• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 83
  • 18
  • 12
  • 7
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 158
  • 158
  • 23
  • 23
  • 22
  • 21
  • 20
  • 20
  • 20
  • 18
  • 17
  • 17
  • 15
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Cold thermal processing in the spinal cord

Wrigley, Paul John January 2006 (has links)
Doctor of Philosophy(PhD) / Two recently identified transient receptor potential (TRP) channels, TRPM8 and TRPA1, have been proposed to play an important role in mammalian cool and cold peripheral sensory transduction. When expressed in cell-lines the cloned TRPM8 and TRPA1 receptors have distinct pharmacological and temperature response characteristics. Although these receptors are also transported to the central terminals of primary afferents, little is known about their centrally mediated actions. In this thesis, I use an in vitro electrophysiological approach to investigate the dorsal horn processing of cool afferent modalities and the role of TRP ion channels. The results of this thesis provide further information on thermal processing, indicate direction for further research and suggest possible therapeutic targets for the management of abnormal cold sensory processing. Initial experiments demonstrate that the cooling agents and known TRPM8 and TRPA1 agonists, menthol and icilin, inhibit primary afferent evoked excitatory postsynaptic currents (EPSCs) in rat spinal cord dorsal horn neurons. In addition, temperature reduction, menthol and icilin increase the frequency of miniature EPSCs without affecting amplitude distribution or kinetics. Little or no direct postsynaptic effect on dorsal horn neurons, GABAergic or glycinergic transmission was found. In combination, these observations demonstrate that temperature reduction, menthol and icilin act presynaptically to increase the probability of glutamate release from primary afferent fibres. Further examination of the changes in glutamatergic synaptic transmission induced by temperature reduction, menthol and icilin reveals a subset of neurons sensitive to innocuous cool (< 29 oC) and low concentrations of icilin (3-10 µM) which closely match the temperature activation and pharmacological profile of TRPM8. In addition, the majority of lamina I and II neurons displayed characteristics partly consistent with TRPA1-activation, including a concentration-dependent response to icilin and blockade by ruthenium red. The present experiments did not allow thermal characterisation of these TRPA1-like responses. Together these observations indicate that the effects of menthol and icilin on glutamatergic synaptic transmission in the superficial dorsal horn are mediated by TRPM8 and possibly by TRPA1. Examination of the anatomical location of neurons activated by temperature reduction, menthol, icilin and capsaicin allowed the central termination pattern of thermoreceptive primary afferent fibres with specific TRP-like response characteristics to be determined. TRPM8-like presynaptic activation was confined to a subpopulation of neurons located in lamina I and outer lamina II, while the majority of neurons throughout laminae I and II received inputs sensitive to menthol, high concentrations of icilin and capsaicin. These findings suggest that innocuous cool sensation projects to a specific subpopulation of superficial dorsal horn neurons unlike other modalities (mediated by TRPV1, possibly TRPA1 and other receptors), which non-selectively engage circuits within the entire superficial dorsal horn. No morphological specificity was identified for recovered neurons after electrophysiological characterisation. Finally, mu-opioids were shown to inhibit basal glutamatergic synaptic transmission as well as menthol- and icilin-induced transmission in the superficial dorsal horn. Of particular interest, delta-opioids selectively inhibited icilin-induced synaptic transmission within the same location. The selective effect of delta-opioids suggests a possible role in modulating receptors activated by icilin (TRPM8 and TRPA1). Overall, this thesis provides further evidence that TRPM8 is responsible for the transduction of innocuous cold sensation in mammals and is a potential therapeutic target in humans with cold hyperaesthesia secondary to abnormal thermal processing. The use of delta-opioid agonists warrants further investigation in cold hypersensitivity states and potentially other forms of pain.
142

Regulatory Effects of the Actin-binding Proteins Moesin and MyosinII on Synaptic Activity at the Drosophila Neuromuscular Junction

