• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • Tagged with
  • 22
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Structure-function analysis of the androgen receptor in Kennedy's disease patients

Davies, Philippa January 2004 (has links)
The androgen receptor (AR) is a ligand-dependent transcription factor which is part o the nuclear receptor superfamily.  Binding of androgens testosterone or 5 <span style='font-family:Symbol'>a-reduced dihydrotestosterone activates the receptor causing it to localise to the nucleus where it binds to specific DNA androgen response elements in androgen-regulated genes and activates transcription.  The N-terminal domain (NTD) of the AR contains several polyamino acid repeat sequences.  The polyglycine repeat and one of the polyglutamine (poly-Q) repeats are polymorphic and changes in length are associated with disease.  Expansion of the poly-Q tract in the AR NTD causes spatial bulbar muscular atrophy (SBMA) or Kennedy’s disease.  SBMA is one of a group of nine neurodegenerative diseases caused by a poly-Q repeat tract expansion.  The function of the majority of poly-Q disease proteins is unknown hence the AR provides an opportunity to investigate poly-Q polymorphic effects on protein structure and function. Structural analysis indicates an expansion of the poly-Q tract increases <span style='font-family:Symbol'>a-helical secondary structure content in the AR NTD.  An increase in poly-Q tract length also enhances binding to the C-terminal domain of p160 co-activator proteins SRC-1a and TIF2 as well as to the TFIID component TAF<sub>II</sub>130 <i>drosophila </i>homolog dTAF<sub>II</sub>110.  Phosphorylation of the AR NTD by kinases CKII, GSK-3, MAPK and PKA is enhanced by deletion of the poly-Q tract.  MAP kinase phosphorylation of the AR NTD is also increased by the expansion of the poly-Q tract.  An increase in protein structure caused by expansion of the poly-Q tract in the AR NTD correlates to enhanced protein binding and changes in MAPK phosphorylation which, may influence receptor activity and play a role in the pathogenesis of SBMA.
12

The variance of nerve axon to muscle fibre ratio and its effect on outcome in functional muscle transfer

MacQuillan, Anthony Howard Felix January 2007 (has links)
The results of functional muscle transfer for the treatment of facial palsy are varied. Surgical technique in such cases remains constant with only the selected ramus of the buccal branch of the facial nerve changing. Differing sized branches of the facial nerve in the rabbit were used to reinnervate a constant sized muscle transfer to see if this might explain the spectrum of clinical results seen and additionally provide some insight into the phenomenon of "late onset tightening" seen in some cases. Peripheral limb reconstruction using functional muscle transfer following injury or tumour resection has been widely reported in the literature. The results of such procedures often fail to deliver the physiological strength that might be hoped for in relation to the size of the transferred muscle. Differing sized pure motor nerves were used to reinnervate a constant sized muscle transfer to see if functional results could be improved in an experimental model analogous to peripheral limb reconstruction. The rectus femoris muscle in the New Zealand White rabbit was used as a standardised muscle transfer for investigation into how the reinnervating axonal load affects outcome, defined in terms of physiological force developed by the muscle post-operatively, looking at both the central and peripheral nervous systems. Corroboratory investigations were also undertaken to determine the reinnervating characteristics of the nerves studied and those of reinnervated muscle.
13

Skeletal muscle as an endocrine organ : impact of muscle-derived cytokines and extracellular heat shock proteins

