• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 18
  • 8
  • 7
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 100
  • 38
  • 26
  • 25
  • 18
  • 11
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Characterisation of Eight Non-Codis Ministrs in Four South African Populations to Aid The Analysis of Degraded Dna.

Ismail, Aneesah. January 2009 (has links)
<p>In many forensic cases, such as mass disasters reconstruction cases, the recovered DNA is highly degraded. In such incidences, typing of STR loci has become one of the most powerful tools for retrieving information from the degraded DNA. However, as DNA degradation proceeds, three phenomena occur consecutively: loci imbalance, allele dropout and no amplification. To solve the problem of degraded DNA, redesigned primer sets have been developed in which the primers were positioned as close as possible to the STR repeat region. These reduced primer sets were called Miniplexes. Unfortunately, a few of the CODIS STR loci cannot be made into smaller amplicons. For this reason non-CODIS miniSTRs have been developed. The present study was undertaken for the population genetic analysis of microsatellite variation in four South African populations / Afrikaner, Xhosa, Mixed Ancestry and Asian Indian using eight non-CODIS miniSTR loci. These miniSTRs loci were characterized within the populations by estimating the levels of diversity of the markers, estimating the population genetic parameters, and studying the inter-population relationships. All of the miniSTRs were amplified successfully and the genetic variability parameters across all loci in Afrikaner, Mixed Ancestry, Asian Indian and Xhosa were estimated to be in the range of 3 (D4S2364) to 12 (D9S2157) alleles, the total number of alleles over all loci ranged from 100 to 204, the allelic richness ranged from 3.612 to 10.307 and the heterozygosity ranged from 0.4360 to 0.8073. Genetic distance was least between Afrikaner and Asian Indian and highest between Xhosa and Mixed Ancestry. Deviations from Hardy-Weinberg equilibrium were not observed for most of the loci. The low mean FIS (-0.027) and FIT (-0.010) and FST (0.017) values across the populations indicated low level of inbreeding within (FIS) and among (FST) the populations. The Asian Indian population showed higher levels of the inbreeding coefficient, indicating less gene exchange between it and other populations. These 8 markers can be used for genetic investigations and assessing population structure. The study contributed to the knowledge and genetic characterization of four South African populations. In addition, these MiniSTRs prove to be useful in cases where more genetic information is needed.</p>
82

X-Ray Crystallographic Studies Of Designed Peptides : Characterization Of Novel Secondary Structures Of Peptides Containing Conformationally Constrained α-, β- And γ-Amino Acids And Polymorphic Peptide Helices

