• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 390
  • 50
  • 45
  • 43
  • 15
  • 9
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 715
  • 334
  • 139
  • 139
  • 139
  • 115
  • 77
  • 76
  • 73
  • 67
  • 59
  • 59
  • 56
  • 55
  • 50
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Photonic entanglement : new sources and new applications

Svozilík, Jiŕí 17 October 2014 (has links)
Non-classical correlations, usually referred as entanglement, are ones of the most studied and discussed features of Quantum Mechanics, since the initial introduction of the concept in the decade of 1930s. Even nowadays, a lot of efforts, both theoretical and experimental, are devoted in this topic, that covers many distinct areas of physics, such as a quantum computing, quantum measurement, quantum communications, solid state physics, chemistry and even biology. The fundamental tasks that one should consider related to the entanglement are: -How to create quantum entangled states. -How to maintain entanglement during propagation against sources of decoherence. -How to effectively detect it. -How to employ the benefits that entanglement offers. This thesis, divided into four chapters, concentrates on the first and last tasks considered above. In Chapter 1, a brief introduction and overview of what it is entanglement is given, starting with the famous paper of Einstein, Podolsky and Rosen, and continuing with John Bell's formulation of the so-called Bell's inequalities. We define here general concepts about entangled quantum states and introduce important entanglement measures, that are later used all over the thesis. In this chapter, sources of entangled particles (namely photons) are also mentioned. The importance is put on sources based on the nonlinear process of spontaneous parametric down-conversion. The last part of this chapter is then dedicated to a list of applications that benefit from the use of engangled states. Chapter 2 is devoted to the systematic study of the generation of entangled and non-entangled photon pairs in semiconductor Bragg reflection waveguides. Firstly, we present a source of photon pairs with a spectrally uncorrelated two-photon amplitude, achieved by a proper tailoring of the geometrical and material dispersions via structural design of waveguides. Secondly, Bragg reflection waveguides are designed in a scuh way, that results in the generation of spectrally broadband paired photons entangled in the polarization degree of freedom. Finally, we present experimental results of entangled photon pairs generation in this type of structures. In Chapter 3, we explore the feasibility of the generation of photon pairs entangled in the spatial degree of freedom, i.e. in the orbital angular momentum (OAM). Firstly, we examine how to create a highly multidimensional Hilbert space using OAM modes obtained in a chipred-poled nonlinear bulk crystals. Here, we show, how an increase of the chirp of the poling can effectively increase the Schmidt number by several orders of magnitude. Secondly, we investigate periodically poled silica glass fibres with a ring-shpaed core, that are capable to support the generation of simple OAM modes. The final Chapter 4 is dedicated to the Anderson localization and quantum random walks. At the beginning of this chapter, we present an experimental proposal for the realization of a discrete quantum random walks using the multi-path Mach-Zehnder interferometer with a spatial light modulator, that allows us to introduce different types of statistical or dynamical disorders. And secondly, we show how the transverse Anderson localization of partially coherent light, with a variable first-order degree of coherence, can be studied making use of entangled photon pairs. / Las correlaciones cuánticas, normalmente conocidas como entanglement, son uno de los temas más estudiados y discutidos de la Mecánica Cuántica, desde la introducción del concepto en la década de 1930. Incluso hoy en día, una gran cantidad de esfuerzos, tanto teóricos como experimentales, se dedican en este tema, que cubre muchas áreas distintas de la física, tales como medición cuántica (quantum metrology), computación cuántica (quantum computing), comunicaciones cuánticas (quantum communications), física de estado sólido, química e incluso biología. Las tareas fundamentales de investigación que uno debe considerar en relación con entrelazamiento son: -Cómo crear estados cuánticos entangled. -Cómo mantener el entanglement durante la propagación, en contra de las fuentes que pueden crear de-coherencia. -Cómo emplear los beneficios que el entanglement ofrece. Esta tesis, dividida en cuatro capítulos, se centra en la primera y últimas tareas consideradas. En el capítulo 1, se da una breve introducción y una visión general de lo que es el entrelazamiento (entanglement), empezando por el famoso artículo de Einstein, Podolosky y Rosen, y continuando con la formulación de John Bell de las llamados desigualdades de Bell. Definimos aquí conceptos generales acerca de los estados cuánticos enrelazados e introducimos algunas medidas de entrelazamiento importantes, que se utilizan posteriormente a lo largo de toda la tesis. En este capítulo, algunas fuentes de partículas entrelazadas (fotones) se mencionan brevemente. La importancia se pone en fuentes basadas en el proceso no lineal de generación paramétrica espontánea (SPDC, Spontaneous Parametric Down Conversion). La última parte de este capítulo está dedicado a mencionar algunas aplicaciones que se benefician de la utilización de estados entrelazados. El capítulo 2 se dedica al estudio sistemático de la generación de pares de fotones entrelazados, o no, en guías semiconductores de tipo Bragg. En primer lugar, se presenta una fuente de pares de fotones espectralmente no correlacionados, lo que se puede conseguir utilizando la geometría adecuada y la adecuada dispersión del material, a través del diseño estructural de las guías de onda. En segundo lugar, las guías de onda de Bragg se diseñan de manera que dan como resultado la generación de pares de fotones entrelazados en el grado de libertad de polarización con un ancho de banda grande. Finalmente, se presentan resultados experimentales de pares de fotones generados en este tipo de estructuras. En el capítulo 3, se explora la viabilidad de la generación de pares de fotones entrelazados en el grado espacial de libertad, es decir, en el momento angular orbital (OAM). En primer lugar, se investiga cómo crear un espacio de Hilbert altamente multidimensional utilizando modos OAM Para ello se ahce uso de materiales no lineales con chirped-qausi-phase-matching. Aquí mostramos cómo un aumento del chirp puede aumentar efectivamente el número de Schmidt en varios órdenes de magnitud. En segundo lugar, se investiga como fibras de vidrio con un núcleo en forma de anillo son capaces de generar y propagar los modos con OAM más simples. El Capítulo 4 se dedica a la localización Anderson y a los llamados paseos aleatorios cuánticos (Quantum random walks). En primer lugar se presenta una propuesta experimetnal para la realización de un paseo aleatorio discreto cuántico utilizando un interferómetro MAch-Zehnder con un modulador espacial de luz, que nos permite introducir diferentes tipos de ruido con diferentes tipos de estadística. En segundo lugar, se muestra cómo la localización transveral Anderson de luz parcialmente coherente se puede estudiar haciendo uso de pares de fotones entrelazado
292