Lightfoot, Adam Paul January 2011 (has links)
Skeletal muscle wasting in the critically ill with sepsis is intrinsically linked to the elevations in circulating levels of cytokines characteristic to systemic inflammation and this effect may be exacerbated in older people. A key cytokine in this hyper- inflammatory state is TNF -a. Muscle is a plastic organ which adapts to stresses, including systemic inflammation in a number of ways, including the increased expression of Heat Shock Proteins (HSPs) and increased expression and release of cytokines (myokines). The release of HSPs by non-muscle cells has been described, but the extracellular function of HSPs is poorly understood. The aims of this thesis were to determine the effect of TNF-a on HSP and cytokine release by muscle; to elucidate the mechanism of HSP release from skeletal muscle, to identify the autocrine and paracrine signalling properties of eHSPs and to determine the impact of ageing on the ability of skeletal muscle to act as an endocrine organ. C2C12 myotubes were treated with TNF-a and cells and media were examined for HSP and cytokine content. The mechanisms of HSP and cytokine release were examined which included exosomal and golgi-mediated processes. The paracrine effects of muscle-derived HSP60 were determined by treatment of myotubes or SaOs-2 osteoblast cells with HSP60 at concentrations comparable to serum levels reported in critically ill patients. To determine the effect of TNF-a on the release of HSP60 and cytokines from muscles of old mice, isolated muscle fibres from the FDB of adult and old mice were treated with TNF-a. Treatment ofC2C12 myotubes with TNF-a resulted in increased content ofHSPlO, HSP60 and HSP70 and several cytokines. TNF-a treatment resulted in the specific release of HSP60 as well as IL-6, MCP-l, KC and RANTES from myotubes into the cell culture media. Inhibitor studies demonstrated that the release of HSP60 occurred via exosomes whereas cytokines were released by golgi-mediated transport. Treatment of myotubes with HSP60 resulted in the release of IL-6, MCP-l and RANTES by muscle cells but had no effect on markers of bone formation in SaOs-2 osteoblast cells. Treatment of C2C12 myotubes or SaOs-2 osteoblast cells with muscle-derived exosomes had no effect on cytokine release or markers of bone formation respectively. Comparison of the amount of JiSP60 released by muscle in exosomes to levels reported in pathological states sugpest that muscle is not a major source of HSP60. In contrast, comparison of the levels of cytokines released by muscle suggest that muscle is likely to be a major source of these cytokines in the critically ill. Treatment of isolated fibres from the FDB muscle of adult WT mice with TNF-a resulted in the significant increase in HSP60, IL-6 and KC in the media. In contrast, no effect was seen on the media content of HSP60 following treatment of isolated fibres from old WT mice although the media content of cytokines was comparable to that from fibres of adult WT mice. Data suggest that muscle can act as a significant source of cytokines in response to elevated levels of TNF -a and this may have significant implications for treatment of the critically ill. Muscle can release HSP60 as part of an exosomal process although the levels of HSP60 released are lower than those required to activate cytokine production and release by muscle or osteoblast cells. In contrast, muscle can act as a significant contributing source of cytokines in response to elevated levels of HSP60 derived from other cell types.
14

Myocyte death and regeneration in cardiac and skeletal muscle

Ellison, Georgina May January 2004 (has links)
No description available.
15

Evaluation of skeletal muscle satellite cell activity in rodent models depicting muscle hypertrophy and atrophy

