• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 3
  • 1
  • Tagged with
  • 22
  • 9
  • 9
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Μελέτη της συμπεριφοράς κραμάτων αλουμινίου σε διαβρωτικό περιβάλλον

Κομποτιάτης, Λάμπρος 28 May 2010 (has links)
- / -
12

Comportement mécanique d'un alliage d'aluminium à grains ultrafins. Analyse et modélisation du rôle exacerbé des joints de grains. / Mechanical Behaviour of Ultra fine grain aluminium alloy. Analysis and modelling of the enhanced role of grain boundaries

Goyal, Anchal 29 November 2018 (has links)
Les alliages à grains ultrafins semblent prometteurs, au vu de leur forte résistance en traction et de la possibilité d'une mise en forme superplastique à basse température. Toutefois, leurs mécanismes de déformation, qui comportent une part plus ou moins forte de glissement aux joints de grains restent mal connus, et leurs performances en fatigue ont été peu étudiées. Ce travail vise à comparer et analyser le comportement viscoplastique et les mécanismes de déformation et d'endommagement en traction et en fatigue d’un alliage d’aluminium-magnésium "classique" et à grains ultrafins (600nm en moyenne) obtenu par déformation plastique sévère, selon le procédé ECAP.Des essais de relaxation, fluage et traction à diverses vitesses et températures ont permis de mesurer les évolutions des sensibilités à la vitesse en fonction de ces deux paramètres et de montrer: 1) que le raffinement microstructural accroît sensiblement la sensibilité à la vitesse 2) que ce paramètre augmente avec la vitesse de déformation 3) qu'il contrôle la ductilité du matériau à grains ultrafins, qui s'accroît donc à faible vitesse 4) que cette ductilité devient supérieure à celle du matériau classique lorsque la température s'élève. Les domaines de vitesse et température dans lesquels le raffinement microstructural accroît ou diminue la résistance en traction ont été délimités.Les mécanismes de déformation et d'endommagement des deux matériaux ont été étudiés au moyen d'essais de traction sous MEB accompagnés de mesures des champs de déformation par corrélation d'images à plusieurs échelles: méso et microscopique, grâce à des microgrilles d'or et sub-micrométrique, grâce à un mouchetis très fin obtenu par démouillage d'un film d'or. Le glissement aux joints est d'autant plus actif, dans les deux matériaux, que la température augmente et que la vitesse de déformation diminue. Dans l'alliage à grains ultrafins, il a un caractère coopératif et survient préférentiellement aux joints de forte désorientation. Les champs de déformation sont plus hétérogènes dans le matériau à grains ultrafins, où le taux de déformation dépasse 100% dans des bandes localisées.Un modèle éléments finis 2D intégrant, outre la viscoplasticité au sein des grains, un glissement visqueux des joints, a été identifié dans toute la gamme de température explorée et rend assez bien compte du comportement viscoplastique des deux matériaux et de la contribution beaucoup plus forte du glissement aux joints dans l'alliage à grains ultrafins. Il permet également de préciser comment évolue cette contribution au cours de l'écrouissage.Des essais de traction-compression à déformation plastique imposée ont permis d'étudier la plasticité cyclique et les mécanismes d'endommagement en fatigue oligocyclique et des essais à contrainte imposée, d'explorer la fatigue à grand nombre de cycles. Les essais ont été suivis d'observations des surfaces de rupture et d'une analyse statistique de l'endommagement en surface, ainsi que d'observations au MET des arrangements de dislocations. Les deux matériaux manifestent un durcissement cyclique, plus modeste dans l'alliage à grains ultrafins, qui présente, à forte amplitude, une croissance de ses grains. L'écrouissage isotrope prédomine dans l'alliage classique, où la densité de dislocations augmente fortement avec la plasticité cyclique, alors que l'écrouissage cinématique prédomine dans l'alliage à grains ultrafins, en raison de sa moindre aptitude à stocker des dislocations et de la plus grande hétérogénéité de sa déformation plastique. A même amplitude plastique, ce dernier a une durée de vie plus faible, en raison d'un amorçage bien plus rapide des fissures, à partir de particules intermétalliques. A contrainte imposée, le matériau a grain ultrafins a une durée de vie légèrement supérieure, grâce à une propagation plus lente des microfissures, dont le trajet est transgranulaire dans les plus gros grains et intergranulaire dans les plus petits. / Ultrafine grained (UFG) alloys seem promising, based on their high tensile properties and the possibility of superplastic forming at relatively low temperature. However, their deformation mechanisms are not fully understood, and their performance in fatigue has not been thoroughly investigated. This work compares the viscoplastic behavior, and the deformation and damage mechanisms in tension and fatigue of a UFG Al-Mg alloy (600 nm mean grain size) obtained by severe plastic deformation (ECAP process) with that of its coarse-grained (CG) counterpart.The strain rate sensitivity (SRS) of both materials has been measured during creep, relaxation and tensile tests run at various strain rates and temperature. Microstructural refinement is shown to increase the SRS, which rises as the strain rate decreases, and controls the ductility. The UFG material becomes softer and more ductile than the CG material at high temperature. The temperature and strain rate domain for which the UFG alloy is stronger or softer has been determined.Tensile tests run in a SEM, with DIC measurements of strain fields at meso/ micro scales (using gold microgrids printed by electron beam lithography) and at sub-micron scale (using a superfine speckle obtained by film remodelling) have shown that grain boundary sliding is more and more active in both materials as the temperature rises and as the strain rate decreases. Grain boundary sliding is cooperative and occurs mostly at high-angle grain boundaries in the UFG alloy, where the strain field is more heterogeneous, and where very high strain levels (> 100%) are often observed in localized bands.A 2D finite element model taking into account the viscoplastic behaviour inside the grains, and viscous sliding at the grain boundaries has been identified other the whole temperature range investigated. It captures well the observed behaviours and the much larger contribution of grain boundary sliding in the UFG alloy. It also provides the evolution of this contribution during strain hardening.Plastic strain-controlled push-pull tests and stress-controlled push-pull tests were run to investigate the cyclic behaviour and damage mechanisms of the two materials in low and high-cycle fatigue. The tests were followed by fractographic observations, statistical analysis of surface damage, as well as TEM observations of dislocations arrangements. Both materials exhibit cyclic hardening, although it is more modest in the UFG alloy, in which grain growth occurs at high amplitude. While isotropic hardening predominates in the CG alloy where the density of dislocation strongly increases during cyclic tests, kinematic hardening predominates in the UFG alloy, because of its limited capacity to store dislocations and its more heterogeneous plastic deformation. For a given plastic strain range, the UFG alloy has a shorter fatigue life than its CG counterpart, because of a much easier crack initiation, mostly from intermetallic particles. For a given stress range, it has a slightly higher life, due to a slower development of microcracks, which have a transgranular path in the largest grains, with some intergranular growth within the smallest grains.
13

