an operator T if TY is a subspace of Y+F for some finite-dimensional subspace F ("error"). Almost invariant subspaces of weighted shift operators are investigated. We also study almost invariant subspaces of algebras of operators. We establish that if an algebra is norm closed then the dimensions of "errors" for the operators in the algebra are uniformly bounded. We obtain that under certain conditions, if an algebra of operators has an almost invariant subspace then it also has an invariant subspace. Also, we study the question of whether an algebra and its closure have the same almost invariant subspaces.
The last two parts study collections of positive operators (including positive matrices) and their invariant subspaces. A version of Lomonosov theorem about dual algebras is obtained for collections of positive operators. Properties of indecomposable (i.e., having no common invariant order ideals) semigroups of nonnegative matrices are studied. It is shown that the "smallness" (in various senses) of some entries of matrices in an indecomposable semigroup of positive matrices implies the "smallness" of the entire semigroup. / Mathematics
|
153 |
Invariant subspaces of certain classes of operatorsPopov, Alexey Unknown Date
No description available.
|
154 |
Stable iterated function systemsGadde, Erland January 1992 (has links)
The purpose of this thesis is to generalize the growing theory of iterated function systems (IFSs). Earlier, hyperbolic IFSs with finitely many functions have been studied extensively. Also, hyperbolic IFSs with infinitely many functions have been studied. In this thesis, more general IFSs are studied. The Hausdorff pseudometric is studied. This is a generalization of the Hausdorff metric. Wide and narrow limit sets are studied. These are two types of limits of sequences of sets in a complete pseudometric space. Stable Iterated Function Systems, a kind of generalization of hyperbolic IFSs, are defined. Some different, but closely related, types of stability for the IFSs are considered. It is proved that the IFSs with the most general type of stability have unique attractors. Also, invariant sets, addressing, and periodic points for stable IFSs are studied. Hutchinson’s metric (also called Vaserhstein’s metric) is generalized from being defined on a space of probability measures, into a class of norms, the £-norms, on a space of real measures (on certain metric spaces). Under rather general conditions, it is proved that these norms, when they are restricted to positive measures, give rise to complete metric spaces with the metric topology coinciding with the weak*-topology. Then, IFSs with probabilities (IFSPs) are studied, in particular, stable IFSPs. The £-norm-results are used to prove that, as in the case of hyperbolic IFSPs, IFSPs with the most general kind of stability have unique invariant measures. These measures are ”attractive”. Also, an invariant measure is constructed by first ”lifting” the IFSP to the code space. Finally, it is proved that the Random Iteration Algorithm in a sense will ”work” for some stable IFSPs. / <p>Diss. Umeå : Umeå universitet, 1992</p> / digitalisering@umu
|
155 |
Robust forward invariant sets for nonlinear systemsMukhopadhyay, Shayok 27 August 2014 (has links)
The process of quantifying the robustness of a given nonlinear system is not necessarily trivial. If the dynamics of the system in question are not sufficiently involved, then a tight estimate of a bound on system performance may be obtained. As the dynamics of the system concerned become more and more involved, it is often found that using the results existing in the literature provides a very conservative bound on system performance. Therefore, the motivation for this work is to develop a general method to obtain a less conservative estimate of a bound on system performance, compared to the results already available in literature. The scope of this work is limited to two dimensions at present. Note that working in a two dimensional space does not necessarily make the objective easily achievable. This is because quantifying the robustness of a general nonlinear system perturbed by disturbances can very easily become intractable, even on a space with dimension as low as two.
The primary contribution of this work is a computational algorithm, the points generated by which are conjectured to lie on the boundary of the smallest robust forward invariant set for a given nonlinear system. A well known path-planning algorithm, available in existing literature, is leveraged to make the algorithm developed computationally efficient.
If the system dynamics are not accurately known, then the above computed approximation of an invariant set may cease to be invariant over the given finite time interval for which the computed set is expected to be invariant. Therefore, the secondary contribution of this work is an algorithm monitoring a computed approximation of an invariant set. It is shown that for a certain type of systems, this secondary monitoring algorithm can be used to detect that a computed approximation of an invariant set is about to cease to be invariant, even if the primary algorithm computed the set based on an unsophisticated dynamical model of a system under consideration.