Sidique, Idris L. January 2013 (has links)
Satellite cells are muscle-specific progenitor cells involved in the routine maintenance of skeletal muscle homeostasis, growth and regeneration. They are activated by various stimuli (myotrauma, growth factors etc), undergo rounds of proliferation as skeletal muscle myoblasts, to differentiate and fuse with each other to generate new myotubes or onto existing myofibres to augment growth or repair damaged fibres. Satellite cells contribute to hypertrophy by facilitating nuclear addition, which maintains contractile protein synthetic capacity. Conversely, during atrophy the dysregulation of satellite cells (e.g., via myogenic suppression), causes an opposing deficit in nuclear supplementation/contractile protein synthesis. The ‘activity status’ of satellite cells, an important determinant of muscle regenerative capacity is not routinely addressed in studies characterising mechanisms of muscle hypertrophy and atrophy. Therefore, the investigations described within this thesis examined the satellite cell specific signalling events that contribute to muscle loss or gain, in rodent models experiencing non-mechanically-induced muscle hypertrophy or atrophy. Chronic administration of an anabolic agent (BRL-47672, the pro-drug of clenbuterol) increased the expression of early components of satellite cell myogenesis (pax7, ki-67, myoD) but caused no alteration in myogenin expression, relative to control in rat soleus muscle. Pro-drug administration increased myostatin expression, with no concomitant change in follistation mRNA; this is likely a compensatory mechanism to check excessive muscle growth. These results provided evidence of increase satellite cell activity in hypertrophying muscle. In a lipopolysaccharide (LPS)-infusion model of muscle atrophy, satellite cells were inhibited in an inflammatory-dependent manner. LPS infusion caused early (<2hr) elevations inflammatory cytokines TNF-, IL-6 and NF-B. LPS-induced elevation in cytokine transcript levels paralleled increased myostatin and decreased pax7 and myoD mRNA and protein expression. The differential increase in cytokines also paralleled the reduction in the number of pax7+ and myoD+ satellite cells. These results suggest that alterations in satellite cell activity may contribute to the progression of muscle atrophy, due to the suppression of muscle compensatory mechanisms, which include satellite cell activation, differentiation and fusion for nuclear supplementation. Co-infusion with an anti-inflammatory agent, dexamethasone (Dex), blunted LPS-induced increase in inflammatory cytokines but had an additive effect on myogenic suppression. Dex+LPS infusion prevented LPS-induced increase in myogenin and resulted in an additional suppression of pax7 and myoD, greater than that elicited by either substance alone. Negative regulation of satellite cells by glucocorticoids could impede their efficacy in the treatment of inflammatory muscle disorders. The research within this thesis emphasise satellites are important for maintenance of muscle homeostasis and their activation/inhibition, may determine the magnitude of muscle loss or gain. This was demonstrated by the pattern of pax7 and myoD expression in hypertrophying muscle, where both markers were up-regulated and in atrophying muscle, where they were down-regulated. Down-regulation of these markers in atrophy could have implications for muscle regenerative capacity, especially