Particle detectors in curved spacetime quantum field theory

Hodgkinson, Lee January 2013 (has links)
Unruh-DeWitt particle detector models are studied in a variety of time-dependent and time-independent settings. We work within the framework of first-order perturbation theory and couple the detector to a massless scalar field. The necessity of switching on (off) the detector smoothly is emphasised throughout, and the transition rate is found by taking the sharp-switching limit of the regulator-free and finite response function. The detector is analysed on a variety of spacetimes: d-dimensional Minkowski, the Banados-Teitelboim-Zanelli (BTZ) black hole, the two-dimensional Minkowski half-plane, two-dimensional Minkowski with a receding mirror, and the two- and four-dimensional Schwarzschild black holes. In d-dimensional Minkowski spacetime, the transition rate is found to be finite up to dimension five. In dimension six, the transition rate diverges unless the detector is on a trajectory of constant proper acceleration, and the implications of this divergence to the global embedding spacetime (GEMS) methods are studied. In three-dimensional curved spacetime, the transition rate for the scalar field in an arbitrary Hadamard state is found to be finite and regulator-free. Then on the Banados-Teitelboim-Zanelli (BTZ) black hole spacetime, we analyse the detector coupled to the field in the Hartle-Hawking vacua, under both transparent and reflective boundary conditions at infinity. Results are presented for the co-rotating detector, which responds thermally, and for the radially-infalling detector. Finally, detectors on the Schwarzschild black hole are considered. We begin in two dimensions, in an attempt to gain insight by exploiting the conformal triviality, and where we apply a temporal cut-off to regulate the infrared divergence. In four-dimensional Schwarzschild spacetime, we proceed numerically, and the Hartle-Hawking, Boulware and Unruh vacua rates are compared. Results are presented for the case of the static detectors, which respond thermally, and also for the case of co-rotating detectors.
293

Pressure induced structural transformations of network forming glasses

Wezka, Kamil January 2013 (has links)
The method of in situ high pressure neutron diffraction was employed to measure reliable diffraction patterns to help illuminate the density-driven structural transformations in GeO2, SiO2, B2O3 and GeSe2 glass. The majority of this neutron diffraction work employed the diffractometer D4c at the ILL with a Paris-Edinburgh press which enabled the pressure range from ambient to 8 GPa to be accessed. In the cases of GeO2 and GeSe2 glass, the neutron diffraction with isotopic substitution (NDIS) protocol was developed to provide benchmark experimental results to test the results obtained from various molecular dynamics simulations using different theoretical schemes. For GeO2 glass, from a combination of neutron diffraction and molecular dynamics results, it was found that the increase in density of the glass initially occurs through a reorganisation of corner-shared GeO4 tetrahedra on an intermediate length scale as the pressure is increased from ambient to 5 GPa. At higher pressures, there is a progression from a tetrahedral to an octahedral glass, via the formation of 5-fold coordinated Ge atoms which have a predominantly square pyramidal geometry. In the work on SiO2 and B2O3 glass the pressure range for the in situ high pressure neutron diffraction results was extended to 14.5 GPa and 17.5 GPa, respectively, by using the PEARL diffractometer at ISIS. For both materials the neutron diffraction results provide complementary information to pressure x-ray diffraction studies helping to elucidate the mechanism of network collapse. In the case of SiO2 glass, densification over the measured pressure range occurs predominantly by a reorganisation of corner shared SiO4 tetrahedra on an intermediate length scale. In the case of B2O3 glass, the B-O coordination number changes from 3 to ∼ 3.9 at the pressure is increased from ∼ 8 to 17.5 GPa. For GeSe2 glass, from a combination of neutron diffraction and molecular dynamics results, it was found that the density increase from ambient pressure up ∼ 8 GPa occurs by a reorganisation of both corner and edge-sharing GeSe4 tetrahedra on an intermediate length scale. Above this pressure, 5- and 6-fold coordinated Ge atoms start to form at a similar density and homopolar bonds play an intimate role in the formation of these higher coordinated polyhedra.
294

Design, implementation and characterization of a microscope capable of three-dimensional two color super-resolution fluorescence imaging / Design, Implementierung und Charakterisierung eines Mikroskops für dreidimensionale zwei Farben superhochauflösende Fluoreszenz-Bildgebung

Proppert, Sven Martin January 2014 (has links) (PDF)
This thesis reviews the fundamentals of three-dimensional super-resolution localization imaging. In order to infer the axial coordinate of the emission of single fluorophores, the point spread function is engineered following a technique usually referred to as astigmatic imaging by the introduction of a cylindrical lens to the detection path of a microscope. After giving a short introduction to optics and localization microscopy, I outline sources of aberrations as frequently encountered in 3D-localization microscopy and will discuss their respective impact on the precision and accuracy of the localization process. With the knowledge from these considerations, experiments were designed and conducted to verify the validity of the conclusions and to demonstrate the abilities of the proposed microscope to resolve biological structures in the three spatial dimensions. Additionally, it is demonstrated that measurements of huge volumes with virtually no aberrations is in principle feasible. During the course of this thesis, a new method was introduced for inferring axial coordinates. This interpolation method based on cubic B-splines shows superior performance in the calibration of a microscope and the evaluation of subsequent measurement and will therefore be used and explained in this work. Finally, this work is also meant to give future students some guidance for entering the field of 3D localization microscopy and therefore, detailed protocols are provided covering the specific aspects of two color 3D localization imaging. / In dieser Arbeit werden die Grundlagen der dreidimensionalen hochauflösenden Lokalisationsmikroskopie erarbeitet und daraus Spezifikationen für ein geeignetes Mikroskop abgeleitet. Zur Gewinnung der axialen Koordinate der Emission einzelner Farbstoffe wird die Punktspreizfunktion in der Detektion astigmatisch mithilfe einer zylindrischen Linse verändert. Nach einer kurzen Einleitung in die Grundzüge der Optik und der Lokalisationsmikroskopie werden die Ursachen für typische Aberrationen besprochen, wie sie in der 3D-Lokalisationsmikroskopie häufig auftreten. Weiterhin wird der Einfluss dieser Aberrationen auf die erreichbare Präzision und Exaktheit des Lokalisationsprozesses behandelt. Mit dem Wissen aus diesen Überlegungen wurden Experimente entworfen und durchgeführt um die getroffenen Schlussfolgerungen zu validieren und zu demonstrieren, dass das vorgeschlagene Mikroskop dazu in der Lage ist, biologische Strukturen in den drei räumlichen Dimensionen aufzulösen. Weiterhin wird gezeigt, dass beinahe aberrationsfreie Mikroskopie großer Volumina prinzipiell möglich ist. Während der Arbeit an dieser Promotion wurde eine neue Methode zur Gewinnung der axialen Koordinaten eingeführt. Diese auf kubischen B-splines basierende Interpolationsmethode stellte sich als anderen Routinen überlegen in der Kalibration eines Mikroskops und der anschließenden Auswertung von Messungen heraus. Deshalb wird dieses Verfahren in der vorliegenden Arbeit verwendet und erklärt. Da diese Doktorarbeit auch den Anspruch hat, zukünftigen Studenten den Einstieg in die hochauflösende 3D Mikroskopie zu erleichtern, werden abschließend detaillierte Protokolle für spezifische Aspekte der zwei Farben 3D Lokalisationsmikroskopie zur Verfügung gestellt.
295