The work related to computing approximations of invariant sets is tested mainly with the curve tracking problem in two dimensions. The algorithm monitoring whether a computed approximation of an invariant set is about to cease to be invariant is inspired by work related to detecting Lithium-ion (Li-ion) battery terminal voltage collapse detection.
|
156 |
Métriques de Kähler-Einstein sur les compactifications de groupes / Kähler-Einstein metrics on group compactificationsDelcroix, Thibaut 12 October 2015 (has links)
Le résultat principal de cette thèse est l'obtention d'une condition nécessaire et suffisante pour l'existence d'une métrique de Kähler-Einstein sur une compactification bi-équivariante lisse et Fano d'un groupe complexe réductif connexe. Ces variétés comprennent les variétés toriques et les compactifications magnifiques de groupes semisimples adjoints.Dans la première partie de ce travail sont développés les outils nécessaires à l'étude de l'existence de métriques de Kähler-Einstein sur ces variétés. Nous calculons en particulier la Hessienne complexe d'une fonction $Ktimes K$-invariante sur la complexification d'un groupe compact $K$. Nous associonségalement, à toute métrique invariante à courbure positive sur un fibré linéarisé ample sur une compactification de groupe, une fonction convexe dont le comportement asymptotique est prescrit. Ceci est utilisé une première fois pour obtenir une formule pour l'invariant alpha d'un fibré en droite ample sur une compactification de groupe Fano. Cette formule est obtenue par le calcul des seuils log canoniques des métriques hermitiennes invariantes à courbure positive, et induit, dans le cas particulier des variétés toriques, un résultat obtenu auparavant, figurant dans l'article par ailleurs inclus en appendice de la thèse.Nous prouvons ensuite le résultat principal en obtenant des estimées $C^0$ le long de la méthode de continuité, en se ramenant à une équation de Monge-Ampèreréelle sur un cône. La condition obtenue est que le barycentre du polytope associé à la compactification de groupe, par rapport à la mesure de Duistermaat-Heckman, doit être dans une zone particulière du polytope. Cette condition peut être vérifiée sur les exemples, donne de nouveaux exemples de variétés deKähler-Einstein Fano, et donne aussi un exemple qui n'admet aucun soliton de Kähler-Ricci. Nous calculons de plus la plus grande borne inférieure de Ricci lorsqu'il n'y a pas de métrique de Kähler-Einstein. / The main result of this work is a necessary and sufficient condition for the existence of a Kähler-Einstein metric on a smooth and Fano bi-equivariant compactification of a complex connected reductive group. Examples of such varieties include wonderful compactifications of adjoint semisimple groups.The tools needed to study the existence of Kähler-Einstein metrics on these varieties are developed in the first part of the work, including a computation of the complex Hessian of a $Ktimes K$-invariant function on the complexification of a compact group $K$. Another step is to associate to any non-negatively curved invariant hermitian metric on an ample linearized line bundle on a group compactification a convex function with prescribed asymptotic behavior. This is used a first time to derive a formula for the alpha invariantof an ample line bundle on a Fano group compactification. This formula is obtained through the computation of the log canonical thresholds of any non-negatively curved invariant hermitian metric, and gives the sameresult, for toric manifolds, as the one we obtained before, in an article that is included in this thesis as an appendix.Then we prove the main result by obtaining $C^0$ estimates along the continuity method, using the tools developed to reduce to a real Monge-Ampère equation on a cone. The condition obtained is that the barycenter of the polytope associated to the group compactification, with respect to the Duistermaat-Heckman measure, lies in a certain zone in the polytope. This condition can be checked on examples, gives new examples of Fano Kähler-Einstein manifolds, and also gives an example that admits no Kähler-Ricci solitons. We also compute the greatest Ricci lower bound when there are no Kähler-Einstein metrics.
|
157 |
Synthèse de contrôleurs des systèmes à évènements discrets basée sur les réseaux de Petri / Petri Net - Based Controller Synthesis for Discrete Event SystemsVasiliu, Andra Ioana 03 February 2012 (has links)
La méthode des invariants est une des plus utilisées méthodes de synthèse pour les SED modélisés par des réseaux de Petri (RdP). Cependant, elle ne garantit pas en général une solution optimale dans la présence de l'incontrôlabilité. Dans ce travail nous proposons une solution à ce problème pour les RdP généralisés. Premièrement, nous proposons une solution d'identification des contraintes admissibles pour les RdP saufs non-conservatifs. La méthode repose sur une définition des contraintes contenant des marquages complémentés. Ceux-ci sont après éliminés en exploitant les composants conservatifs des RdP. Deuxièmement, nous avançons une technique de détermination des contraintes admissibles pour les RdP généralisés. La méthode est basée sur une vision spatiale de l'espace d'états du modèle. Les contraintes sont dérivées de l'équation d'hyperplan affin qui sépare les régions interdite- et autorisée- de cet espace. Nous proposons un algorithme pour le calcul du contrôleur optimal minimal. / The place-invariants method is one of the most popular controller synthesis approaches for Petri net (PN) modeled DES. Unfortunately, the observance of the constraints is not certain in the presence of uncontrollable transitions. This thesis offers a solution to this problem for ordinary and generalized PNs. We begin by studying safe non-conservative PNs, and devising a constraint-determination technique that will always provide a set of admissible constraints for this type of model. The approach stems from the general definition of forbidden states --- that of marking vectors. In the second part of our work, we present an admissible constraint-determination technique for generalized PNs. The method is based on a special view of the system's state space. The constraints are derived from the equation of the affine hyper-plane separating the authorized- and forbidden- regions of this space. We propose an algorithm that allows the identification of the minimal maximally permissive controller.