myoD, whose expression was continuously inhibited across all time-points sampled in septic muscles. Satellite cells are a major source of compensatory action in skeletal muscle, their activation and subsequent myogenesis represents an auxiliary mechanism by which muscle responds to damaging stimuli; therefore their dysregulation (through the alteration of key myogenic markers) results in an alteration of normal function. Such dysregulation, as frequently reported in cases or progressive muscle degeneration and sarcopenia, limits the efficacy of muscle compensatory processes (i.e. satellite cell activation/proliferative or differentiation potential), thereby contributing to the progression of muscle atrophy and myopathy.
16

Deciphering the functional and molecular differences between MTM1 and MTMR2 to better understand two neuromuscular diseases / Etude des différences moléculaires et fonctionnelles entre MTM1 et MTMR2 afin de mieux comprendre deux maladies neuromusculaires

Raess, Matthieu 13 October 2017 (has links)
MTM1 et MTMR2 sont 2 phosphatases de phosphoinositides appartenant à la famille des myotubularines, conservée pendant l’évolution. Bien qu’étant très similaires, des mutations dans MTM1 entraînent la sévère myopathie XLCNM alors que les mutations dans MTMR2 entraînent la neuropathie CMT4B. On ne comprend pas encore les bases moléculaires de cette spécificité de tissu, et il n’existe aucun traitement spécifique pour ces maladies. J’ai tout d’abord caractérisé l’activité des 2 isoformes endogènes de MTMR2, nommés MTMR2-L et MTMR2-S. J’ai démontré que la différence fonctionnelle entre MTM1 et MTMR2 s’explique principalement par l’extension N-terminale de MTMR2, et que l’isoforme MTMR2-S dépourvu de cette extension entraîne les mêmes phénotypes que MTM1. Ensuite, grâce à l’injection d’AAV dans les souris Mtm1 KO, j’ai démontré que l’expression exogène des isoformes de MTMR2, et surtout de MTMR2-S, améliore grandement l’atrophie musculaire, la force musculaire et les marqueurs histologiques de ces souris myopathiques. Ces résultats révèlent une première base moléculaire expliquant les spécificités fonctionnelles de MTM1 et MTMR2, et montrent que MTMR2 est une cible thérapeutique potentielle pour la myopathie XLCNM. / MTM1 and MTMR2 are 2 phosphatases of phosphoinositides that belong to the myotubularin family conserved through evolution. Despite their high level of similarity, mutations in MTM1 lead to the severe XLCNM myopathy while mutations in MTMR2 lead to the CMT4B neuropathy. The molecular bases for the surprising tissue-specific functions of these ubiquitously expressed proteins was unclear. Moreover, there is no specific therapy for these diseases.I first characterized the activity of the two naturally occurring isoforms of MTMR2, that we named MTMR2-L (long) and MTMR2-S (short). I found that the functional differences between MTM1 and MTMR2 reside mostly in the N-terminal extension of MTMR2-L, and that the endogenous MTMR2-S isoform lacking this N-terminal extension behaves similarly as MTM1. Then, using the myopathic Mtm1 KO mouse and AAV-mediated expression, I showed that exogenous expression of MTMR2 isoforms, and specifically of MTMR2-S, strongly improved the muscle atrophy, muscle force and the histological hallmarks of the myopathic mice. These data reveal a first molecular basis for the functional specificities of MTM1 and MTMR2, and highlight MTMR2 as a therapeutic target for XLCNM myopathy.
17