On the Role of Triadic Substructures in Complex Networks / Über die Bedeutung von Dreiecksstrukturen in komplexen Netzwerken

Winkler, Marco January 2015 (has links) (PDF)
In the course of the growth of the Internet and due to increasing availability of data, over the last two decades, the field of network science has established itself as an own area of research. With quantitative scientists from computer science, mathematics, and physics working on datasets from biology, economics, sociology, political sciences, and many others, network science serves as a paradigm for interdisciplinary research. One of the major goals in network science is to unravel the relationship between topological graph structure and a network’s function. As evidence suggests, systems from the same fields, i.e. with similar function, tend to exhibit similar structure. However, it is still vague whether a similar graph structure automatically implies likewise function. This dissertation aims at helping to bridge this gap, while particularly focusing on the role of triadic structures. After a general introduction to the main concepts of network science, existing work devoted to the relevance of triadic substructures is reviewed. A major challenge in modeling triadic structure is the fact that not all three-node subgraphs can be specified independently of each other, as pairs of nodes may participate in multiple of those triadic subgraphs. In order to overcome this obstacle, we suggest a novel class of generative network models based on so called Steiner triple systems. The latter are partitions of a graph’s vertices into pair-disjoint triples (Steiner triples). Thus, the configurations on Steiner triples can be specified independently of each other without overdetermining the network’s link structure. Subsequently, we investigate the most basic realization of this new class of models. We call it the triadic random graph model (TRGM). The TRGM is parametrized by a probability distribution over all possible triadic subgraph patterns. In order to generate a network instantiation of the model, for all Steiner triples in the system, a pattern is drawn from the distribution and adjusted randomly on the Steiner triple. We calculate the degree distribution of the TRGM analytically and find it to be similar to a Poissonian distribution. Furthermore, it is shown that TRGMs possess non-trivial triadic structure. We discover inevitable correlations in the abundance of certain triadic subgraph patterns which should be taken into account when attributing functional relevance to particular motifs – patterns which occur significantly more frequently than expected at random. Beyond, the strong impact of the probability distributions on the Steiner triples on the occurrence of triadic subgraphs over the whole network is demonstrated. This interdependence allows us to design ensembles of networks with predefined triadic substructure. Hence, TRGMs help to overcome the lack of generative models needed for assessing the relevance of triadic structure. We further investigate whether motifs occur homogeneously or heterogeneously distributed over a graph. Therefore, we study triadic subgraph structures in each node’s neighborhood individually. In order to quantitatively measure structure from an individual node’s perspective, we introduce an algorithm for node-specific pattern mining for both directed unsigned, and undirected signed networks. Analyzing real-world datasets, we find that there are networks in which motifs are distributed highly heterogeneously, bound to the proximity of only very few nodes. Moreover, we observe indication for the potential sensitivity of biological systems to a targeted removal of these critical vertices. In addition, we study whole graphs with respect to the homogeneity and homophily of their node-specific triadic structure. The former describes the similarity of subgraph distributions in the neighborhoods of individual vertices. The latter quantifies whether connected vertices are structurally more similar than non-connected ones. We discover these features to be characteristic for the networks’ origins. Moreover, clustering the vertices of graphs regarding their triadic structure, we investigate structural groups in the neural network of C. elegans, the international airport-connection network, and the global network of diplomatic sentiments between countries. For the latter we find evidence for the instability of triangles considered socially unbalanced according to sociological theories. Finally, we utilize our TRGM to explore ensembles of networks with similar triadic substructure in terms of the evolution of dynamical processes acting on their nodes. Focusing on oscillators, coupled along the graphs’ edges, we observe that certain triad motifs impose a clear signature on the systems’ dynamics, even when embedded in a larger network structure. / Im Zuge des Wachstums des Internets und der Verfügbarkeit nie da gewesener Datenmengen, hat sich, während der letzten beiden Jahrzehnte, die Netzwerkwissenschaft zu einer eigenständigen Forschungsrichtung entwickelt. Mit Wissenschaftlern aus quantitativen Feldern wie der Informatik, Mathematik und Physik, die Datensätze aus