Vasudev, Prema G 01 1900 (has links)
Structural studies of peptides are of great importance in developing novel and effective biomaterials ranging from drugs and vaccines to nano materials with industrial applications. In addition, they provide model systems to study and mimic the protein conformations. The ability to generate folded intramolecularly hydrogen bonded structures in short peptides is essential for peptide design strategies, which rely on the use of folding nuclei in the construction of secondary structure modules like helices and β-hairpins. In these approaches, conformational choices at selected positions are biased, using local stereochemical constraints, that limit the range of accessible backbone torsion angles. X-ray crystallographic studies of designed peptides provide definitive proof of the success of a design strategy, and provide essential structural information that can be utilized in the future design of biologically and structurally important polypeptides. Recent trends in peptide research focus on the incorporation of β-, γ- and higher homologs of the α-amino acid residues in designed peptides as they confer more proteolytic stability to the polypeptides. X-ray crystallographic studies of such modified peptides containing non-protein residues are essential, since information on the geometric and stereochemical properties of modified amino acids can only be gathered from the systematic structural studies of synthetic peptides incorporating them. This thesis reports a systematic study of the structures and conformations of amino acid derivatives and designed peptides containing stereochemically constrained α-, β- and γ-amino acid residues and the structural studies of polymorphic peptide helices. The structures described in thesis contain the Cα,α-dialkyalted α-residues α-aminoisobutyric acid (Aib) and 1-aminocyclohexane-1-carboxylic acid (Ac6c), the β-amino acid residue 1-aminocyclohexane acetic acid (β3,3Ac6c) and the γ-amino acid residue 1-aminomethylcyclohexaneacetic acid (gabapentin, Gpn). The crystal structure determination of peptides incorporating conformationally constrained α-, β- and γ- amino acid residues permitted the characterization of new types of hydrogen bonded turns and polymorphs. The studies enabled the precise determination of conformational and geometric parameters of two ω-amino acid residues, gabapentin and β 3,3Ac6c and provided detailed information about the conformational excursions possible for peptide molecules. This thesis is divided into 10 chapters. Chapter 1 gives a general introduction to the stereochemistry of the polypeptide chain, description of backbone torsion angles of α- and ω- amino acid residues and the major secondary structures of α-peptides, β-peptides, γ-peptides and hybrid peptides. A brief introduction to polymorphism and weak interactions, in particular aromatic interactions, is also provided, followed by a discussion on X-ray diffraction and solution to the phase problem. Chapter 2 describes the crystal structures of gabapentin zwitterion and its eight derivatives (Ananda, Aravinda, Vasudev et al., 2003). The crystal structure of the gabapentin zwitterions determined in this study is identical to that previously reported (Ibers, J. A. Acta Crystallogr. 2001, C57, 641-643). Eight of the nine achiral compounds crystallized in centrosymmetric space groups P21/c, C2/c or Pbca, while one derivative (Tos-Gpn-OH) crystallized in non-centrosymmetric space group Pna21 with four independent molecules in the asymmetric unit.The structural studies presented in this chapter reveal that the geminal substituents on the Cβ atom limits the values of dihedral angles θ1 and θ2 to ±60°, resulting in folded backbone conformations in all the examples. Intramolecular hydrogen bonds with 7-atoms in the hydrogen bond turn (C7) are observed in three derivatives, gabapentin hydrochloride (GPNCL), Boc-Gpn-OH (BGPNH) and Piv-Gpn-OH (PIVGPN), while a 9-atom hydrogen bonded turn (C9) is observed in Ac-Gpn-OH (ACGPH). Unique structural features, such as an unusual anti conformation of the COOH group (in ACGPH) and positional disorder of the cyclohexane ring (in BGPNN), indicating the co-existence of both the interconvertible chair conformations, are revealed by the crystal structure analyses. Chapter 3 describes the structural characterization of novel hydrogen bonded conformations of homo oligomers of Gpn. The crystal structures of three peptides, Boc-Gpn-Gpn-NHMe (GPN2), Boc-Gpn-Gpn-Leu-OMe (GPN2L) and Boc-Gpn-Gpn-Gpn-Gpn-NHMe (GPN4) provide the first crystallographic characterization of two new families of polypeptide structures, the C9 helices and C9 ribbons (Vasudev et al., 2005, 2007), in which the molecular conformations are stabilized by contiguous C9 turns formed by the hydrogen bonding between the CO group of residue (i) and the NH group of residue (i+2). The C9 hydrogen bond is characterized by a specific combination of the four torsion angles for the Gpn backbone, with the torsion angles θ1 and θ2 adopting g+/g+ or g /g- conformations. The structural analysis also permits precise determination of hydrogen bond geometry for the C9 structures, which is highly linear in contrast to the analogous γ-turn hydrogen bonds in α-peptides. A comparison of the backbone conformations in the three peptides reveals two classes of C9 hydrogen bonded secondary structures, namely C9 helices and C9 ribbons. The packing arrangement in these γ-peptides follows the same patterns as the helix packing in crystals of α-peptides. Chapter 4 describes ten crystal structures of short hybrid peptides containing the Gpn residue (Vasudev et al., 2007). In addition to the C7 and C9 hydrogen bonded turns which are defined by the backbone conformations at the Gpn residue, hybrid turns defined by a combination of backbone conformations at the α and γ-residues or at the β and γ-residues have been determined. Peptides Boc-Ac6c-Gpn-OH (ACGPH), Piv-Pro-Gpn-Val-OMe (PPGPV) and Boc-Val-Pro-Gpn-OH (VPGPH) reveal molecular conformation stabilized by intramolecular C9 hydrogen bonds, while Boc-Ac6c-Gpn-OMe (ACGPO) and Boc-Gpn-Aib-OH (GPUH) are stabilized by a C7 hydrogen bonded turn at the Gpn residue. An αγ hybrid turn with 12 atoms in the intramolecular hydrogen bonded rings (C12 turns) has been observed in the tripeptide Boc-Ac6c-Gpn-Ac6c-OMe (ACGP3), while βγ hybrid turns with 13 atoms in the hydrogen bonded ring (C13 turns) have been characterized in the tripeptides Boc-βLeu-Gpn-Val-OMe (BLGPV) and Boc- βPhe-Gpn-Phe-OMe (BFGPF). The two βγ C13 turns belong to two different categories and are characterized by different sets of backbone torsion angles for the β and γ residues. A γα C10 hydrogen bond, which is formed in the N→C direction (NHi ••• COi+2), as opposed to the regular hydrogen bonded helices of α-peptides, has also been observed in BFGPF. The Chapter provides a comparison of the backbone torsion angles of the Gpn residue in various hydrogen bonded turns and a brief comparison of the observed hydrogen bonded turns with those of the α-peptides. Chapter 5 describes the crystal structures of three αγ hybrid peptides which show C12/C10 mixed hydrogen bond patterns (Vasudev et al., 2007, 2008a; Chatterjee, Vasudev et al.,2008a). The insertion of gabapentin in the predominantly α-amino acid sequences in Boc-Ala-Aib-Gpn-Aib-Ala-OMe (AUGP5) and Boc-Leu-Gpn-Aib-Leu-Gpn-Aib-OMe results in the observation of helices stabilized by αα C10 (310-turn) and αγ C12 turns. The tetrapeptide Boc-Leu-Gpn-Leu-Aib-OMe