191 |
A New Approach for 3D Printed Microfluidic Device Design Based on Pre-Defined ComponentsSlaugh, Cassandra Ester 15 April 2022 (has links)
3D printing for microfluidic device fabrication has received considerable interest in recent years, in part driven by the potential to dramatically speed up device development by reducing device fabrication time to the minutes timescale. Moreover, in contrast to traditional cleanroom-based fabrication processes that require manual production and stacking of a limited number of layers, 3D printing allows full use of the 3D fabrication volume to lay out microfluidic elements with complex yet compact 3D geometries. The Nordin group has successfully developed multiple generations of high resolution printers and materials for microfluidic devices that achieve this vision. However, because of the customizability of design in the Nordin microfluidics lab, finding settings that lead to a successful print can involve a taxing cycle of adjustments. The current 3D microfluidics design flow, which requires each student to find settings for each design, makes it difficult for new students to rapidly print successful designs with new components. In this thesis I present an Improved Microfluidic Design Approach (IMDA) that is based on a pre-defined component library. It allows students to reuse a library of components such that a new designer can utilize the work of more experienced predecessors, allowing the lab to avoid repeating the same parameter tuning process with each student. So far the tool has shown the feasibility of printing new designs based on previously tested components. Ultimately, my work demonstrates an attractive path to make the 3D printed microfluidic design experience more robust, repeatable, and easier for newcomers to learn.
|
192 |
El impacto de la impresión 3D en la moda en LimaFanton Urday, Francesca 11 July 2020 (has links)
La moda se mantiene en un cambio constante debido al entorno. Cada temporada los diseñadores crean colecciones y proponen nuevas tendencias que buscan responder las exigencias del público. A lo largo de los años, se ha notado un incremento significativo en el uso de la tecnología por parte de las personas. Es por ello que las nuevas tecnologías se han comenzado a fusionar con el indumento tradicional. En los últimos años, los diseñadores están cada vez más dispuestos a optar por este tipo de técnicas en sus colecciones. Pese a esto, aún se desconoce cómo es que la impresión 3D ha impactado en la industria de la moda en nuestro país. Por consiguiente, la presente investigación tiene como fin responder la siguiente pregunta: ¿Cuál es el impacto de la impresión 3D en la moda en Lima entre el 2016 y 2020? Para resolverlo, se debe conocer el desarrollo de esta tecnología y su definición de manera detallada. De igual manera, se busca describir cómo se aplica la impresión 3D en la moda en Lima. Para ello, se entrevistarán a 8 diseñadores peruanos que han realizado colecciones de moda utilizando esta tecnología. Para esta investigación se utilizará el método cualitativo con enfoque fenomenológico. Dicha información se obtendrá mediante entrevistas semiestructuradas con preguntas abiertas. Cabe mencionar que la presente investigación aportará un punto de partida como fuente de estudio para diversos proyectos académicos. / Fashion is constantly changing due to the environment. Each season designers create collections and propose new trends that seek to meet the demands of the public. Over the years, there has been a significant increase in the use of technology by people. That is why new technologies have begun to merge with traditional clothing. In recent years, designers are increasingly willing to opt for this type of technique in their collections. Despite this, it is still unknown how 3D printing has impacted the fashion industry in our country. Therefore, this research aims to answer the following question: What is the impact of 3D printing on fashion in Lima between 2016 and 2020? To solve it, you must know the development of this technology and its definition in detail. In the same way, it seeks to describe how 3D printing is applied in fashion in Lima. To do this, 8 Peruvian designers who have made fashion collections using this technology will be interviewed. For this research, the qualitative method with a phenomenological approach will be used. This information will be obtained through semi-structured interviews with open questions. It is worth mentioning that this research will provide a starting point as a source of study for various academic projects.