Seabrooke, Sara 23 February 2011 (has links)
The nervous system is made up of specialized cells which receive and respond to environmental stimuli. Intercellular communication in the nervous system is achieved predominantly through chemical synaptic transmission. Within the chemical synapse, the actin cytoskeleton plays a major role in regulating synaptic activities, although the extent and clarity in our understanding of these processes is still limited. Using the genetically pliable model, Drosophila melanogaster, this thesis begins to unravel contributions of actin binding proteins to synaptic development and physiology at the larval neuromuscular junction (NMJ). Two actin binding proteins, Moesin and Nonmuscle Myosin II (NMMII) were selected for study based on previous studies implicating them in synaptic development. Combining genetics, fluorescent imaging and electrophysiological recordings this thesis unveils previously unidentified functions for Moesin and NMMII in morphology and physiology of the Drosophila NMJ. Moesin was found to help restrain synaptic growth but did not affect synaptic physiology. By correlating morphological and electrophysiological measurements in Moesin mutants, it was determined that physiology and morphology can be independently regulated at the NMJ. NMMII was used to investigate a role for actin binding proteins in physiology at the Drosophila NMJ. By using the fluorescent imaging technique, FRAP, this becomes the first research to implicate NMMII in unstimulated synaptic vesicle mobility. FRAP indicated that vesicle mobility was highly dependent on the expression level of NMMII. Electrophysiological analysis of NMMII indicated distinct mechanisms for spontaneous and evoked vesicle release. NMMII expression exhibited a positive correlation with basal synaptic transmission and was important in mobilizing vesicles for synaptic potentiation. In addition, NMMII was found to be involved in a high frequency dependent low frequency depression. This work begins to identify how vesicles traverse within boutons and suggests differential mechanisms of synaptic release, both of which are partially dependent of NMMII expression. Studying Moesin and NMMII have revealed a complex interplay between the actin cytoskeleton and synaptic function and together this research furthers our understanding of how the actin cytoskeleton regulates synaptic activity.
143

Regulatory Effects of the Actin-binding Proteins Moesin and MyosinII on Synaptic Activity at the Drosophila Neuromuscular Junction

Seabrooke, Sara 23 February 2011 (has links)
The nervous system is made up of specialized cells which receive and respond to environmental stimuli. Intercellular communication in the nervous system is achieved predominantly through chemical synaptic transmission. Within the chemical synapse, the actin cytoskeleton plays a major role in regulating synaptic activities, although the extent and clarity in our understanding of these processes is still limited. Using the genetically pliable model, Drosophila melanogaster, this thesis begins to unravel contributions of actin binding proteins to synaptic development and physiology at the larval neuromuscular junction (NMJ). Two actin binding proteins, Moesin and Nonmuscle Myosin II (NMMII) were selected for study based on previous studies implicating them in synaptic development. Combining genetics, fluorescent imaging and electrophysiological recordings this thesis unveils previously unidentified functions for Moesin and NMMII in morphology and physiology of the Drosophila NMJ. Moesin was found to help restrain synaptic growth but did not affect synaptic physiology. By correlating morphological and electrophysiological measurements in Moesin mutants, it was determined that physiology and morphology can be independently regulated at the NMJ. NMMII was used to investigate a role for actin binding proteins in physiology at the Drosophila NMJ. By using the fluorescent imaging technique, FRAP, this becomes the first research to implicate NMMII in unstimulated synaptic vesicle mobility. FRAP indicated that vesicle mobility was highly dependent on the expression level of NMMII. Electrophysiological analysis of NMMII indicated distinct mechanisms for spontaneous and evoked vesicle release. NMMII expression exhibited a positive correlation with basal synaptic transmission and was important in mobilizing vesicles for synaptic potentiation. In addition, NMMII was found to be involved in a high frequency dependent low frequency depression. This work begins to identify how vesicles traverse within boutons and suggests differential mechanisms of synaptic release, both of which are partially dependent of NMMII expression. Studying Moesin and NMMII have revealed a complex interplay between the actin cytoskeleton and synaptic function and together this research furthers our understanding of how the actin cytoskeleton regulates synaptic activity.
144

The Role of the Ras Guanyl-Nucleotide Exchange Factor Rasgrp1 in Synaptic Transmission / Die Rolle des Ras-Guanyl-Nukleotid Austausch Faktors Rasgrp1 in der synaptischen Transmission

Bungers, Simon 24 June 2010 (has links)
No description available.
145

Role of the different domains of PSD-95 in basal synaptic transmission

Bonnet, A.D. Stéphanie 23 September 2011 (has links)
No description available.
146

The role of α-neurexins in Ca<sup>2+</sup>-dependent synaptic transmission and plasticity / Die Rolle von α-Neurexinen bei Ca<sup>2+</sup>-abhängiger synaptischer Transmission und Plastizität