reveals a novel conformation, stabilized by C12 (αγ) and C10 (γα) hydrogen bonds of opposite hydrogen bond directionalities. The conformations observed in crystals have been extended to generate C12 helix and C12/C10 helix with alternating hydrogen bond polarities in ( αγ)n sequences. The structure determination of three crystals, providing five molecular conformations, presented in this chapter provides the first crystallographic characterization of two types of helices predicted for the regular αγ hybrid peptides from theoretical calculations. The crystal structure of Boc-Ala-Aib-Gpn-Aib-Ala-OMe also provides an example for the co-existence of left-handed and right-handed helix in the asymmetric unit. Chapter 6 describes the structural studies of αγ hybrid peptides containing Aib and Gpn residues, and is divided into two parts. The first part presents the crystal structure analysis of peptides of sequence length 2 to 4, with alternating Aib and Gpn residues, and illustrates the conformational variability in αγ hybrid sequences as evidenced by the observation of conformational polymorphs (Chatterjee, Vasudev et al., 2008b; Vasudev et al., 2007; Ananda, Vasudev et al., 2005). The peptide Boc-Gpn-Aib-NHMe (GUN), Boc-Aib-Gpn-Aib-OMe (UGU), Boc-Gpn-Aib-Gpn-Aib-OMe (GU4O), Boc-Aib-Gpn-Aib-Gpn-OMe (UG4O) and Boc-Aib-Gpn-Aib-Gpn-NHMe (UG4N), all of which are potential candidates for exhibiting αγ C12 hydrogen bonds, reveal molecular conformations stabilized by diverse hydrogen bonded turns such as C7, C9, C12 and C17 in crystals. The conformational heterogeneity in this class of hybrid peptides is further evidenced by the observation of three polymorphs in the monoclinic space group P21/c for the tetrapeptide Boc-Aib-Gpn-Aib-Gpn-NHMe (UG4N), providing four independent peptide molecules adopting two distinct backbone conformations. In one polymorph, C12 helices terminated with an unusual three residue ( γαγ) C17 turn is observed, while the unfolding of helical conformation by solvent insertion into the backbone is observed in the other two polymorphs. The studies indicate the possible utility of Gpn residue in stabilizing locally folded conformations in the folding pathway, thus permitting their crystallographic characterization in multiple crystal forms. A discussion of the structural and conformational features of Gpn residues determined from all the crystal structures is presented in the Chapter, along with a φ-ψ plot for the Gpn residue. Part 2 of Chapter 6 describes the crystal structures of two octapeptides, Boc-Gpn-Aib-Gpn-Aib-Gpn-Aib-Gpn-Aib-OMe (GU8) and Boc-Leu-Phe-Val-Aib-Gpn-Leu-Phe-Val-OMe (LFVUG8), featuring C12 turns at the Aib-Gpn segments (Chatterjee, Vasudev et al., 2009). GU8 folds into a C12 helix flanked by C9 hydrogen bonds at both the termini, while LFVUG8 adopts β-hairpin conformation with a chain-reversing C12 turn at the central Aib-Gpn segment. A remarkable feature of the Aib-Gpn turn in the β-hairpin structure is the anti conformation about the Cβ-Cα (θ2) bond, which is the only example of a Gpn residue not adopting gauche conformation for both θ1 and θ2. The crystal structures of the two peptides, mimicking the two major secondary structural elements of α-peptides in hybrid polypeptides, permits a comparative study of the mode of molecular packing in crystals of α-peptides and hybrid peptides. The chapter also discusses theoretical calculations on αγ hybrid sequences, which reveal new types of C12 hydrogen bonded turns. Chapter 7 describes the crystal structures of conformationally biased tert-butyl derivatives of Gpn. The crystallographic characterization of the E (trans) and Z (cis) isomers of the residue,three protected derivatives and a tripeptide provides examples of C7 and C9 hydrogen bonded conformations, suggesting that the C7 and C9 hydrogen bonds can be formed by Gpn residues with both the chair conformations of the cyclohexane ring. Chapter 8 describes the systematic structural studies of the derivatives and peptides of the stereochemically constrained β- amino acid residue, β3,3Ac6c (Vasudev et al., 2008c). The backbone torsion angles φ and θ adopt gauche conformation in majority of the examples, owing to the presence of a cyclohexane ring on the Cβ atom. In contrast to Gpn, β3,3Ac6c does not show strong preference for adopting intramolecularly hydrogen bonded conformations. Of the 16 crystal structures determined, intramolecular hydrogen bonds involving the β-residue are observed only in 4 cases. The amino acid zwitterion (BAC6C), the hydrochloride (BACHCL) and the dipeptide Boc-β3,3Ac6c-β3,3Ac6c-NHMe (BAC62N) form N-H•••O hydrogen bonds with 6-atoms in the hydrogen bond ring (C6 turns). An αβ hybrid C11 hydrogen bonded turn is characterized in the dipeptide Piv-Pro-β3,3Ac6c-NHMe, which is distinctly different from the C11 hydrogen bonds observed in αβ hybrid peptide helices. Several unique structural features such as a dynamic disorder of the hydrogen atom of the carboxylic acid group (in BBAC) and cis geometry of the urethane bond (in BBAC, BAC62N and BPBAC) have been observed in this study. A comparison of the backbone conformations of β3,3Ac6c with other β- amino acid residues is also provided. Chapter 9 describes the crystallographic characterization of a new polymorph of gabapentin monohydrate and crystal structures of the zwitterions of E and Z isomers of tert-butylgabapentin and its hydrochloride and hydrobromide (Vasudev et al., 2009). A comparison of the crystal structures of the monoclinic form (Ibers, J. A. Acta Crystallogr. 2001, C57, 641-643) of gabapentin monohydrate and the newly characterized orthorhombic form reveals identical molecular conformations and intermolecular hydrogen bond patterns in both the polymorphs. The two polymorphs show differences in the orientation of molecules constituting a layer of hydrophobic interactions between the cyclohexyl side chains. A comparison of the packing arrangements of the zwitterionic amino acid molecules in the crystal structures of gabapentin monohydrate, the tert-butyl derivatives and other co-crystals of gabapentin that had been characterized so far, is provided which would facilitate prediction of new polymorphs of the widely used drug molecule, Gpn. Chapter 10 describes the crystallization of α-peptide helices in multiple crystal forms (Vasudev et al., 2008b). Crystal structures of two peptides, Boc-Leu-Aib-Phe-Phe-Leu-Aib-Ala-Ala-Leu-Aib-OMe (LFF), Boc-Leu-Aib-Phe-Ala-Leu-Ala-Leu-Aib-OMe (D1) in two crystal forms and the crystal structure of a related sequence, Boc-Leu-Aib-Phe-Ala-Phe-Aib-Leu-Ala-Leu-Aib-OMe (D10) permit an analysis of the molecular conformation and packing patterns of peptide helices in crystals. The two polymorphs of LFF, crystallized in the space groups P21 and P22121, reveal very similar molecular conformation (α/310-helix) in both the polymorphic crystals; the two forms differ significantly in the pattern of solvation. The crystal structure determination of a monoclinic (P21) and an orthorhombic polymorph (P21212) of D1 provides five different peptide conformations, four of which are α-helical and one is a mixed 310/α-helix. The crystal structure determination of the three peptides provide an opportunity to compare the nature and role of aromatic interactions in stabilizing molecular conformation and packing and its significance in the observation of polymorphism. An analysis of the Cambridge Structural Database and a model for nucleation of crystals in hydrophobic peptide helices are also discussed.
83