|
158 |
Schémas de Hilbert invariants et théorie classique des invariants / Invariant Hilbert Schemes and classical invariant theoryTerpereau, Ronan 05 November 2012 (has links)
Pour toute variété affine W munie d'une opération d'un groupe réductif G, le schéma de Hilbert invariant est un espace de modules qui classifie les sous-schémas fermés de W, stables par l'opération de G, et dont l'algèbre affine est somme directe de G-modules simples avec des multiplicités finies préalablement fixées. Dans cette thèse , on étudie d'abord le schéma de Hilbert invariant, noté H, qui paramètre les sous-schémas fermés GL(V)-stables Z de W=n1 V oplus n2 V^* tels que k[Z] est isomorphe à la représentation régulière de GL(V) comme GL(V)-module. Si dim(V)<3,on montre que H est une variété lisse, et donc que le morphisme de Hilbert-Chow gamma: H -> W//G est une résolution des singularités du quotient W//G. En revanche, si dim(V)=3, on montre que H est singulier. Lorsque dim(V)<3, on décrit H par des équations et aussi comme l'espace total d'un fibré vectoriel homogène au dessus d'un produit de deux grassmanniennes. On se place ensuite dans le cadre symplectique en prenant n1=n2 et en remplaçant W par la fibre en 0 de l'application moment mu: W -> End(V). On considère alors le schéma de Hilbert invariant H' qui paramètre les sous-schémas contenus dans mu^{-1}(0). On montre que H' est toujours réductible, mais que sa composante principale Hp' est lisse lorsque dim(V)<3. Dans ce cas, le morphisme de Hilbert-Chow est une résolution (parfois symplectique) des singularités du quotient mu^{-1}(0)//G. Lorsque dim(V)<3, on décrit Hp' comme l'espace total d'un fibré vectoriel homogène au dessus d'une variété de drapeaux. Enfin, on obtient des résultats similaires lorsque l'on remplace GL(V) par un autre groupe classique (SL(V), SO(V), O(V), Sp(V)) que l'on fait opérer d'abord dans W=nV, puis dans la fibre en 0 de l'application moment. / Let W be an affine variety equipped with an action of a reductive group G. The invariant Hilbert scheme is a moduli space which classifies the G-stable closed subschemes of W such that the affine algebra is the direct sum of simple G-modules with previously fixed finite multiplicities. In this thesis, we first study the invariant Hilbert scheme, denoted H. It parametrizes the GL(V)-stable closed subschemes Z of W=n1 V oplus n2 V^* such that k[Z] is isomorphic to the regular representation of GL(V) as GL(V)-module. If dim(V)<3, we show that H is a smooth variety, so that the Hilbert-Chow morphism gamma: H -> W//G is a resolution of singularities of the quotient W//G. However, if dim(V)=3, we show that H is singular. When dim(V)<3, we describe H by equations and also as the total space of a homogeneous vector bundle over the product of two Grassmannians. Then we consider the symplectic setting by letting n1=n2 and replacing W by the zero fiber of the moment map mu: W -> End(V). We study the invariant Hilbert scheme H' which parametrizes the subschemes included in mu^{-1}(0). We show that H' is always reducible, but that its main component Hp' is smooth if dim(V)<3. In this case, the Hilbert-Chow morphism is a resolution of singularities (sometimes a symplectic one) of the quotient mu^{-1}(0)//G. When dim(V)=3, we describe Hp' as the total space of a homogeneous vector bundle over a flag variety. Finally, we get similar results when we replace GL(V) by some other classical group (SL(V), SO(V), O(V), Sp(V)) acting first on W=nV, then on the zero fiber of the moment map.