Biologie, den Wirtschaftswissenschaften, Soziologie, Politikwissenschaft und vielen weiteren Anwendungsgebieten untersuchen, stellt die Netzwerkwissenschaft ein Paradebeispiel interdisziplinärer Forschung dar. Eines der grundlegenden Ziele der Netzwerkwissenschaft ist es, den Zusammenhang zwischen der topologischen Struktur und der Funktion von Netzwerken herauszufinden. Es gibt zahlreiche Hinweise, dass Netz-werke aus den gleichen Bereichen, d.h. Systeme mit ähnlicher Funktion, auch ähnliche Graphstrukturen aufweisen. Es ist allerdings nach wie vor unklar, ob eine ähnliche Graphstruktur generell zu gleicher Funktionsweise führt. Es ist das Ziel der vorliegenden Dissertation, zur Klärung dieser Frage beizutragen. Das Hauptaugenmerk wird hierbei auf der Rolle von Dreiecksstrukturen liegen. Nach einer allgemeinen Einführung der wichtigsten Grundlagen der Theorie komplexer Netzwerke, wird eine Übersicht über existierende Arbeiten zur Bedeutung von Dreiecksstrukturen gegeben. Eine der größten Herausforderungen bei der Modellierung triadischer Strukturen ist die Tatsache, dass nicht alle Dreiecksbeziehungen in einem Graphen unabhängig voneinander bestimmt werden können, da zwei Knoten an mehreren solcher Dreiecksbeziehungen beteiligt sein können. Um dieses Problem zu lösen, führen wir, basierend auf sogenannten Steiner-Tripel-Systemen, eine neue Klasse generativer Netzwerkmodelle ein. Steiner-Tripel-Systeme sind Zerlegungen der Knoten eines Graphen in paarfremde Tripel (Steiner-Tripel). Daher können die Konfigurationen auf Steiner-Tripeln unabhängig voneinander gewählt werden, ohne dass dies zu einer Überbestimmung der Netzwerkstruktur führen würde. Anschließend untersuchen wir die grundlegendste Realisierung dieser neuen Klasse von Netzwerkmodellen, die wir das triadische Zufallsgraph-Modell (engl. triadic random graph model, TRGM) nennen. TRGMs werden durch eine Wahrscheinlichkeitsverteilung über alle möglichen Dreiecksstrukturen parametrisiert. Um ein konkretes Netzwerk zu erzeugen wird für jedes Steiner-Tripel eine Dreiecksstruktur gemäß der Wahrscheinlichkeitsverteilung gezogen und zufällig auf dem Tripel orientiert. Wir berechnen die Knotengradverteilung des TRGM analytisch und finden heraus, dass diese einer Poissonverteilung ähnelt. Des Weiteren wird gezeigt, dass TRGMs nichttriviale Dreiecksstrukturen aufweisen. Außerdem finden wir unvermeidliche Korrelationen im Auftreten bestimmter Subgraphen, derer man sich bewusst sein sollte. Insbesondere wenn es darum geht, die Bedeutung sogenannter Motive (Strukturen, die signifikant häufiger als zufällig erwartet auftreten) zu beurteilen. Darüber hinaus wird der starke Einfluss der Wahrscheinlichkeitsverteilung auf den Steiner-Tripeln, auf die generelle Dreiecksstruktur der erzeugten Netzwerke gezeigt. Diese Abhängigkeit ermöglicht es, Netzwerkensembles mit vorgegebener Dreiecksstruktur zu konzipieren. Daher helfen TRGMs dabei, den bestehenden Mangel an generativen Netzwerkmodellen, zur Beurteilung der Bedeutung triadischer Strukturen in Graphen, zu beheben. Es wird ferner untersucht, wie homogen Motive räumlich über Graphstrukturen verteilt sind. Zu diesem Zweck untersuchen wir das Auftreten von Dreiecksstrukturen in der Umgebung jedes Knotens separat. Um die Struktur individueller Knoten quantitativ erfassen zu können, führen wir einen Algorithmus zur knotenspezifischen Musterauswertung (node-specific pattern mining) ein, der sowohl auf gerichtete, als auch auf Graphen mit positiven und negativen Kanten angewendet werden kann. Bei der Analyse realer Datensätze beobachten wir, dass Motive in einigen Netzen hochgradig heterogen verteilt, und auf die Umgebung einiger, weniger Knoten beschränkt sind. Darüber hinaus finden wir Hinweise auf die mögliche Fehleranfälligkeit biologischer Systeme auf ein gezieltes Entfernen ebendieser Knoten. Des Weiteren studieren wir ganze Graphen bezüglich der Homogenität und Homophilie ihrer knotenspezifischen Dreiecksmuster. Erstere beschreibt die Ähnlichkeit der lokalen Dreiecksstrukturen zwischen verschiedenen Knoten. Letztere gibt an, ob sich verbundene Knoten bezüglich ihrer Dreiecksstruktur ähnlicher sind, als nicht verbundene Knoten. Wir stellen fest, dass diese Eigenschaften charakteristisch für die Herkunft der jeweiligen Netzwerke sind. Darüber hinaus gruppieren wir die Knoten verschiedener Systeme bezüglich der Ähnlichkeit ihrer lokalen Dreiecksstrukturen. Hierzu untersuchen wir das neuronale Netz von C. elegans, das internationale Flugverbindungsnetzwerk, sowie das Netzwerk internationaler Beziehungen zwischen Staaten. In Letzterem finden wir Hinweise darauf, dass Dreieckskonfigurationen, die nach soziologischen Theorien als unbalanciert gelten, besonders instabil sind. Schließlich verwenden wir unser TRGM, um Netzwerkensembles mit ähnlicher Dreiecksstruktur bezüglich der Eigenschaften dynamischer Prozesse, die auf ihren Knoten ablaufen, zu untersuchen. Wir konzentrieren uns auf Oszillatoren, die entlang der Kanten der Graphen miteinander gekoppelt sind. Hierbei beobachten wir, dass bestimmte Dreiecksmotive charakteristische Merkmale im dynamischen Verhalten der Systeme hinterlassen. Dies ist auch der Fall, wenn die Motive in eine größere Netzwerkstruktur eingebettet sind.
296