Functional Characterization Of Rv0754(PE_PGRS11) : A Multifunctional PE_PGRS Protein From Mycobacterium Tuberculosis

Chaturvedi, Rashmi 07 1900 (has links)
Mycobacterium tuberculosis, the causative agent of pulmonary tuberculosis, infects one-third of the world’s human population. Despite the multiplicity of antimicrobial mechanisms mounted by its host, M. tuberculosis shows a remarkable ability to survive either by evoking survival strategies or by interference with critical macrophage functions that are required to successfully respond to the infection. It has been postulated that the outcome of exposure to M. tuberculosis (in terms of disease symptoms) largely depends upon the selective gene expression of tuberculosis bacilli along with activation of specific signaling pathways in the infected host cells during different phases of infection. In this perspective, determination of the complete genome sequence of Mycobacterium tuberculosis has provided crucial information with respect to the physiology of this bacterium and the pathogenesis of tuberculosis. However, putative functional annotation to all hypothetical proteins coded by M. tuberculosis genome remains complex. One important outcome of the genome-sequencing project was the discovery of two new multigene families designated PE and PPE. About 10% of the M. tuberculosis coding capacity is devoted to the PE and PPE genes, named for the Pro-Glu (PE) and Pro-Pro-Glu (PPE) motifs near the N terminus of their gene products. In addition to these motifs, proteins of PE family share N-terminal domains of approximately 100 amino acids, whereas the PPE proteins possess an N-terminal domain of about 180 amino acids. Many PE and PPE proteins are composed only of these N-terminal homologous domains. However, other members possess an additional C-terminal segment of variable length, often composed of multiple copies of polymorphic GC rich sequences (PGRS). The uniqueness of the PE genes is further illustrated by the fact that these genes are restricted to mycobacteria. However, despite their abundance in mycobacteria, very little is known regarding the expression or the functions of PE family genes. Although the PE and PPE families of mycobacterial proteins are the focus of intense research, no precise function has so far been unraveled for any member of these families. In perspective of above-mentioned observations, we have chosen Rv0754 as a representative PE family gene. Rv0754 was shown to be upregulated in tubercle bacilli upon infection of bone marrow derived macrophages as well as in M. tuberculosis isolated from alveolar macrophages of infected mice. In the current investigation, we demonstrate that Rv0754 is hypoxia responsive gene based on promoter or transcript expression analysis. Further, extensive bioinformatics analysis predicated that Rv0754 posses possible Phosphoglycerate Mutase domain, an enzyme known for its significant role not only in the glycolytic pathway of the carbohydrate metabolism, but also for the crucial cell fate decision during conditions like oxidative stress as well as infection. Experimental data clearly suggests that hypoxic environment dependent expression of Rv0754 imparts resistance to macrophages from oxidative stress. These findings could be attributed to the presence of catalytically active Phosphoglycerate Mutase domain of Rv0754. More often, sophisticated regulation/modulation of key signaling events regulate the critical cell fate decisions during oxidative stress. In this context, TLR2 dependent triggering of PI3K-ERK1/2- NF-κB signaling axis by Rv0754 may be operative in imparting resistance to oxidative stress. Further, Rv0754 triggers COX-2 expression by activating PI3K-ERK1/2-NF-κB cascade in mouse macrophages. These observations are of relevance as Rv0754 is associated with cell wall and is exposed outside the surface of the bacterium suggesting the possible access to intracellular compartments of the infected macrophages. Additionally, Rv0754 elicited humoral antibody reactivities in a panel of human sera or in cerebrospinal fluid samples obtained from different clinical categories of tuberculosis patients. DNA immunizations experiments in mice clearly suggested that Rv0754 is an immunodominant antigen demonstrating significant T cell and humoral reactivity. These observations clearly advocate that Rv0754 protein is expressed in vivo during active infection with M. tuberculosis and that the Rv0754 is immunogenic. Taken together, our findings suggest that Rv0754 is a novel PE_PGRS protein with unique features which could generate conditions that favor survival of the mycobacteria.
84

Characterisation of Eight Non-Codis Ministrs in Four South African Populations to Aid The Analysis of Degraded Dna.