|
159 |
Proposition pour une mixité réussie entre les hommes et les femmes dans les sphères de décision et de direction : Étude comparative entre la Martinique et le Québec / Proposals for a coeducation (mixing) made a success between men and women in the spheres of decision and direction (management) : Comparative study between Martinique and QuebecGamess, Eline 23 January 2015 (has links)
Au XXIème siècle, en France, en Martinique, au Québec, le monde du travail se caractérise encore par des inégalités professionnelles persistantes. La non mixité dans la fonction de direction générale ou autrement dit, la ségrégation verticale professionnelle dans l’entreprise serait-elle un invariant quels que soient les contextes ? Les référentiels culturels du dirigeant et du décideur demeurent encore masculins. Les représentations qui se sont construites sur les rôles sociaux des femmes et des hommes dans le travail se sont vite et durablement condensées en stéréotypes négatifs à l’égard des femmes.A partir de la théorie du noyau central d’Abric il semblait opportun de chercher à identifier les principaux déterminants qui ont présidé à la construction de ces stéréotypes. Ce noyau dur serait constitué de déterminismes historiques symboliques et sociaux. S’intéresser à la « déconstruction » des stéréotypes sexués en défaveur des femmes constitue un moyen de repenser l’action collective pour agir plus efficacement en matière de mixité professionnelle. En effet, plusieurs travaux ont montré que, sous certaines conditions, les éléments centraux d’une représentation pouvaient être sensibles à des informations venant les contredire. Réussir la mixité professionnelle entre les femmes et les hommes dans la fonction de direction générale des entreprises requiert, tant de la part de la politique gouvernementale que de celle des ressources humaines, des actions fortes relevant des enjeux de l’élimination des stéréotypes et de déconstruction du rôle social assigné à la femme depuis des millénaires. / In the 20th Century, in France, Martinique and Québec, the world of Work is still characterized by persistent professional disparities. Should the not-mixing be an invariant whatever the contexts, in the general managerial function, or in other words, the professional vertical segregation in the company ?The Manager’s and decider’s cultural reference tables remain still male. The representations built by themselves on the women and men social roles in work area are quickly and durably condensed in negative stereotypes against the women.From the theory of the central core of Abric (abric’score), it seems appropriate to try to identify the main determinants which presided over the construction of these stereotypes. This hard core would be constituted by symbolic and social historic determinism. Be interested in the "demolition" of the sexual stereotypes against the women establishes a way to rethink the collective action to act more effectively in regards to professional mixing. Indeed, several works showed that under certain conditions, the central elements of a representation could be sensitive to information coming to contradict them.To make a success of the professional mixing between the women and men in the general managerial function of companies requires so much on behalf of the government policy, a that of the human resources, strong actions raising stakes in the elimination of stereotypes and demolition of the social role assigned to the woman since millenniums.
|
160 |
Etude arithmétique et algorithmique de courbes de petit genre / Algorithmic and arithmetic study of small genus curvesUlpat Rovetta, Florent 04 December 2015 (has links)
Cette thèse traite de plusieurs aspects algorithmiques des courbes algébriques. La première partie décrit et implémente en Magma un algorithme de calcul des tordues pour les courbes sur les corps finis et en étudie la complexité. Dans le cas hyperellitptique, il s’agit du premier algorithme complet pour faire cela en tout genre. La deuxième partie construit des familles représentatives pour les courbes non hyperelliptiques de genre 3 afin de permettre leur énumération efficace en lien avec le problème de l’obstruction de Serre. Cette partie a fait l’objet d’une publication dans ANTS et une annexe de la thèse est constituée d’un préprint étudiant un modèle statistique pour l’interprétation des données obtenues. La dernière partie de la thèse étudie les invariants et covariants des formes binaires en lien avec la description de l’espace de modules des courbes de genre 2. On y décrit en particulier une nouvelle opération pour engendrer des covariants en petite caractéristique. On étudie aussi l’application d’une nouvelle stratégie (dite de Geyer-Sturmfels) pour obtenir les algèbres de séparants et on l’applique au cas du degré 4 et du degré 6. Enfin, un dernier chapitre montre la validité d’un algorithme de reconstruction pour les courbes de genre 2 à partir de leurs invariants en toute caractéristique différente de 2 et l’implémente en SAGE. / This thesis addresses several algorithmic aspects of algebraic curves.The first part describe and plug in Magma a computational algorithm of twists for the curves over finite fields and study it's complexity. In the hyperelliptic case, it is the first complete algorithm to do this in all genus. The second part builts representatives family for the non hyperelliptic curves of genus 3 to enable them effective enumeration in connection with the Serre obstruction problem. This part has been published in ANTS and an annex of this thesis is made up of a preprint studing a statistic model for interpreting the data obtained.The last part of the thesis studies the invariants and covariants of binary forms in connexion with the description of the moduli space of curves of genus 2. A new operation in particular is described to generate covariants in small characteristic. We study to the implementation of a new strategy (called Geyer-Sturmfels) to get the algebras of separants and we apply it of the case of degree 4 ans 6. Finally, the last chapter shows the validity of a reconstruction algorithm for genus 2 curves from their invariants in all characteristic diferent from 2 and implements it in SAGE .
|
Page generated in 0.0653 seconds