Étude physiopathologique de la myopathie auto-immune des souris NOD invalidées pour la voie de costimulation ICOS/ICOSL. / Physiopathological study of autoimmune myopathy in disabled NOD mice for the ICOS/ICOSL costimulation pathway

Bourdenet, Gwladys 15 December 2017 (has links)
Les myopathies inflammatoires (MI) représentent un groupe hétérogène de maladies caractérisépar une faiblesse musculaire chronique et symétrique associée à une augmentation du taux sérique decréatine phosphokinase (CPK). Les MI sont actuellement subdivisées en 5 entitées : les dermatomyosites,les myopathies nécrosantes auto-immunes, la myosite à inclusion, la polymyosite et les myosites dechevauchement. A ce jour, le diagnostic des MI repose sur l’association de signes cliniques, decaractéristiques anatomopathologiques sur la biopsie musculaire et la présence d’auto-anticorps (aAc). Eneffet, la découverte d’aAc spécifiques et/ou associés aux myosites (MSA/MAA) a considérablementamélioré le diagnostic et le pronostic de la maladie. Cependant, un nombre non négligeable de patientsatteints de MI sont séronégatifs pour les MSA/MAA connus. Par ailleurs, la biopsie musculaire nécessaireau diagnostic est parfois guidée par imagerie par résonance magnétique (IRM), bien qu’il n’ait pas étéprouvé que les données d’imagerie soient corrélées aux signes histologiques. Enfin, le traitement des MIrepose sur l’utilisation d’immunosuppresseurs systémiques, une approche non spécifique de laphysiopathologie de la maladie. Les modèles animaux de MI les plus utilisés sont induits et nonspontanés : ils reposent principalement sur l’immunisation d’animaux contre des protéines telles que lamyosine, la protéine C ou l’histidyl-tRNA synthétase.Les souris NOD (non obese diabetic) sont le modèle classique d’étude du diabète de type 1.Lorsque ces souris sont invalidées pour la voie de costimulation lymphocytaire ICOS/ICOSL, les souris nedéveloppent plus de diabète mais présentent alors une atteinte musculaire. Dans ce travail, nous avonsétudié le phénotype et caractérisé l’atteinte musculaire des souris NOD Icos-/- et NOD Icosl-/-. Nous avonsainsi établi le 1er modèle murin spontané de MI, dont la physiopathologie est médiée par leslymphocytes T CD4+ et la sécrétion d’IFN-γ. Par ailleurs, ces souris présentent un déficit en lymphocytes Trégulateurs. Nous avons également identifié 4 auto-antigènes (aAg) candidats cibles d’aAc chez ces souris.La recherche des aAc correspondants aux aAg orthologues dans le sérum des patients atteints de MI apermis d’identifier, pour l’un d’entre eux, une minorité d’individus séropositifs grâce au développementd’un nouveau test ALBIA (addressable laser bead immunoassay). Il pourrait donc s’agir d’un nouveaubiomarqueur. Dans la perspective de nouvelles évaluations thérapeutiques, nous avons établi desdonnées préliminaires montrant que l’interleukine 2 à faibles doses permet de retarder l’apparition de lamaladie. Enfin, nous avons mis à profit ce modèle et démontré la corrélation entre les données généréespar IRM et par analyse histologique de l’inflammation, confortant le rôle de cette technique d’imagerie àla fois pour le diagnostic et le suivi des MI. / Inflammatory Myopathies (IM) are a heterogeneous group of diseases characterized bychronic and symmetrical muscle weakness associated to increased creatine phosphokinase (CPK)levels, according to entity concerned. Currently, IM are divided into 5 main entities:dematomyositis, immune-mediated necrotizing myopathies, inclusion body myositis, polymyositisand overlap myositis. Nowadays, IM diagnosis is based on clinical signs associated to pathologicfeatures on muscle biopsy and presence of auto-antibodies (aAb). Indeed, the discovery of myositisspecific and/or associated auto-antibodies (MSA/MAA) had considerably improve disease diagnosisand prognosis. However, substantial proportion of IM patients do not display any knownMSA/MAA. Furthermore, diagnosis requires muscle biopsy. This biopsy is sometimes guided bymagnetic resonance imaging (MRI), even though correlation between MRI findings and pathologicalfeatures is not established. Lastly, therapeutics used in IM treatment are systemicimmunosuppressive agents, i.e. not specific to IM pathophysiology. Animal models of IM are mainlybased on active immunization against different proteins as myosin, C protein orhistidyl-tRNA synthetase, while spontaneous models are required to identify pathophysiologicalmechanisms that new therapeutics should target.NOD (non obese diabetic) mice are the main model of type 1 diabetes. When invalidatedfor ICOS/ICOSL costimulation pathway, these mice do not develop diabetes but present musculardisorders. In this work, we study Icos-/- and Icosl-/- NOD mice phenotype and characterize theremuscle lesion. Thus, we have established this model as the first paradigm of IM. Pathophysiologicalstudy in these mice demonstrated that disease is CD4+ T cell dependent and associated to IFN-γproduction. Furthermore, we shown a quantitative defect in regulatory T cells. We have alsoidentified 4 candidate autoantigens (aAg) in Icos-/- and Icosl-/- NOD mice. Searching forcorresponding aAb against ortholog proteins in patients with IM, we identified for one of them, alow percentage of seropositive individuals using a new ALBIA (addressable laser beadimmunoassay). It could be identified as a new biomarker. In order to evaluate new therapies, weestablished preliminary data showing that low dose interleukin 2 therapy allow to delay diseaseonset. Lastly, we took advantage of this new model to demonstrate the correlation betweenMRI findings and histological inflammation features, confirming the valuable role of MRI for thediagnosis and monitoring of IM.
18