Ismail, Aneesah. January 2009 (has links)
<p>In many forensic cases, such as mass disasters reconstruction cases, the recovered DNA is highly degraded. In such incidences, typing of STR loci has become one of the most powerful tools for retrieving information from the degraded DNA. However, as DNA degradation proceeds, three phenomena occur consecutively: loci imbalance, allele dropout and no amplification. To solve the problem of degraded DNA, redesigned primer sets have been developed in which the primers were positioned as close as possible to the STR repeat region. These reduced primer sets were called Miniplexes. Unfortunately, a few of the CODIS STR loci cannot be made into smaller amplicons. For this reason non-CODIS miniSTRs have been developed. The present study was undertaken for the population genetic analysis of microsatellite variation in four South African populations / Afrikaner, Xhosa, Mixed Ancestry and Asian Indian using eight non-CODIS miniSTR loci. These miniSTRs loci were characterized within the populations by estimating the levels of diversity of the markers, estimating the population genetic parameters, and studying the inter-population relationships. All of the miniSTRs were amplified successfully and the genetic variability parameters across all loci in Afrikaner, Mixed Ancestry, Asian Indian and Xhosa were estimated to be in the range of 3 (D4S2364) to 12 (D9S2157) alleles, the total number of alleles over all loci ranged from 100 to 204, the allelic richness ranged from 3.612 to 10.307 and the heterozygosity ranged from 0.4360 to 0.8073. Genetic distance was least between Afrikaner and Asian Indian and highest between Xhosa and Mixed Ancestry. Deviations from Hardy-Weinberg equilibrium were not observed for most of the loci. The low mean FIS (-0.027) and FIT (-0.010) and FST (0.017) values across the populations indicated low level of inbreeding within (FIS) and among (FST) the populations. The Asian Indian population showed higher levels of the inbreeding coefficient, indicating less gene exchange between it and other populations. These 8 markers can be used for genetic investigations and assessing population structure. The study contributed to the knowledge and genetic characterization of four South African populations. In addition, these MiniSTRs prove to be useful in cases where more genetic information is needed.</p>
85

Fingerprinting of full and half-sib black wattle (Acacia mearnsii) progenies using Random Amplified Polymorphic DNA (RAPD).

Naguran, Riann. January 2005 (has links)
Black wattle (Acacia mearnsii), which belongs to the genus Acacia, is one of the many species of trees or hardwoods grown commercially in South Africa. Black wattle is a species indigenous to Australia and was introduced into South Africa by the van der Plank brothers in 1864. These trees are grown in South Africa because of its tannin-rich bark, the extract of which is used by the leather tanning industry. Black wattle is also grown for its timber, timber products and pulp. The introduction and cultivation history of black wattle suggests that the South African plantations contain limited genetic variation with relatedness amongst groups estimated to be high, thus implying a narrow genetic base in the South African black wattle population. In this investigation, Random Amplified Polymorphic DNA (RAPD) was used to estimate the genetic variation between seven different black wattle groups. A total number of 34 individuals obtained from different areas in South Africa were examined; Piet Retief (group 47 and 50: half-sibs), Kumbula (group 85: unrelated individuals), Howick (group 400: unrelated individuals) and an unknown area (groups 88, 89, 91: full-sibs). As this investigation was the first of its kind, a DNA isolation method as well as a PCR-RAPD protocol had to be modified. Total genomic DNA was successfully extracted using the CTAB DNA extraction method. This method removed large amounts of tannin present in the cells of the black wattle leaves and extracted high quality DNA to conduct between 50-100 RAPD reactions. The DNA purities ranged from 0.1 to 1.8, with an average of 1.46. A total of fourteen 10-mer RAPD primer sequences were randomly selected from the Operon Technologies primer list A, and tested in this investigation. Of the 14 primers used, only nine primers produced clear, single and repeatable bands. Therefore nine primers were selected for subsequent analyses. Ninety one loci that generated bands ranging from 300-3050 base pairs were produced. Seven to 13 loci per primer were generated. A total of 95.6 % of the loci were polymorphic. The overall expected mean heterozygosity (H = 0.3) obtained in this study was high in comparison to other studies conducted on acacias. The high levels of genetic variation were attributed to mating systems, dissortative mating and geographic distribution. The statistical packages POPGENE and ARLEQUIN were used to analyse the RAPD fingerprints. The genetic measures, Nei's diversity and Shannon's Information Index, showed that there was greater diversity exhibited (Nei's gene diversity = 32.09 % and Shannon's = 48.31 %), in the whole population than in each of the groups (with average of Nei's gene diversity = 20.33 % and Shannon's = 34.64 %). With regards to individual group analyses, low levels of genetic variation was obtained in group 400 (unrelated), from the Howick region, and group 85 (unrelated), from the Kumbula region, (mean 0.14 and 0.17 respectively). The low genetic values were attributed to limited gene exchange occurring in these two areas, bottlenecks and selection pressures. Groups 88, 89 and 91, from the unknown region (full-sib groups), were the most variable in comparison to the other groups, with means of (0.27,0.24 and 0.18 respectively). These high genetic variation values could be due to the fact that gene migration could have occurred between these groups and others in the area. It is thought that most acacias are insect-pollinated and this could have lead to gene migration between groups or populations, thereby explaining the high mean values. The gene flow obtained for the seven groups (FST = 0.174) indicated that great genetic differentiation existed in this population of black wattle studied. This value is higher in comparison to other woody species; however it is similar to other acacia species. UPGMA cluster analysis using Nei's unbiased genetic distance, revealed four distinct clusters of groups corresponding to the distribution areas represented in this study. The Howick (group 400: unrelated) and Kumbula (group 85: unrelated) were more closely related to each other than to the other groups, since both these groups are from Natal. The Piet Retief groups (groups 47 and 50: half-sibs), branched-off together, indicating that they are distinct from the other groups. The pairwise analysis of identity showed that the relationship between the group from Howick (group 400: unrelated) and all the other groups from the other regions was the lowest, ranging from 64 % to 79 %. The relationship between all the groups beside the group from Howick (group 400: unrelated) was reasonably high, ranging from 78 % to 90 %. This distance displayed by group 400 (unrelated) from Howick in relation to the groups, is attributed to the fact that it is frost resistant and the other groups not. Genetic variation was also detected and partitioned, between and within groups, by Analysis of Molecular Variance (AMQVA). Majority of the variation existed within groups (82.65 %) but significant differentiation was recorded between groups (17.44 %). This high level of within group differentiation may be explained by many aspects, such as the species breeding system, genetic drift or genetic isolation of groups or populations. The application of RAPD fingerprinting in black wattle has provided a more in depth understanding of the genetic variation residing in the South African population. The results achieved implementing this technique has shown that significant genetic variation exists within the black wattle population in South Africa. The results obtained in this study are also important since it is contrary to the expectation that the black wattle population in South Africa has low genetic variation. This knowledge is of great value to genetically discriminate between individuals or groups, to improve the selection of superior genotypes and allowing improved quality control in breeding programmes and seed orchard management. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2005.
86