Ahmad, Mohiuddin 24 April 2006 (has links)
No description available.
147

The modulation of synaptic transmission at the Calyx of Held synapse / Die Modulation der Synaptischen Transmission an der Held'schen Calyx

Yao, Lijun 28 September 2010 (has links)
No description available.
148

Molecular profiling of presynaptic docking sites / Molekulare Zusammensetzung präsynaptischer Dockingstellen

Boyken, Anne Janina 04 July 2011 (has links)
No description available.
149

Impact of N-terminally truncated Aß4-42 on memory and synaptic plasticity - Tg4-42 a new mouse model of Alzheimer's disease

Dietrich, Katharina 17 December 2014 (has links)
No description available.
150

Cold thermal processing in the spinal cord

Wrigley, Paul John January 2006 (has links)
Doctor of Philosophy(PhD) / Two recently identified transient receptor potential (TRP) channels, TRPM8 and TRPA1, have been proposed to play an important role in mammalian cool and cold peripheral sensory transduction. When expressed in cell-lines the cloned TRPM8 and TRPA1 receptors have distinct pharmacological and temperature response characteristics. Although these receptors are also transported to the central terminals of primary afferents, little is known about their centrally mediated actions. In this thesis, I use an in vitro electrophysiological approach to investigate the dorsal horn processing of cool afferent modalities and the role of TRP ion channels. The results of this thesis provide further information on thermal processing, indicate direction for further research and suggest possible therapeutic targets for the management of abnormal cold sensory processing. Initial experiments demonstrate that the cooling agents and known TRPM8 and TRPA1 agonists, menthol and icilin, inhibit primary afferent evoked excitatory postsynaptic currents (EPSCs) in rat spinal cord dorsal horn neurons. In addition, temperature reduction, menthol and icilin increase the frequency of miniature EPSCs without affecting amplitude distribution or kinetics. Little or no direct postsynaptic effect on dorsal horn neurons, GABAergic or glycinergic transmission was found. In combination, these observations demonstrate that temperature reduction, menthol and icilin act presynaptically to increase the probability of glutamate release from primary afferent fibres. Further examination of the changes in glutamatergic synaptic transmission induced by temperature reduction, menthol and icilin reveals a subset of neurons sensitive to innocuous cool (< 29 oC) and low concentrations of icilin (3-10 µM) which closely match the temperature activation and pharmacological profile of TRPM8. In addition, the majority of lamina I and II neurons displayed characteristics partly consistent with TRPA1-activation, including a concentration-dependent response to icilin and blockade by ruthenium red. The present experiments did not allow thermal characterisation of these TRPA1-like responses. Together these observations indicate that the effects of menthol and icilin on glutamatergic synaptic transmission in the superficial dorsal horn are mediated by TRPM8 and possibly by TRPA1. Examination of the anatomical location of neurons activated by temperature reduction, menthol, icilin and capsaicin allowed the central termination pattern of thermoreceptive primary afferent fibres with specific TRP-like response characteristics to be determined. TRPM8-like presynaptic activation was confined to a subpopulation of neurons located in lamina I and outer lamina II, while the majority of neurons throughout laminae I and II received inputs sensitive to menthol, high concentrations of icilin and capsaicin. These findings suggest that innocuous cool sensation projects to a specific subpopulation of superficial dorsal horn neurons unlike other modalities (mediated by TRPV1, possibly TRPA1 and other receptors), which non-selectively engage circuits within the entire superficial dorsal horn. No morphological specificity was identified for recovered neurons after electrophysiological characterisation. Finally, mu-opioids were shown to inhibit basal glutamatergic synaptic transmission as well as menthol- and icilin-induced transmission in the superficial dorsal horn. Of particular interest, delta-opioids selectively inhibited icilin-induced synaptic transmission within the same location. The selective effect of delta-opioids suggests a possible role in modulating receptors activated by icilin (TRPM8 and TRPA1). Overall, this thesis provides further evidence that TRPM8 is responsible for the transduction of innocuous cold sensation in mammals and is a potential therapeutic target in humans with cold hyperaesthesia secondary to abnormal thermal processing. The use of delta-opioid agonists warrants further investigation in cold hypersensitivity states and potentially other forms of pain.

Page generated in 0.0991 seconds