Quantenpunktbasierte Einzelphotonenquellen und Licht-Materie-Schnittstellen / Quantum dot based single photon sources and light-matter-interfaces

Maier, Sebastian January 2017 (has links) (PDF)
Die Quanteninformationstechnologie ist ein Schwerpunkt intensiver weltweiter Forschungsarbeit, da sie Lösungen für aktuelle globale Probleme verspricht. So bietet die Quantenkommunikation (QKD, engl. quantum key distribution) absolut abhörsichere Kommunikationsprotokolle und könnte, mit der Realisierung von Quantenrepeatern, auch über große Distanzen zum Einsatz kommen. Quantencomputer (engl. quantum computing) könnten von Nutzen sein, um sehr schwierige und komplexe mathematische Probleme schneller zu lösen. Ein grundlegender kritischer Baustein der gesamten halbleiterbasierten Quanteninformationsverarbeitung (QIP, engl. quantum information processing) ist die Bereitstellung von Proben, die einerseits die geforderten physikalischen Eigenschaften aufweisen und andererseits den Anforderungen der komplexen Messtechnik genügen, um die Quanteneigenschaften nachzuweisen und technologisch nutzbar machen zu können. In halbleiterbasierten Ansätzen haben sich Quantenpunkte als sehr vielversprechende Kandidaten für diese Experimente etabliert. Halbleiterquantenpunkte weisen große Ähnlichkeiten zu einzelnen Atomen auf, die sich durch diskrete Energieniveaus und diskrete Spektrallinien im Emissionsspektrum manifestieren, und zeichnen sich überdies als exzellente Emitter für einzelne und ununterscheidbare Photonen aus. Außerdem können mit Quantenpunkten zwei kritische Bausteine in der Quanteninformationstechnologie abgedeckt werden. So können stationäre Quantenbits (Qubits) in Form von Elektronenspinzuständen gespeichert werden und mittels Spin-Photon-Verschränkung weit entfernte stationäre Qubits über fliegende photonische Qubits verschränkt werden. Die Herstellung und Charakterisierung von quantenpunktbasierten Halbleiterproben, die sich durch definierte Eigenschaften für Experimente in der QIP auszeichnen, steht im Mittelpunkt der vorliegenden Arbeit. Die Basis für das Probenwachstum bildet dabei das Materialsystem von selbstorganisierten In(Ga)As-Quantenpunkten auf GaAs-Substraten. Die Herstellung der Quantenpunktproben mittels Molekularstrahlepitaxie ermöglicht höchste kristalline Qualitäten und bietet die Möglichkeit, die Quantenemitter in photonische Resonatoren zu integrieren. Dadurch kann die Lichtauskoppeleffizienz stark erhöht und die Emission durch Effekte der Licht-Materie-Wechselwirkung verstärkt werden. Vor diesem Hintergrund wurden in der vorliegenden Arbeit verschiedene In(Ga)As-Quantenpunktproben mit definierten Anforderungen mittels Molekularstrahlepitaxie hergestellt und deren morphologische und optische Eigenschaften untersucht. Für die Charakterisierung der Morphologie kamen Rasterelektronen- und Rasterkraftmikroskopie zum Einsatz. Die optischen Eigenschaften wurden mit Hilfe der Reflektions-, Photolumineszenz- und Resonanzfluoreszenz-Spektroskopie sowie Autokorrelationsmessungen zweiter Ordnung ermittelt. Der Experimentalteil der Arbeit ist in drei Kapitel unterteilt, deren Kerninhalte im Folgenden kurz wiedergegeben werden. Quasi-Planare Einzelphotonenquelle mit hoher Extraktionseffizienz: Planare quantenpunktbasierte Einzelphotonenquellen mit hoher Extraktionseffizienz sind für Experimente zur Spinmanipulation von herausragender Bedeutung. Elektronen- und Lochspins haben sich als gute Kandidaten erwiesen, um gezielt einzelne Elektronenspins zu initialisieren, manipulieren und zu messen. Ein einzelner Quantenpunkt muss einfach geladen sein, damit er im Voigt-Magnetfeld ein λ-System bilden kann, welches die grundlegende Konfiguration für Experimente dieser Art darstellt. Wichtig sind hier einerseits eine stabile Spinkonfiguration mit langer Kohärenzzeit und andererseits hohe Lichtauskoppeleffizienzen. Quantenpunkte in planaren Mikrokavitäten weisen größere Werte für die Spindephasierungszeit auf als Mikro- und Nanotürmchenresonatoren, dagegen ist bei planaren Proben die Lichtauskoppeleffizienz geringer. In diesem Kapitel wird eine quasi-planare quantenpunktbasierte Quelle für einzelne (g(2)(0)=0,023) und ununterscheidbare Photonen (g(2)indist (0)=0,17) mit hoher Reinheit vorgestellt. Die Quantenpunktemission weist eine sehr hohe Intensität und optische Qualität mit Halbwertsbreiten nahe der natürlichen Linienbreite auf. Die Auskoppeleffizienz wurde zu 42% für reine Einzelphotonenemission bestimmt und übersteigt damit die, für eine planare Resonatorstruktur erwartete, Extraktionseffizienz (33%) deutlich. Als Grund hierfür konnte die Kopplung der Photonenemission an Gallium-induzierte, Gauß-artige Defektstrukturen ausgemacht werden. Mithilfe morphologischer Untersuchungen und Simulationen wurde gezeigt, dass diese Defektkavitäten einerseits als Nukleationszentren für das Quantenpunktwachstum dienen und andererseits die Extraktion des emittierten Lichts der darunterliegenden Quantenpunkte durch Lichtbündelung verbessern. In weiterführenden Arbeiten konnte an dieser spezifischen Probe der fundamentale Effekt der Verschränkung von Elektronenspin und Photon nachgewiesen werden, der einen kritischen Baustein für halbleiterbasierte Quantenrepeater darstellt. Im Rahmen dieses Experiments war es möglich, die komplette Tomographie eines verschränkten Spin-Photon-Paares an einer halbleiterbasierten Spin-Photon Schnittstelle zu messen. Überdies konnte Zweiphotoneninterferenz und Ununterscheidbarkeit von Photonen aus zwei räumlich getrennten Quantenpunkten auf diesem Wafer gemessen werden, was ebenfalls einen kritischen Baustein für Quantenrepeater darstellt. Gekoppeltes Quantenfilm-Quantenpunkt System: Weitere Herausforderungen für optisch kontrollierte halbleiterbasierte Spin-Qubit-Systeme sind das schnelle und zerstörungsfreie Auslesen der Spin-Information sowie die Implementierung eines skalierbaren Ein-Qubit- und Zwei-Qubit-Gatters. Ein kürzlich veröffentlichtes theoretisches Konzept könnte hierzu einen eleganten Weg eröffnen: Hierbei wird die spinabhängige Austauschwechselwirkung zwischen einem Elektron-Spin in einem Quantenpunkt und einem Exziton-Polariton-Gas, welches in einem nahegelegenen Quantenfilm eingebettet ist, ausgenützt. So könnte die Spin-Information zerstörungsfrei ausgelesen werden und eine skalierbare Wechselwirkung zwischen zwei Qubits über größere Distanzen ermöglicht werden, da sich die Wellenfunktion von Exziton-Polaritonen, abhängig von der Güte des Mikroresonators, über mehrere μm ausdehnen kann. Dies und weitere mögliche Anwendungen machen das gekoppelte Quantenfilm-Quantenpunkt System sehr interessant, weshalb eine grundlegende experimentelle Untersuchung dieses Systems wünschenswert ist. In Zusammenarbeit mit der Arbeitsgruppe um Yoshihisa Yamamoto an der Universität Stanford, wurde hierzu ein konkretes Probendesign entwickelt und im Rahmen dieser Arbeit technologisch verwirklicht. Durch systematische epitaktische Optimierung ist es gelungen, ein gekoppeltes Quantenfilm-Quantenpunkt System erfolgreich in einen Mikroresonator zu implementierten. Das Exziton-Polariton-Gas konnte mittels eines Quantenfilms in starker Kopplung in einer Mikrokavität mit einer Rabi-Aufspaltung von VR=2,5 meV verwirklicht werden. Zudem konnten einfach geladene Quantenpunkte mit hoher optischer Qualität und klarem Einzelphotonencharakter (g(2)(0)=0,24) in unmittelbarer Nähe zum Quantenfilm gemessen werden. Positionierte Quantenpunkte: Für die Herstellung quantenpunktbasierter Einzelphotonenquellen mit hoher optischer Qualität ist eine skalierbare technologische Produktionsplattform wünschenswert. Dazu müssen einzelne Quantenpunkte positionierbar und somit deterministisch