Estudo do genoma do v?rus causador da mionecrose infecciosa em camar?es e desenvolvimento de m?todos para detec??o de polimorfismos

Dantas, M?rcia Danielle de Ara?jo 01 August 2014 (has links)
Made available in DSpace on 2014-12-17T14:03:44Z (GMT). No. of bitstreams: 1 MarciaDAD_DISSERT.pdf: 4264187 bytes, checksum: 68a1d188a3ddcbd9b3e88211ae1a47e7 (MD5) Previous issue date: 2014-08-01 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / Shrimp farming is one of the activities that contribute most to the growth of global aquaculture. However, this business has undergone significant economic losses due to the onset of viral diseases such as Infectious Myonecrosis (IMN). The IMN is already widespread throughout Northeastern Brazil and affects other countries such as Indonesia, Thailand and China. The main symptom of disease is myonecrosis, which consists of necrosis of striated muscles of the abdomen and cephalothorax of shrimp. The IMN is caused by infectious myonecrosis virus (IMNV), a non-enveloped virus which has protrusions along its capsid. The viral genome consists of a single molecule of double-stranded RNA and has two Open Reading Frames (ORFs). The ORF1 encodes the major capsid protein (MCP) and a potential RNA binding protein (RBP). ORF2 encodes a probable RNA-dependent RNA polymerase (RdRp) and classifies IMNV in Totiviridae family. Thus, the objective of this research was study the IMNV complete genome and encoded proteins in order to develop a system differentiate virus isolates based on polymorphisms presence. The phylogenetic relationship among some totivirus was investigated and showed a new group to IMNV within Totiviridae family. Two new genomes were sequenced, analyzed and compared to two other genomes already deposited in GenBank. The new genomes were more similar to each other than those already described. Conserved and variable regions of the genome were identified through similarity graphs and alignments using the four IMNV sequences. This analyze allowed mapping of polymorphic sites and revealed that the most variable region of the genome is in the first half of ORF1, which coincides with the regions that possibly encode the viral protrusion, while the most stable regions of the genome were found in conserved domains of proteins that interact with RNA. Moreover, secondary structures were predicted for all proteins using various softwares and protein structural models were calculated using threading and ab initio modeling approaches. From these analyses was possible to observe that the IMNV proteins have motifs and shapes similar to proteins of other totiviruses and new possible protein functions have been proposed. The genome and proteins study was essential for development of a PCR-based detection system able to discriminate the four IMNV isolates based on the presence of polymorphic sites / A carcinicultura ? uma das atividades que mais contribui para o crescimento da aquicultura mundial. Entretanto, esta atividade vem sofrendo perdas econ?micas significativas devido ao surgimento de doen?as virais como a Mionecrose Infecciosa (IMN). A IMN j? est? disseminada em toda regi?o Nordeste do Brasil e atingiu outros pa?ses como Indon?sia, Tail?ndia e China. O principal sintoma da doen?a ? a mionecrose, que consiste na necrose dos m?sculos estriados do abd?men e do cefalot?rax do camar?o. A IMN ? causada pelo v?rus da mionecrose infecciosa (IMNV), um v?rus n?o envelopado que apresenta protrus?es ao longo de seu caps?deo. O genoma viral ? formado por uma ?nica mol?cula de RNA dupla fita e possui duas Open Reading Frames (ORFs). A ORF1 codifica a prote?na principal do caps?deo (MCP) e uma poss?vel prote?na de liga??o a RNA (RBP). A ORF2 codifica uma prov?vel RNA polimerase dependente de RNA (RdRp) e classifica o IMNV dentro da fam?lia Totiviridae. Assim, o objetivo desse estudo foi estudar o genoma completo do IMNV e as prote?nas codificadas no intuito de desenvolver um sistema que identificasse diferentes isolados do v?rus com base na presen?a de polimorfismos. A rela??o filogen?tica entre alguns totiv?rus foi investigada e mostrou um novo grupo para o IMNV dentro da fam?lia Totiviridae. Dois novos genomas foram sequenciados, analisados e comparados a outros dois genomas j? depositados no GenBank. Os novos genomas foram mais semelhantes entre si do que com aqueles j? descritos. Regi?es vari?veis e conservadas do genoma foram identificadas atrav?s de gr?ficos de similaridade e alinhamentos utilizando as quatro sequ?ncias do IMNV. Esta an?lise possibilitou o mapeamento de s?tios polim?rficos e revelou que a regi?o mais vari?vel do genoma se encontra na primeira metade da ORF1 e coincide com as regi?es que possivelmente codificam a protrus?o viral, enquanto que as regi?es mais est?veis se encontraram em dom?nios conservados de prote?nas que interagem com o RNA. Al?m disso, estruturas secund?rias foram preditas para todas as prote?nas empregando diversos softwares e modelos estruturais proteicos foram calculados usando modelagens por threading e simula??es ab initio. A partir dessas an?lises foi poss?vel observar que as prote?nas do IMNV possuem motivos e formas similares ?s prote?nas de outros totiv?rus, e novas poss?veis fun??es proteicas foram propostas. O estudo do genoma e das prote?nas foi essencial para o desenvolvimento de um sistema de detec??o baseado em PCR capaz de discriminar os quatro isolados do IMNV com base na presen?a de s?tios polim?rficos
87