Etude des phénomènes de fatigue sur les alliages d'aluminium brasés de faibles épaisseurs pour les échangeurs thermiques automobiles / Study of the fatigue phenomena on thin brazed aluminium alloys used for automotive heat exchangers

Paturaud, Josselin 09 February 2017 (has links)
La plupart des échangeurs thermiques automobiles sont fabriqués à partir de tôles d’aluminium brasées dont l’épaisseur a été constamment réduite au cours des dernières années à cause de contraintes économiques et environnementales. Dans le même temps, les contraintes subies par les échangeurs thermiques ont également augmenté ce qui a accrue le risque de défaillance par fatigue mécanique, en particulier au niveau des tubes. Dans cette étude, une caractérisation détaillée des mécanismes d’endommagement cyclique à l’œuvre dans les radiateurs de refroidissements automobiles a été effectuée dans le but d’améliorer leur fiabilité. La matière standard utilisée pour la fabrication des échangeurs, utilisée comme référence dans ce travail, consiste en une plaque très fine (plus petit que 0,27mm d’épaisseur) composée de trois alliages d’aluminium co-laminés (4045/3916/4045). Afin d’évaluer l’effet de la structure de ce « sandwich » sur les mécanismes d’endommagement, des matières composées d’une unique couche (3916) ainsi que de 4 couches (4045/3003/3916/4045) ont également été produites. Toutes ces matières, ont été brasées dans le but d’obtenir un état de surface et des propriétés mécaniques représentatives d’un échangeur thermique de série. Des essais de fatigue à amplitude de contrainte constante ont été réalisés à température ambiante, -30°C et 120°C pour i) caractériser l’effet de la structure du sandwich sur la résistance cyclique des différentes matières étudiées et ii) l’effet de la température sur les mécanismes d’endommagement en fatigue. Les phases d’amorçage et de propagation des fissures ont pu être étudiées par la mise en place de techniques de suivi 2D et 3D. Ces techniques, couplées à une caractérisation précise de la microstructure des matières, ont permis de clarifier les mécanismes d’endommagement conduisant à la rupture par fatigue de ces fines plaques et, notamment, de pointer le rôle clé du placage résiduel (issu de la fusion du 4045) sur les mécanismes d’endommagement. / Nowadays, most of the automotive heat exchangers are made of brazed aluminium sheets. Due to economic and environmental issues, the thickness of heat exchanger components have been reduced. Concomitantly, the stress undergone by the heat exchanger increased which raised the risk of fatigue failure, and particularly on tube for radiators. In this work, a detailed characterization of the cyclic damage mechanisms in car heat exchangers has been carried out. The standard material used to make radiator is a very thin (plu petit que 0.27mm) aluminium sheet composed by 3 layers (4045 /3916/ 4045). To assess the effect of the structure of this “sandwich” on the damage mechanisms, materials composed of a single layer (3916) and composed of 4 layers (4045/3003/3916/4045) have also been studied. All materials have been brazed in similar industrial conditions in order to obtain representative metallurgical and surface conditions. Fatigue tests at constant stress amplitude have been performed at room temperature, -30°C and 120°C to i) characterize the sandwich structure effect on the cyclic resistance of the studied materials and ii) to study the effect of temperature on the fatigue damage mechanism.Crack initiation and propagation have been observed by 2D and 3D monitoring techniques. These techniques, in addition to a detailed microstructure characterization of the materials, allowed to clarify the damage mechanisms leading to fracture in fatigue of these thin sheets and, in particular, to point out the key role of the residual clad (left by the 4XXX melting) on the damage mechanisms.
14