und skalierbar in Bauteile integriert werden können. Basierend auf zweidimensionalen, regelmäßig angeordneten und dadurch adressierbaren Quantenpunkten gibt es zudem ein Konzept, um ein skalierbares, optisch kontrolliertes Zwei-Qubit-Gatter zu realisieren. Das hier verfolgte Prinzip für die Positionierung von Quantenpunkten beruht auf der Verwendung von vorstrukturierten Substraten mit geätzten Nanolöchern, welche als Nukleationszentren für das Quantenpunktwachstum dienen. Durch eine optimierte Schichtstruktur und eine erhöhte Lichtauskopplung unter Verwendung eines dielektrischen Spiegels konnte erstmals Resonanzfluoreszenz an einem positionierten Quantenpunkt gemessen werden. In einem weiteren Optimierungsansatz konnte außerdem Emission von positionierten InGaAs Quantenpunkten auf GaAs Substrat bei 1,3 μm Telekommunikationswellenlänge erreicht werden. / Quantum information technology is in the focus of worldwide intensive research, because of its promising solutions for current global problems. With tap-proofed communication protocols, the field of quantum key distribution (QKD) could revolutionize the broadcast of sensitive data and would be also available for large distance communication with the realization of quantum repeater systems. Quantum computing could be used to dramatically fasten the solution of difficult and complex mathematical problems. A critical building block of solid state based quantum information processing (QIP) is the allocation of semiconductor samples, which on the one side provide the desired quantum mechanical features and on the other side satisfy the requirements of the complex non-demolition measurement techniques. Semiconductor quantum dots are very promising candidates in solid state based approaches as they act like artificial atoms manifesting in discrete emission lines. They are excellent emitters of single and indistinguishable photons. Moreover they can save quantum information in stationary quantum bits (qubits) as electron spins and emit flying photonic qubits to entangle remote qubits via spin-photon entanglement. The fabrication and characterization of quantum dot based semiconductor samples, which serve as a basic building block for experiments in the field of QIP with pre-defined physical features, are in focus of the present thesis. The basic material system consists of In(Ga)As quantum dots on GaAs substrates. The growth of quantum dot based semiconductor samples via molecular beam epitaxy offers highest crystal quality and the possibility to integrate the quantum emitters in photonic resonators, which improve the light outcoupling efficiency and enhance the emission by light-matter-coupling effects. Against this background this thesis focusses on the preparation and characterization of different In(Ga)As based quantum dot samples. Morphologic properties were characterized via scannnig electron microscopy or atomic force microscopy. The characterization of optical properties was performed by spectroscopy of the reflectance, photoluminescence and resonance fluorescence signal as well as measurements of the second order correlation function. The main part is divided in three chapters which are briefly summarized below. Quasi-planar single photon source with high extraction efficiency: Planar quantum dot based highly efficient single photon sources are of great importance, as quantum dot electron and hole spins turned out to be promising candidates for spin manipulation experiments. To be able to intialize, manipulate and measure single electron spins, the quantum dots have to be charged with a single electron and build up a λ-system in a magnetic field in Voigt geometry. It is important that on the one side the spin configuration is stable, comprising a long spin coherence time and on the other side that the photon outcoupling efficiency is high enough for measurements. Quantum dots in planar microcavities have large spin coherence times but rather weak outcoupling efficiencies compared to micro- or nanopillar resonators. In this chapter a quasi-planar quantum dot based source for single (g(2)(0)=0,023) and indistinguishable photons (g(2)indist (0)=0,17) with a high purity is presented. This planar asymmetric microcavity doesn`t have any open surfaces in close proximity to the active layer, so that the spin dephasing is minimalized. The optical quality of the quantum dots is very high with emission linewidths near the natural linewidth of a quantum dot. Additionally the single photon source shows a high outcoupling efficiency of 42% which exceeds the outcoupling of a regular planar resonator (33%). This high extraction efficiency can be attributed to the coupling of the photon emission to Gallium-induced, Gaussian-shaped nanohill defects. Morphologic investigations and simulations show, that these defect cavity structures serve as nucleation centers during quantum dot growth and increase the outcoupling efficiency by lensing effects. In further experiments on this specific sample, entanglement of an electron spin and a photon was demonstrated, which is a critical building block for semiconductor based quantum repeaters. In this context also the full tomography of a polarization-entangled spin-photon-pair was measured with a surprisingly high fidelity. Moreover two photon interference and indistinguishability of two photons from remote quantum dots of this wafer was measured, which also constitutes a critical building block for quantum repeaters. Coupled quantum well - quantum dot system: Further challenges for optical controlled spin-qubit systems are fast readout of the quantum information with high fidelity and the implementation of a scalable one- and two-qubit gate. Therefore a proposal was adapted which is based on the coupling of an electron spin in a quantum dot to a gas of exciton-polaritons, formed in a quantum well in close proximity of the quantum dot. In cooperation with Yoshihisa Yamamoto's group from the Stanford University, a sample structure was designed and technologically realized as part of this thesis, to study the fundamental physical properties of this coupled system. By systematic epitactical improvement, a coupled quantum well-quantum dot system could successfully be implemented in a microresonator. The exciton-polariton gas was realized in a quantum well which is strongly coupled to a microcavity with a Rabi splitting of VR=2,5 meV. Although the distance to the quantum well is only a few nm, charged quantum dots with high optical quality and clear single photon emission character (g(2)(0)=0,24) could be measured. Site-controlled quantum dots: A scalable technological platform for bright sources of quantum light is highly desirable. Site-controlled quantum dots with high optical quality are very promising candidates to realize such a system. This concept offers the possibility to integrate single quantum dots in devices in a deterministic and scalable way and furthermore provides sample structures with a regular two dimensional array of site-controlled quantum dots to realize concepts for optically controlled two-qubits gates. The method to position the quantum dots used in this thesis is based on etched nanoholes in pre-patterned substrates, which serve as nucleation centers during the quantum dot growth process. An optimized layer structure and an increased light outcoupling efficiency using a dielectric mirror allowed the first measurement of resonance fluorescence on site-controlled quantum dots. In a further optimized design, emission of positioned quantum dots at 1,3 μm telecommunication wavelength was demonstrated for the first time for InGaAs quantum dots on GaAs substrates.
297