Malware Analysis using Profile Hidden Markov Models and Intrusion Detection in a Stream Learning Setting

Saradha, R January 2014 (has links) (PDF)
In the last decade, a lot of machine learning and data mining based approaches have been used in the areas of intrusion detection, malware detection and classification and also traffic analysis. In the area of malware analysis, static binary analysis techniques have become increasingly difficult with the code obfuscation methods and code packing employed when writing the malware. The behavior-based analysis techniques are being used in large malware analysis systems because of this reason. In prior art, a number of clustering and classification techniques have been used to classify the malwares into families and to also identify new malware families, from the behavior reports. In this thesis, we have analysed in detail about the use of Profile Hidden Markov models for the problem of malware classification and clustering. The advantage of building accurate models with limited examples is very helpful in early detection and modeling of malware families. The thesis also revisits the learning setting of an Intrusion Detection System that employs machine learning for identifying attacks and normal traffic. It substantiates the suitability of incremental learning setting(or stream based learning setting) for the problem of learning attack patterns in IDS, when large volume of data arrive in a stream. Related to the above problem, an elaborate survey of the IDS that use data mining and machine learning was done. Experimental evaluation and comparison show that in terms of speed and accuracy, the stream based algorithms perform very well as large volumes of data are presented for classification as attack or non-attack patterns. The possibilities for using stream algorithms in different problems in security is elucidated in conclusion.
88

Characterisation of eight non-codis Ministrs in four South African populations to aid the analysis of degraded DNA

Ismail, Aneesah January 2009 (has links)
Magister Scientiae - MSc / In many forensic cases, such as mass disasters reconstruction cases, the recovered DNA is highly degraded. In such incidences, typing of STR loci has become one of the most powerful tools for retrieving information from the degraded DNA. However, as DNA degradation proceeds, three phenomena occur consecutively: loci imbalance, allele dropout and no amplification. To solve the problem of degraded DNA, redesigned primer sets have been developed in which the primers were positioned as close as possible to the STR repeat region. These reduced primer sets were called Miniplexes. Unfortunately, a few of the CODIS STR loci cannot be made into smaller amplicons. For this reason non-CODIS miniSTRs have been developed. The present study was undertaken for the population genetic analysis of microsatellite variation in four South African populations; Afrikaner, Xhosa, Mixed Ancestry and Asian Indian using eight non-CODIS miniSTR loci. These miniSTRs loci were characterized within the populations by estimating the levels of diversity of the markers, estimating the population genetic parameters, and studying the inter-population relationships. All of the miniSTRs were amplified successfully and the genetic variability parameters across all loci in Afrikaner, Mixed Ancestry, Asian Indian and Xhosa were estimated to be in the range of 3 (D4S2364) to 12 (D9S2157) alleles, the total number of alleles over all loci ranged from 100 to 204, the allelic richness ranged from 3.612 to 10.307 and the heterozygosity ranged from 0.4360 to 0.8073. Genetic distance was least between Afrikaner and Asian Indian and highest between Xhosa and Mixed Ancestry. Deviations from Hardy-Weinberg equilibrium were not observed for most of the loci. The low mean FIS (-0.027) and FIT (-0.010) and FST (0.017) values across the populations indicated low level of inbreeding within (FIS) and among (FST) the populations. The Asian Indian population showed higher levels of the inbreeding coefficient, indicating less gene exchange between it and other populations. These 8 markers can be used for genetic investigations and assessing population structure. The study contributed to the knowledge and genetic characterization of four South African populations. In addition, these MiniSTRs prove to be useful in cases where more genetic information is needed. / South Africa
89