|
193 |
Géométrie numérique et géométrie algorithmique pour le design interactif 3D / Digital geometry and algorithmic geometry for interactive 3D designThiery, Jean-Marc 28 November 2012 (has links)
Alors que les surfaces géométriques sont essentiellement représentées à l'aide de maillages triangulaires dans le domaine de la géométrie numérique, les structures permettant d'interagir avec ces géométries sont variées et adaptées aux différents traitements visés par l'utilisateur. Cette thèse présente des travaux réalisés sur des structures de dimension et de représentation géométrique variées, allant de l'étude des structures internes comme les squelettes analytiques pour la modélisation géométrique, passant par les structures surfaciques pour la sélection automatiques de poignées de déformation, jusqu'aux structures externes de contrôle d'objet de type "cage" offrant une représentation haut niveau de séquences animées d'objets issues de systèmes de performance capture. Sont présentés également les résultats obtenus sur les coordonnées aux valeurs moyennes offrant une solution au problème de l'interpolation de conditions de Dirichlet, pour lesquelles les formules analytiques des gradients et Hessiens sont fournies, et les fonctions biharmoniques pour lesquelles une base d'éléments finis est formulée pour la résolution du problème de Laplace biharmonique avec conditions mixtes Dirichlet/Neumann, ainsi que leurs applications à la déformation de formes 3D. / While 3D surfaces are essentially represented using triangle meshes in the domain of digital geometry, the structures that allow to interact with those are various and adapted to the different geometry processing tasks that are targetted by the user.This thesis presents results on structures of various dimension and various geometrical representations, going from internal structures like analytical curve skeletons for shape modeling, to on-surface structures allowing automatic selection of feature handles for shape deformation, and external control structures known as “cages” offering a high-level representation of animated 3D data stemming from performance capture. Results on spatial functions are also presented, in particular for the Mean-Value Coordinates, for which the analytical formulae of the gradients and the Hessians are provided, and biharmonic functions, for which a finite elements basis is given for the resolution of the biharmonic Laplace problem with mixed Dirichlet/Neumann boundary conditions, as well as their applications to 3D shapes deformation.
|
194 |
Sintering and Characterizations of 3D Printed Bronze Metal FilamentAyeni, Oyedotun Isaac 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Metal 3D printing typically requires high energy laser or electron sources. Recently, 3D printing using metal filled filaments becomes available which uses PLA filaments filled with metal powders (such as copper, bronze, brass, and stainless steel). Although there are some studies on their printability, the detailed study of their sintering and characterizations is still missing.
In this study, the research is focused on 3D printing of bronze filaments. Bronze is a popular metal for many important uses. The objectives of this research project are to study the optimal processing conditions (like printer settings, nozzle, and bed temperatures) to print bronze metal filament, develop the sintering conditions (temperature and duration), and characterization of the microstructure and mechanical properties of 3D printed specimens to produce strong specimens.
The thesis includes three components: (1) 3D printing and sintering at selected conditions, following a design of experiment (DOE) principle; (2) microstructure and compositional characterizations; and (3) mechanical property characterization. The results show that it is feasible to print using bronze filaments using a typical FDM machine with optimized printing settings. XRD spectrums show that there is no effect of sintering temperature on the composition of the printed parts. SEM images illustrate the porous structure of the printed and sintered parts, suggesting the need to optimize the process to improve the density. The micro hardness and three-point bending tests show that the mechanical strengths are highly related to the sintering conditions. This study provides important information of applying the bronze filament in future engineering applications.
|
195 |
Clock Distribution in a 3d MicroprocessorArunachalam, Venkatesh 01 January 2009 (has links) (PDF)
As technology scales, the device delay decreases while the interconnect delay increases. As more devices are being packed into a single chip, the cost of interconnecting these devices increases. Many three-dimensional (3D) schemes have been proposed to reduce interconnect length, to improve performance with lower power consumption. The impact of wire length reduction on global clock distribution networks is limited. The delay and skew of a clock grid is mostly dominated by the area of the chip it has to cover. Another challenge in distributing clock to multiple layers in a vertical stack is achieving synchronization between the various layers. In this work the use of a clock layer exclusively for generating and distributing clocks is proposed. Vertical vias connect the clock grid in each layer to the clock layer, and hence provides synchronization between the various layers.