First measurements of radiative B decays in LHCb

Puig Navarro, Albert 09 March 2012 (has links)
Radiative decays of B mesons, a good example of Flavor Changing Neutral Currents, are interesting for the study of physics beyond the Standard Model, as new high-energy phenomena can enter in the loop. The LHCb experiment, designed to study b- and c-hadron physics at the LHC, is an ideal candidate for the study of this type of decays. However, in order to effectively study radiative B decays, good trigger performance is needed. Two trigger strategies have been studied, one exclusive and one inclusive: on one side, the already existing exclusive lines have been modified, and, on the other side, a new set of inclusive topological lines, specific for radiative B decays, has been introduced. Their performance in 2011 has been assessed both on simulation and on data, and the strategy for 2012 has been outlined. In addition, the full 2011 dataset collected by LHCb has been used to extract the ratio of branching fractions BR(B → K∗γ)/BR(Bs → ϕγ), which has been measured to be 1.31 ± 0.08(stat) ± 0.04(syst) ± 0.10(fs/fd). From this result, and using the well-known value for B → K∗γ, the branching fraction of Bs → ϕγ has been found to be (3.3 ± 0.3 )x10−5, largely improving previous results. This work puts the basis for future developments within the radiative decays group in LHCb, as it settles the trigger strategy on one hand and provides a detailed study of the backgrounds involved in the two studied decays, on the other. This will be very useful for future analyses, such as the CP asymmetry measurements in B → K∗γ or the photon polarization in Bs → ϕγ. / Les desintegracions dels mesons B són interessants per a l'estudi de Física més enllà del Model Estàndard, ja que són un bon exemple de Corrents Neutres amb Canvi de Sabor, molt sensibles a nova Física a altes energies a través del loop. L'experiment LHCb, dedicat a l'estudi de la física d'hadrons b i c a l'LHC, és un candidat ideal per a l'estudi d'aquest tipus de desintegracions. Tot i així, per a poder estudiar d'una manera efectiva les desintegracions radiative de mesons B a LHCb és necessària una bona resposta del trigger de l'experiment. S'han estudiat dues estratègies de trigger, una d'exclusiva i una d'inclusiva: per un costat, les línies exclusives ja existents han estat modificades, i, per l'altre, s'ha introduït un nou conjunt de línies topològiques específic per a desintegracions radiatives. S'ha estudiat el seu rendiment durant 2011 i, basant-se en els resultats obtinguts, s'ha dissenyat l'estratègia de trigger per a 2012. A més, s'han usat les dades preses per LHCb durant tot 2011 per a extreure la raó de les fraccions d'embrancament BR(B → K∗γ)/BR(Bs → ϕγ), obtenint el resultat de 1.31 ± 0.08(est) ± 0.04(sist) ± 0.10(fs/fd). A partir d'aquest resultat, i fent servir el valor ben mesurat de BR(B → K∗γ), s'ha trobat una raó d'embrancament per a Bs → ϕγ de (3.3 ± 0.3 )x10−5, millorant significativament els resultat anteriors. Aquest treball posa les bases per a futurs desenvolupaments dins del grup de desintegracions radiatives a LHCb, ja que per un costat fixa l'estratègia de trigger i, per l'altre, proporciona un estudi detallat de les diferents fonts de contaminació en la selecció de les desintegracions estudiades. Això resultarà molt útil en futurs anàlisis, tals com les mesures d'asimetria CP en B → K∗γ o la polarització del fotó en Bs → ϕγ.
298

Metalodendrímeros y Materiales Nanoestructurados que Incorporan Clústeres de Boro