Les corrélats de sexe et de genre dans la cognition sexuellement polymorphique

Cartier, Louis 08 1900 (has links)
La cognition sexuellement polymorphique (CSP) résulte de l'interaction entre des facteurs biologiques du sexe (sexe assigné à la naissance, hormones sexuelles) et psychosociaux du genre (identité de genre, rôles de genre, orientation sexuelle). La littérature reste assez mitigée quant à la magnitude des effets de ces variables. Seules quelques études ont considéré la CSP au-delà du sexe assigné à la naissance. Dans ces quelques études, ces facteurs supplémentaires liés au sexe et au genre n’ont été pris en compte qu’individuellement. Ce projet a utilisé une batterie de tests cognitifs classiques conçus pour évaluer l'influence des hormones sexuelles sur les performances cognitives. Parallèlement, nous avons cherché à évaluer les effetsrespectifs du sexe assigné à la naissance, des hormones sexuelles et des facteurs psychosociaux liés au genre sur la CSP. Nous avons recruté 222 adultes qui ont effectué huit tâches cognitives évaluant diverses fonctions cognitives au cours d'une session protocolaire de 150 minutes. Les sous-groupes ont été divisés comme suit : hommes cisgenres hétérosexuels (n = 46), hommes cisgenres non hétérosexuels (n = 36), femmes cisgenres hétérosexuelles (n = 36), femmes cisgenres non hétérosexuelles (n = 38), et personnes issues de la diversité de genre (n = 66). Des échantillons de salive ont été prélevés avant, pendant et après les tests cognitifs pour mesurer les niveaux de testostérone, d'estradiol, de progestérone, de cortisol et de déhydroépiandrostérone. Les variables psychosociales ont été adressées via des questionnaires autorapportés validés. La batterie cognitive présentée reflète des différences entre les sexes qui sont partiellement en concordance avec la littérature. Il est intéressant de noter que les facteurs biologiques semblent expliquer les différences de performances dans les tâches cognitives genrées «masculines» (par exemple, spatiales), tandis que les facteurs psychosociaux semblent expliquer les différences de performances dans les tâches cognitives genrées «féminines» (par exemple, verbales). Nos résultats fournissent une base solide pour une meilleure compréhension de la CSP en allant au-delà du sexe assigné à la naissance en tant que variable binaire. Nous soulignons l'importance de considérer le sexe comme un facteur biologique et le genre comme un facteur socioculturel, tous deux associés de manière unique à la CSP. / Sexually polymorphic cognition (SPC) results from the interaction between biological sex (birth-assigned sex, sex hormones) and psychosocial gender (gender identity, gender roles, sexual orientation) factors. The literature remains quite mixed regarding the magnitude of the effects of these variables. Only few studies consider SPC beyond birth-assigned sex. From these studies, other sex and gender factors were considered individually. This project used a battery of classic cognitive tests designed to assess the influence of sex hormones on cognitive performance. At the same time, we aimed to assess the inter-related and respective effects that birth-assigned sex, sex hormones, and gender-related psychosocial factors have on SPC. We recruited 222 adults who completed eight cognitive tasks that assessed a variety of cognitive domains during a 150-minute session. Subgroups were recruited as follows: cisgender heterosexual men (n = 46), cisgender nonheterosexual men (n = 36), cisgender heterosexual women (n = 36), cisgender non-heterosexual women (n = 38), and gender diverse (n = 66). Saliva samples were collected before, during, and after the test to assess testosterone, estradiol, progesterone, cortisol, and dehydroepiandrosterone. Psychosocial variables were derived from self-report questionnaires. The cognitive battery presented reflects gender differences that are partially consistent with the literature. Interestingly, biological factors seem to explain differences in male-typed cognitive tasks (e.g., spatial), while psychosocial factors seem to explain differences in female-typed cognitive tasks (e.g., verbal). Our results provide a solid foundation for a better understanding of SPC by going beyond birth-assigned sex as a binary. We highlight the importance of treating sex as a biological factor and gender as a sociocultural factor both uniquely associated with SPC.
90

Organization of Glucan Chains in Starch Granules as Revealed by Hydrothermal Treatment

Vamadevan, Varatharajan 07 June 2013 (has links)
Regular starches contain two principal types of glucan polymers: amylopectin and amylose. The structure of amylopectin is characterized according to the unit chain length profile and the nature of the branching pattern, which determine the alignment of glucan chains during biosynthesis. The organization of glucan chains in amylopectin and their impact on the structure of starch are still open to debate. The location of amylose and its exact contribution to the assembly of crystalline lamellae in regular and high-amylose starch granules also remain unknown. The primary focus of this thesis is the organization and flexibility of glucan chains in crystalline lamellae. The organization and flexibility of glucan chains in native, annealed (ANN), and heat-moisture treated (HMT) normal, waxy, hylon V, hylon VII, and hylon VIII corn starches were examined. This study has shown for the first time that increased amounts of apparent amylose in B-type starches hinder the polymorphic transition (from B to A+B) during HMT. The research has also demonstrated that an iodine-glucan complex transformed the B-type polymorphic pattern of hylon starches into a V-type pattern. The differential scanning calorimetry (DSC) results showed that ANN- and HMT-induced changes were most pronounced in hylon starches. These findings suggest that the glucan tie chains influences the assembly of crystalline lamellae in high-amylose starches. The relationship between the internal unit chain composition of amylopectin, and the thermal properties and annealing of starches from four different structural types of amylopectin was investigated by DSC. The onset gelatinization temperature (To) correlated negatively with the number of building blocks in clusters (NBbl) and positively with the inter-block chain length (IB-CL). The enthalpy of gelatinization (∆H) correlated positively with the external chain length of amylopectin. Annealing results showed that starches with a short IB-CL were most susceptible to ANN, as evidenced by a greater increase in the To and Tm. The increase in enthalpy was greater in starches with long external chains and IB-CLs. These data suggest that the internal organization of glucan chains in amylopectin determines the alignment of chains within the crystalline lamellae and thereby the thermal properties and annealing of the starch granules.

Page generated in 0.0401 seconds