Pathogénicité des auto-anticorps anti-SRP et anti-HMGCR au cours des myopathies nécrosantes auto-immunes / Pathogenicity of autoantibodies anti-SRP and anti-HMGCR in autoimmune necrotizing myopathies

Bergua, Cecile 10 November 2017 (has links)
Les myopathies auto-immunes (MAI), classiquement appelées myosites ou myopathies inflammatoires idiopathiques, représentent un groupe de maladies définies par des caractéristiques cliniques, histopathologiques et biologiques. Une des caractéristiques les plus notables est la présence d’auto-anticorps (aAc) chez environ 60% des patients. Les MAI regroupent : les dermatomyosites, les polymyosites, les myosites à inclusion, les myosites de chevauchement incluant le syndrome des anti-synthétases et les myopathies nécrosantes auto-immunes (MNAI). Les MNAI ont été récemment individualisées parmi les MAI comme des maladies graves fréquemment associées à la présence d’aAc dirigés contre la Signal Recognition Particle (SRP) ou la 3-Hydroxy-3-MéthylGlutaryl-CoA Réductase (HMGCR). La localisation de SRP et HMGCR étant intracellulaire, le rôle des aAc dans la physiopathologie des MNAI reste mal compris. La pathogénicité des aAc anti-SRP et anti-HMGCR envers des cellules musculaires cultivées in vitro a récemment été mise en évidence mais leurs effets in vivo demeurent inconnus.Au cours de cette thèse, j’ai étudié le rôle physiopathologique des aAc anti-SRP et anti-HMGCR in vivo chez la souris. Le transfert passif d’IgG de patients atteints de MNAI, positifs pour les aAc anti-SRP ou anti-HMGCR, à la souris sauvage entraîne un déficit musculaire. Ce déficit était prolongé chez la souris immunodéficiente Rag2-/-, et limité chez la souris déficiente pour la fraction C3 du complément. Chez les souris recevant les IgG anti-SRP+, le déficit musculaire était important et accompagné de quelques signes de nécrose myocytaire. Les IgG anti-HMGCR+ induisaient une faiblesse musculaire moindre, et des signes histopathologiques rares ou absents. Ces résultats sont en accord avec l’observation chez l’homme d’une maladie plus grave chez les patients anti-SRP+ par rapport aux patients anti-HMGCR+. La supplémentation en complément humain des souris augmentait le déficit musculaire induit par les IgG anti-HMGCR+ et de façon moindre pour les IgG anti-SRP+. En collaboration avec l’INSERM UMRS974, nous avons montré que les cibles SRP et HMGCR peuvent être détectées à la surface des fibres musculaires in vitro, suggérant qu’elles puissent être accessibles aux aAc in vivo.Ces résultats démontrent pour la première fois le rôle pathogène des aAc anti-SRP et anti-HMGCR in vivo et l’implication du complément, contribuant à une avancée dans la compréhension de la physiopathologie des MNAI. / Autoimmune myopathies (AIM), classically called myositis or idiopathic inflammatory myopathies, represent a group of diseases characterized by clinical, histopathologic and biologic properties. One of the most notable properties is the presence of autoantibodies (aAb) in approximately 60% of patients. AIM includes five principal entities: dermatomyositis, polymyositis, inclusion body myositis, overlap myositis including the anti-synthetase syndrome and immune-mediated necrotizing myopathies (IMNM). IMNM have recently been individualized among AIM as severe diseases frequently associated with aAb directed against Signal Recognition Particle (SRP) or 3-Hydroxy-3-MethylGlutaryl-CoA Reductase (HMGCR). Since SRP and HMGCR have an intracellular localization, the role of anti-SRP and anti-HMGCR aAb in the pathophysiology of IMNM remains unclear. Anti-SRP and anti-HMGCR aAb were recently shown to be pathogenic to muscle cells in vitro but in vivo effects remain unknown.During this thesis, I studied the pathophysiological role of anti-SRP and anti-HMGCR aAb in vivo in mice. Passive transfer of IgG purified from plasma of IMNM patients positive for anti-SRP and anti-HMGCR aAb to wild-type mice elicited a muscle weakness. Immune-deficient Rag2-/- mice presented a prolonged muscle deficit, whereas complement component C3 deficient mice had limited signs. Mice injected with anti-SRP+ IgG displayed a strong muscle weakness with mild myocytic necrosis. The muscle deficit was milder and histopathologic findings were not always present in mice receiving anti-HMGCR+ IgG. This is in accordance with clinical findings in anti-SRP+ patients which present a more severe disease than anti-HMGCR+ patients. When supplemented with human complement, mice receiving anti-HMGCR+ IgG showed a more severe muscle deficit. This supplementation increased the deficit induced by anti-SRP IgG in a milder way. In collaboration with INSERM UMRS974, we showed that the targets SRP and HMGCR can be detected on the surface of myofibres in vitro, suggesting that they could be accessible to aAb in vivo.Together, these results demonstrate for the first time the pathogenic role of anti-SRP and anti-HMGCR aAb in vivo and the implication of complement, contributing to a progress in the comprehension of MNAI pathophysiology.
19

Correction de l'ADN in vitro et in vivo comme thérapie personnalisée pour les myopathies congénitales / In vitro and in vivo DNA correction as personalized therapy for congenital myopathies