Etude du comportement thermomécanique de matériaux sable-résine et application aux noyaux de fonderie d'aluminium / Thermomechanical study of resin-bonded sand materials and application to foundry sand cores

Menet, Claire 06 December 2017 (has links)
Afin d’optimiser le procédé de production de culasses automobiles en aluminium et d’améliorer sa fiabilité, une meilleure connaissance du comportement des noyaux de fonderie est nécessaire. Les noyaux sont des matériaux composés de grains de sable liés par une résine en faible proportion, et servent à mouler les conduits et cavités intérieurs des pièces métalliques. Au cours de leur cycle de vie, les noyaux sont amenés à subir de fortes températures et des sollicitations mécaniques complexes. L’objectif de cette étude est de caractériser le comportement thermomécanique des noyaux sous diverses sollicitations selon le taux de liant, la température et surtout l’état de dégradation de ce liant. En particulier, les travaux de cette thèse s’attardent sur les mécanismes d’endommagement et de fissuration des noyaux, dont la compréhension est la clé pour optimiser l’étape de débourrage qui consiste en la fracturation et l’élimination des noyaux. Les résultats de cette thèse serviront par ailleurs à nourrir un modèle numérique simulant le débourrage des pièces. Différents modes de chargements mécaniques ont été étudiés : flexion, compression, cisaillement, push-out, fatigue, fluage ou encore compression œdométrique. Ils correspondent à différents types de sollicitations, avec ou sans confinement du noyau, et permettent de caractériser soit le cœur ou la surface du matériau. L’endommagement peut être suivi grâce à la réalisation de cycles de décharge-recharge. Dans tous les cas, le comportement mécanique du noyau est fortement dépendant des propriétés et de l’état du liant. Ainsi, la dégradation thermique induite par la coulée de l’aluminium liquide modifie et dégrade nettement les propriétés du noyau. Des parallèles peuvent ainsi être dressés entre les propriétés du liant, le comportement mécanique du matériau sable/résine et l’endommagement microstructural observé après rupture. / Better knowledge about the mechanical behavior of foundry sand cores is required in order to optimize the aluminum cylinder head production process. Sand cores allow the casting of complex shape metallic parts and are made of sand grains, bound with a resin in low proportion. Sand cores are subjected to high temperatures and complex mechanical load during the production process. This study aims at characterizing the thermomechanical behavior of sand cores under various loads depending on the binder proportion, the temperature and mostly the binder thermal degradation. Particularly, we focus on the cores damage and fracture mechanisms. The understanding of such phenomena could lead to an optimization of the decoring step, consisting in the fracture and removing of the core from the metallic part. Indeed, the results of this Ph.D. thesis will be used to implement a numerical model of the decoring process. Different kinds of mechanical loads have been studied: bending, compression, shear, push-out, fatigue, creep or also oedometric tests. They correspond to different kinds of load, with or without confining pressure and allow a characterization of the bulk or the surface of the material. The core damage is followed by mechanical tests with unload-reload cycles sequences. For all the cases, the core mechanical behavior is highly dependent on the binder properties and thermal degradation. For example, the thermal degradation induced by the aluminum casting modifies and degrades significantly the core properties. Analogies could be drawn between the binder properties, bonded-sand cores mechanical behavior and the evolution of the fracture surfaces.
15

Comportement inclusionnaire dans un bain d’aluminium brassé par induction / Inclusion behavior in an Aluminum bath stirred by induction