In all synchronous systems clock is the single most critical signal, it is routed throughout the chip and provides the synchronization between the various operations of the chip. Clock distribution networks are extremely critical from the performance and power standpoint. They account for about 30% of the total power dissipated in current generation microprocessors. As technology scales, the chip sizes are also increasing due to the increased functionality. This means larger clock distribution networks and hence more power lost in the clock network. Another critical parameter in clock networks is that skew in the clock network affects performance of the synchronous system. As frequency scales with technology, the goal is to achieve the skew as a fixed percentage of clock period. This implies an aggressive clock network design which minimizes power dissipation but still provides the same performance.
A clock distribution methodology for a 3D multilayer single-core microprocessor, using a single clock layer is proposed. The clock distribution network consists of a symmetric H-tree driving the global clock grids in each layer of the multilayer microprocessor. This arrangement of a 3D chip stack reduces Power lost in (a) Long interconnects at block level and (b) In the clock distribution. Using the proposed clock distribution scheme a 15-20% saving on the clock distribution power was achieved compared to a 2D structure with the same distribution scheme. By switching off the global clock grids in individual layers, when all the underlying logic is turned off, an additional 5-10% savings in power is achieved. The 3D clock distribution network also provides better skew numbers than its 2D counterpart and hence achieves the goal of improving performance and reducing power. The 3D clock distribution network was also verified with an RLC model for the interconnect. The effect of a vertical temperature profile was also investigated on the clock distribution network.
|
196 |
3D Animation of a Human Body Reconstructed from a Single PhotographDing, Yezhe 24 July 2023 (has links)
3D modelling is a technology in massive demand now and can potentially become a key factor for enabling subsequent technological evolutions such as metaverses, digital twins, and virtual reality. Current 3D modellings include high-precision 3D human body modelling and rapid modelling through single or multiple monocular photos. However, some problems persist in both modellings. The modelling based on high-precision equipment has low practicability, few applicable scenarios, and high cost. Modelling through monocular photos, on the other hand, has low accuracy and is sensitive to noisy data. And both modellings generate static 3D models. Therefore, to realize the model's dynamic effect in various fields while retaining fast modelling, we propose a system that recovers a 3D model from a single photo to fuse skeleton animation extracted from videos, for a realization of the Digital Twin (DT). DT is defined as "digital replications of living as well as non-living entities that enable data to be seamlessly transmitted between the physical and virtual worlds".
Rigging is setting up the skeleton-based animation to combine the 3D model and skeleton animation. Traditional rigging method is time-consuming and non-reusable, since rigging is often done manually or semi-automatically. In this thesis, we propose an automatic rigging method to achieve a loose coupling fusion of one-to-many or many-to-one 3D models and skeletal animations. Our rigging method is fast and efficient, and only needs a single photo as input.