Rabai, Aymen 16 October 2018 (has links)
L’édition du génome utilisant CRISPR/Cas9 est récemment apparue comme une stratégie thérapeutique potentielle des maladies génétiques. Pour les mutations dominantes de type gain de fonction, la correction allèle-spécifique pourrait être l'approche la plus appropriée. Ici, nous avons testé l'inactivation ou la correction d'une mutation hétérozygote du gène de la dynamine 2 (DNM2) causant la forme autosomique dominante de la myopathie centronucléaire (CNM). Des ARN-guides tronqués ciblant spécifiquement l'allèle muté ont été testés sur des cellules de patients et des myoblastes d'un modèle murin. L'allèle muté a été ciblé avec succès et des clones ont été obtenus avec inactivation ou correction précise du génome. Les myoblastes Dnm2R465W/+ ont montré une altération de l'endocytose et de l'autophagie. L'inactivation ou la correction allèle-spécifique a normalisé ces phénotypes. L'allèle muté a également été ciblé avec succès dans les muscles de la souris Dnm2R465W/+. Ces résultats illustrent le potentiel de CRISPR/Cas9 à cibler et corriger de manière allèle-spécifique les mutations ponctuelles hétérozygotes de type de gain de fonction. / Genome editing with the CRISPR/Cas9 technology has emerged recently as a potential strategy for therapy in genetic diseases. For dominant mutations linked to gain-of-function effects, allele-specific correction may be the most suitable approach. Here we tested allele-specific inactivation or correction of a heterozygous mutation in the Dynamin 2 (DNM2) gene causing the autosomal dominant form of centronuclear myopathies (CNM). Truncated single guide RNAs targeting specifically the mutated allele were tested on cells derived from a mouse model and patients. The mutated allele was successfully targeted in patient fibroblasts and Dnm2R465W/+ mouse myoblasts, and clones were obtained with both precise genome correction or inactivation. Dnm2R465W/+ myoblasts showed an alteration in transferrin uptake and autophagy. Specific inactivation or correction of the mutated allele rescued these phenotypes. The mutated allele was also successfully targeted in Dnm2R465W/+ mouse muscles. These findings illustrate the potential of CRISPR/Cas9 to target and correct heterozygous point mutations leading to a gain-of-function effect in an allele-specific manner.
20

Functional phenotyping of macrophage subsets during skeletal muscle regeneration and in degenerative myopathies / Phénotypes fonctionnels des sous populations de macrophages au cours de la régénération musculaire et lors des myopathies dégénératives