Juárez Pérez, Emilio José 10 June 2009 (has links)
Este trabajo muestra nuevas estrategias en la síntesis de moléculas dendriméricas y materiales nanoestructurados que incorporan clústeres de borano.El principal objetivo de este trabajo fue la preparación de metalodendrímeros polianiónicos ricos en boro que contuvieran derivados del cobaltabisdicarballuro en la periferia para posibles aplicaciones en biomedicina. Para este propósito se diseñaron unos nuevos carbono derivados del cobaltabisdicarballuro con funciones silano, [3]-[10], preparados a partir de las sales de litio de [3,3'-Co(1,2-C2B9H11)2]-, [1], y [8,8'-C6H4-3,3'- Co(1,2-C2B9H10)2]-, [2], con distintos clorosilanos. Un estudio teórico en DFT sobre las estructuras optimizadas de los distintos isómeros permitió conocer su estabilidad relativa y comparar con los resultados experimentales. La inesperada formación de un puente -mu-SiMe2- entre los ligandos dicarballuro por los Cc sugirió la ocurrencia de una reacción intramolecular entre el hidruro de Si-H y el protón del Cc-H, algunos aspectos teóricos de esta reacción fueron estudiados con métodos DFT y QTAIM.De entre todos los C-derivados del cobaltabisdicarballuro sintetizados se escogió el anión [1,1'-mu-SiMeH-3,3'-Co(1,2-C2B9H10)2]-, [5], como agente hidrosililante para la preparación de diferentes metalodendrímeros. Entonces, distintas generaciones de metalodendrímeros polianiónicos conteniendo cobaltabisdicarballuro fueron preparadas por hidrosililación de los dobles enlaces de la periferia de dendrimeros de carbosilano y carbosiloxano. Obteniéndose los distintos metalodendrímeros con cuatro y ocho cobaltabisdicarballuros en la periferia. La espectroscopia de UV-Vis sirvió para corroborar la funcionalización completa de los dendrímeros. La solubilidad de estas especies es interesante desde el punto de vista de ciertas aplicaciones, i. e. medicina, BNCT. Por esta razón, la solubilidad en disoluciones ricas en agua de estos metalodendrímeros fue estudiada por medidas de absorbancia en UV-Vis. Siguiendo la misma estrategia de funcionalización mediante hidrosililación, unos dendrímeros de tipo más orgánico, poli(aril-éter), core fluorescente y funciones alilo en la periferia fueron funcionalizados. Se obtuvieron de esta manera metalodendrímeros con tres, seis y doce cobaltabisdicarballuros.Otro tipo de metalodendrímeros polianiónicos ha sido preparado usando la reacción de apertura de anillo en el 8-dioxanato in [3,3'-Co(8-C4H8O2-1,2-C2B9H10)(1',2'-C2B9H11)] por el ataque nucleofílico a el oxígeno (oxonio) con la función alcoholato de la periferia del dendrímero.Derivados carboranil siloxanos y octasilsesquioxanos han sido preparados siguiendo rutas de hidrólisis-condensación de carboranilclorosilanos y carboraniletoxisilanos.También se ha trabajado en el anclaje de derivados fosforados del cobaltabisdicarballuro en la superficie de nanopartículas de TiO2. La funcionalización de la superficie resulta de la formación de enlaces Ti-O-P por condensación de las funciones P-OH con los grupos -OH de la superficie. Por otra lado, también se han funcionalizado la superficie de wafers de silicio oxidado usando la reacción de apertura de anillo de dioxano del compuesto 8-dioxanato [3,3'- Co(8-C4H8O2-1,2-C2B9H10)(1',2'-C2B9H11)] y también con grupos isocianato previamente anclados en la superficie. En definitiva, los derivados de cobaltabisdicarballuro han demostrado ser un grupo bastante versátil para funcionalizar periferias de dendrímeros y superficies dando lugar a un gran número de materiales con aplicaciones en potencia interesantes. / This work has open new strategies in the synthesis of large molecules, such as dendrimers and metallodendrimers, and other nanostructured materials, in the boron chemistry field.The main aim of this work was the preparation of polyanionic boron-rich metallodendrimers containing cobaltabisdicarbollide derivaties at the periphery, with potential applications in biomedicine. For this purpose a set of novel Cc-mono- and Cc-disubstituted cobaltabisdicarbollide derivatives with silyl functions, [3]-[10], have been prepared by the reaction of lithium salts of [3,3'-Co(1,2-C2B9H11)2]-, [1], and [8,8'-C6H4-3,3'- Co(1,2-C2B9H10)2]-, [2], with different chlorosilanes. DFT theoretical studies at the B3LYP/6-311G(d,p) level of theory were applied to optimise the geometries of these compounds andcalculate their relative energies, showing a good concordance between theoretical and experimental results. The unexpected formation of a bridge -mu-SiMe2-between both dicarbollide clusters, through the Cc atoms, after the reaction of the monolithium salt of cobaltabisdicarbollide with HSiMe2Cl, suggested an intramolecular reaction, in which the acidic Cc-H proton reacts with the hydridic Si-H, with subsequent loss of H2. Some aspects of this reaction have been studied by using DFT and QTAIM calculations.From all the previous compounds, the anion [1,1'-mu-SiMeH-3,3'-Co(1,2-C2B9H10)2]-, [5], was chosen as hydrosilylating agent for the preparation of different types of metallodendrimers. Thus, different generations of polyanionic metallacarborane-containing metallodendrimers were constructed via hydrosilylation of various generation of carbosilane and cyclic carbosiloxane dendrimers containing terminal vinyl functions with [5], to achieve the corresponding metallodendrimers with four and eight peripheral cobaltacarboranes. For metallodendrimers with high molecular weights, the UV-Vis spectroscopy was used for corroborating the full functionalization and consequently the unified character of dendrimers. The solubility of these dendrimers is very interesting from the point of view of potential applications, i.e. in medicine or BNCT. For that reason, some solubility studies have been carried out by using UV-Vis measurements in water/DMSO solutions of these metallodendrimers. Following the same strategy, poly(aryl-ether) type dendrimers with a fluorescente core and peripheral allyl functions have also been hydrosilylated using the anion [5], to obtain metallodendrimers with three, six and twelve cobaltacarborane moieties. Other type of polyanionic poly-(alkyl aryl-ether) metallodendrimers have also been prepared by using the ring opening reaction of the 8-dioxanate in [3,3'-Co(8-C4H8O2-1,2-C2B9H10)(1',2'-C2B9H11)], by the nucleophilic attack to the oxygen with the alcoholate functions obtained by deprotonation of the alcohol groups (-OH) located at the starting dendrimers periphery.Carborane-containing siloxane and octasilsesquioxane derivatives have been prepared following a hydrolitic approach by hydrolisis-polycondensation of carboranylchlorosilaneor carboranylethoxysilane. In parallel, we have also worked on the anchoring of cobaltabisdicarbollide phosphorous derivatives on the surface of TiO2 nanoparticles and oxidized silicon wafers. The functionalization of the surface results from the formation of Ti-O-P bridges by condensation of P-OH groups with surface hydroxyl groups and coordination of the phosphoryl groups to surface Lewis acidic sites.Besides, for anchoring cobaltabisdicarbollide derivatives on the surface of an oxidized silicon wafer, two different approaches were used, both based on the ring-opening reaction of the 8-dioxanate [3,3'- Co(8-C4H8O2-1,2-C2B9H10)(1',2'-C2B9H11)] with amines or isocyanate functions previously anchored to the surfaces. Thus, cobaltabisdicarbollide derivatives have demostrated to be suitable groups for functionalization of dendrimers and other nanostructures such as nanoparticles and wafers providing a large number of materials with interesting potential applications.
299

Study of Bs Oscillations with the ALEPH detector at LEP

Boix Le Falchier, Gäelle 25 June 2001 (has links)
No description available.
300

Measurements of the Strong Coupling Constant and the QCD Colour Factors using Four-Jet Observables from Hadronic Z Decays in Aleph

Bravo Gallart, Sílvia 31 October 2001 (has links)
En aquest treball es presenten dues mesures, una de la constant d'acoblament forta i l'altra d'aquesta mateixa constant conjuntament amb els anomenats factors de color. Les dades foren recollides pel detector ALEPH durant els anys 1994-95 a energies al voltant dels 91.2 GeV.Per a les dues mesures s´usaren obervables de quatre jets. La mesura de la constant d´acoblament forta a partir de la taxa de sucesos a quatre jets fou la primera realitzada a partir d´un observable de quatre jet i en resultà una de les mesures més precises fins avui.La mesura conjunta de la constant d´acoblament i els factors de color representa un prova rigorosa de la teoria de les interaccions fortes, la cromodinàmica quántica. Els resultats, amb incerteses molt competitives, estan en acord absolut amb els valors esperats per la teoria i també amb els resultats d'altres col·laboracions. / In this work two measurements are presented. One is the measurement of the strong coupling constant alone, and the other the combined measurement of the strong coupling constant and the, so called, colour factors. Data were collected by the ALEPH detector during years 1994-95 at energies around 91.2 GeV.Both measurements made use of four-jet observables. The measurement of the strong coupling constant from the four-jet rate was the first ever made from a four-jet observable, and represents one of the most precise measurements at present.The combined measurement of the strong coupling constant and the colour factors is a stringent test of the theory, quantum chromodynamics. The results, with very competitive uncertainties, are in exact agreement both with the values expected by the theory and the results from other collaborations.

Page generated in 0.0497 seconds