|
197 |
3D Path Planning for Radiation Scanning of Cargo ContainersBraun, Patrick Douglas 28 October 2022 (has links)
Every year, the ports of entry of the continental United States receive millions of containers from container ships for processing. These containers contain everything that the country imports, and sometimes regulated items can be hidden inside them in attempt to smuggle them illegally into the country. Some of these items may be radioactive material meant for criminal purposes and represent a threat to national security. The containers are currently being scanned for radioactivity as they leave the port, but before leaving the port, containers can sit inside the port for weeks. It can be beneficial to scan these containers before they are picked up to catch the illegal material sooner and reduce the risk of danger to those nearby. Uncrewed Aerial Systems can be useful for scanning container stacks in container fields since they can be attached with sensors and reach heights that are difficult for humans. They can also scan autonomously, requiring less over watch from people. This thesis attempts to solve the problem of autonomous search by using an initial 3D scan of the search area to input into a 3D path planning algorithm to generate a flight path that will sufficiently scan the search area while minimizing flight time. Coverage is a main area of concern, as well is computational complexity and time. In order to maintain security of the aircraft, the path must be generated on-board the aircraft, and as such use on-board, lightweight, computers. The approach taken in this thesis is by breaking the problem down into 2D layers, and then developing paths on each layer based on where the obstacles are. In order to maximize coverage, contours are generated around the obstacles. The vertices of the contours are then treated like points to visit in a Travelling Salesman Problem. To incentivize paths that run alongside the obstacles for better radiation detection, paths that do not run close to the obstacles are given a higher cost than those that do, resulting in a cost-minimizing path planning algorithm yielding paths that stay close to obstacles. The Travelling Salesman Problem algorithm then yields the most time effective path to cover the area while maintaining a distance healthy for radiation scanning from the obstacles. / Master of Science / Every year, the ports of entry of the continental United States receive millions of containers from container ships for processing. These containers contain everything that the country imports, and sometimes regulated items can be hidden inside them in attempt to smuggle them illegally into the country. Some of these items may be radioactive material meant for criminal purposes and represent a threat to national security. It can be beneficial to scan these containers before they are picked up to catch the illegal material sooner and reduce the risk of danger to those nearby. Uncrewed Aerial Systems can be useful for scanning container stacks in container fields since they can be attached with sensors and reach heights that are difficult for humans. They can also scan autonomously, requiring less over watch from people. This thesis attempts to solve the problem of autonomous search by using an initial 3D scan of the search area to input into a 3D path planning algorithm to sufficiently scan the search area while minimizing flight time.
|
198 |
GENERATION AND SEGMENTATION OF 3D MODELS OF BONE FROM CT IMAGES BASED ON 3D POINT CLOUDSRier, Elyse January 2021 (has links)
The creation of 3D models of bone from CT images has become popular for surgical planning, the design of implants, and educational purposes. Software is available to convert CT images into 3D models of bone, however, these can be expensive and technically taxing. The goal of this project was to create an open-source and easy-to-use methodology to create 3D models of bone and allow the user to interact with the model to extract desired regions. The method was first created in MATLAB and ported to Python. The CT images were imported into Python and the images were then binarized using a desired threshold determined by the user and based on Hounsfield Units (HU). A Canny edge detector was applied to the binarized images, this extracted the inner and outer surfaces of the bone. Edge points were assigned x, y, and z coordinates based on their pixel location, and the location of the slice in the stack of CT images to create a 3D point cloud. The application of a Delaunay tetrahedralization created a mesh object, the surface was extracted and saved as an STL file. An add-on in Blender was created to allow the user to select the CT images to import, set a threshold, create a 3D mesh model, draw an ROI on the model, and extract that region based on the desired thickness and create a new 3D object. The method was fully open-sourced so was inexpensive and was able to create models of a skull and allow the segmentation of portions of that mesh to create new objects. Future work needs to be conducted to improve the quality of the mesh, implement sampling to reduce the time to create the mesh, and add features that would benefit the end-user. / Thesis / Master of Applied Science (MASc) / The creation of 3D models of bone from CT images has become popular for education, surgical planning, and the design of implants. Software is available to convert CT images into 3D models but can be expensive and technically taxing. The purpose of this project was to develop a process to allow surgeons to create and interact with models from imaging data. This project applied a threshold to binarize a set of CT images, extracted the edges using a Canny Edge detector, and used the edge pixels to create a 3D point cloud. The 3D point cloud was then converted to a mesh object. A user interface was implemented that allowed the selection of portions of the model and a new 3D model to be created from the selection. The process can be improved by improving the quality of the mesh output and adding features to the user interface.
|
199 |
Java 3D for UCWavesNuggehally, Mohan A. 16 September 2002 (has links)
No description available.
|
200 |
Comparison of Image Generation and Processing Techniques for 3D Reconstruction of the Human SkullMarinescu, Ruxandra 03 December 2001 (has links)
No description available.
|
Page generated in 0.0486 seconds