Saclier, Marielle 06 March 2014 (has links)
Le muscle squelettique a la capacité de se régénérer suite à une lésion grâce aux cellules satellites qui sont les cellules souches du muscle. Après dommage musculaire, les cellules satellites s’activent, prolifèrent, se différencient et fusionnent afin de reformer le muscle lésé. Cependant les cellules myogéniques ne sont pas les seules cellules impliquées dans la régénération musculaire. Des études précédentes réalisées au laboratoire ont montré chez la souris que les macrophages sont des cellules essentielles à la régénération musculaire. En effet, peu de temps après un dommage musculaire, les monocytes infiltrent le tissu lésé et se différencient en macrophages pro-inflammatoires Ly6Cpos (M1). Ces macrophages stimulent la prolifération des myoblastes et inhibent leur fusion. Puis les macrophages pro-inflammatoires changent de phénotype et deviennent des macrophages anti-inflammatoires Ly6Cneg (M2) qui stimulent la différenciation des myoblastes et les protègent de l’apoptose. Ainsi, en fonction de leur phénotype, les macrophages exercent des rôles trophiques séquentiels sur les myoblastes tout au long du processus de régénération musculaire. Dans la première partie de notre étude, nous montrons in vitro que les macrophages humains soutiennent les différentes étapes de la myogenèse. Les macrophages M1 sont fortement attirés par les myoblastes. De plus ils stimulent la prolifération des myoblastes et inhibent leur fusion. Les macrophages M2 attirent les myoblastes et stimulent leur différenciation permettant ainsi la formation de larges myotubes. En utilisant des anticorps bloquants spécifiques, nous avons identifié plusieurs molécules sécrétées par les macrophages régulant la myogenèse chez l’homme. Nos analyses in vivo chez l'homme confirment nos résultats obtenus in vitro. En effet, les macrophages M1 sont préférentiellement associés aux aires de régénération contenant des myoblastes non différenciés alors que les macrophages M2 sont associés aux aires de régénération contenant des myoblastes en différenciation. Dans un contexte de myopathie dégénérative, nous avons montré que les macrophages adoptent des phénotypes et des fonctions totalement différents des macrophages présents au cours de la régénération musculaire. Nous avons observé chez la souris et chez l’homme, que les macrophages exprimant des marqueurs M1 sont associés à la fibrose et qu’un traitement anti-inflammatoire réduit leur nombre dans le muscle dystrophique murin. Par isolement spécifique et cocultures ex vivo, nous avons montré qu'au cours de la régénération musculaire, les macrophages Ly6Cneg stimulent la production de collagène par les fibroblastes. A l'inverse au cours des myopathies dégénératives, ce sont les macrophages Ly6Cpos qui stimulent fortement l’établissement de la fibrose en agissant directement sur les fibroblastes. De plus, ces macrophages Ly6Cpos, qui régulent négativement les fibroblastes au cours de la régénération musculaire, stimulent la différenciation des fibroblastes et myofibroblastes dans les myopathies. De plus, ils les protègent de l'apoptose, participant ainsi à la persistance de ces cellules fibrosantes. Ainsi, nous avons confirmé chez l’homme in vitro et in vivo, le rôle de support séquentiel des macrophages au cours de la régénération musculaire. De plus, nous avons identifié différents effecteurs sécrétés par les macrophages M1 et M2 impliqués dans la régulation du processus myogénique chez l'adulte. Nous avons également montré que lors des myopathies dégénératives et au cours de la régénération musculaire, les macrophages adoptent un phénotype et des fonctions totalement différents, avec notamment un rôle profibrotique des macrophages pro-inflammatoires. / Skeletal muscle has the ability to regenerate after a chemical or physical injury thanks to satellite cells, the muscle stem cells. After damage, satellite cells proliferate, differentiate and fused to reform muscle. Myogenic cells are not the only on cells involved. Previous studies in the laboratory showed that, in mice, macrophages are crucial for skeletal muscle regeneration. Soon after an injury, macrophages infiltrate damaged muscle and differentiate into Ly6Cpos pro-inflammatory (M1) macrophages. They stimulate proliferation of myoblasts and inhibit their fusion. Then, pro-inflammatory macrophages skew towards a Ly6Cneg anti-inflammatory phenotype (M2). Anti-inflammatory macrophages stimulate differentiation of myoblasts and protect them from apoptosis. Thus, depending on their phenotype, macrophages exert sequential trophic roles on myoblasts throughout muscle regeneration. Here, we showed in vitro that human macrophages also support different steps of myogenesis. M1 macrophages are strongly attracted by mpcs. Moreover, they secrete molecules, which stimulate proliferation of mpcs and inhibit their fusion. M2 macrophages attract mpcs and stimulate differentiation of mpcs in order to form large myotubes. Using specific blocking antibodies, we identified molecules involved in the regulation of myogenesis by M1 and M2 macrophages in a human in vitro system. In vivo analysis of regenerating human muscle sections confirmed our results obtained in vitro. M1 macrophages are preferentially associated with proliferating myogenic cells while M2 macrophages are associated with differentiating myogenic cells. In degenerative myopathies, we showed that macrophages are completely different from those present during skeletal muscle regeneration. We observed in mouse and human that M1 marker-expressing macrophages are associated with fibrosis while anti-inflammatory treatment reduced this population, in association with an improvement of the dystrophic muscle. Isolated Ly6Cneg macrophages exhibit a mixed M1/M2 phenotype. In ex-vivo coculture experiments, we showed that Ly6Cpos macrophages strongly favor establishment of fibrosis by directly acting on fibroblasts while in regenerating muscle, these Ly6Cpos macrophages negatively regulate fibrosis. To resume, we confirm in human the supportive sequential roles of macrophages during skeletal muscle regeneration in vitro and in vivo. Moreover, we identified effectors secreted by M1 and M2 macrophages involved in the regulation of the myogenic process. We also highlight that during muscle regeneration and in degenerative myopathies, macrophages exhibit different phenotype associated with opposite functions, with a pro-fibrotic role for pro-inflammatory macrophages.

Page generated in 0.0275 seconds