Bansal, Akshay 13 July 2016 (has links)
Dans le secteur aéronautique, la performance des alliages d’aluminium connait une amélioration continue, grâce notamment à l’optimisation des procédés d’élaboration. Dans ce cadre, le travail de recherche vise à prédire le comportement des inclusions dans un bain d’aluminium brassé par induction afin d’améliorer la propreté inclusionnaire des alliages coulés. Un modèle numérique a été développé pour simuler le comportement magnétohydrodynamique du bain d’aluminium dans le creuset suivi par la modélisation du comportement d’une population d’inclusions non-métalliques. Le modèle 2D axisymétrique en régime transitoire s’appuie sur le code de CFD commercial ANSYS Fluent, bien que de nombreuses fonctions utilisateurs aient été introduites pour simuler les phénomènes spécifiques comme l’induction électromagnétique et la résolution des bilans de population. Le modèle MHD résout dans un unique maillage les phénomènes d’induction électromagnétiques, l’écoulement turbulent du bain d’Al, la déformation de la surface libre et les effets de la présence d’une couche de métal oxydée en surface du bain. Une méthode dite de vitesse de glissement (entre les particules et le fluide) a été choisie pour simuler à la fois le transport macroscopique des inclusions dans le bain d’Al et les interactions mésoscopique entre les inclusions (c.à.d. les mécanismes d’agrégation et de fragmentation). Des campagnes expérimentales à l’échelle d’un four de laboratoire et d’une installation industrielle accompagnent le travail numérique pour le valider. Les résultats de modélisation MHD exprimés sous la forme du profil de déformation du bain sont en accord raisonnable avec les mesures faites au laboratoire. Les résultats numériques démontrent également l'effet du frottement induit par la couche d'oxyde sur le profil du bain, ainsi que sur l'écoulement à proximité de la surface du dôme. Pour des conditions opératoires du four industriel en mode de maintien, l’évolution temporelle de la population au sein du bain est calculée. Il apparaît que la séparation magnétique est très intense, particulièrement dans la peau électromagnétique, et est ainsi responsable du transport et de la capture d’une grande fraction de la population d’inclusions à la paroi du four. / With an objective of improving processing and development of aerospace aluminum alloys, the current dissertation presents experimental and numerical tools which help comprehend the behavior of a non-metallic inclusion population in an Al bath stirred by induction. The mechanisms occurring in the metallurgical reactor were separated into two interlinked issues – (i) Magnetohydrodynamics (MHD) of the induction furnace, and (ii) Inclusion population dynamics in the Al bath, which were modeled using the ANSYS Fluent software and in-house User Defined Functions. For a 2D axisymmetric geometry, numerical simulations were performed in a single framework and calculated: (i) the electromagnetic forces using the A-V formulation, (ii) the free surface deformation using the Volume Of Fluid method, (iii) the turbulent stirring of the bath using a RANS-based k-omega model and (iv) the friction force due to the oxide layer by imposing a pseudo-wall condition on the bath free surface. The steady state MHD results and the physical properties of the inclusion population were used as input data for the transient inclusion behavior modeling. A combination of the Drift Concentration Method and the Population Balance Method was developed to respectively model the mean transport of inclusions within the bath at the macroscopic scale and the inclusion interactions (turbulent aggregation and fragmentation) at the mesoscopic scale. The performance of the MHD numerical tool was evaluated by comparing the model results with experimental results at laboratory and industrial scales. The simulation results in the form of the average bath surface profile were found to be consistent with the laboratory measurements. The results also illustrated the impact of the friction due to the oxide layer on the bath surface deformation as well as on the flow near the dome interface. The inclusion behavior simulations were performed for the holding mode operation of an industrial IMF. The deduced removal frequency compared the relative importance of each phenomenon. It was found that the electromagnetic migration, especially in the electromagnetic skin, dominates the inclusion dynamics and is responsible for the capture of a large fraction of the inclusion population.
16

Etude par émission acoustique de la plasticité et de l'endommagement de l'aluminium en fatigue oligocyclique / Plasticity and damage of pure aluminum during low cycle fatigue as revealed from acoustic emission

May, Wafa El 12 December 2013 (has links)
Un suivi des processus microstructuraux prenant place au cours de la fatigue oligocyclique de l’aluminium pur est assuré par la technique d’émission acoustique EA par ces deux types: émission continue et discrète. Cette technique est intéressante car elle permet de suivre l’évolution dynamique de la structure tout le long de l’essai. Les différents stades du comportement macroscopique du matériau au cours des sollicitations cycliques sont clairement différenciés par l’activité acoustique. Nous distinguons cinq stades : écrouissage primaire, adoucissement primaire, écrouissage secondaire, adoucissement secondaire et rupture. Les trois premiers stades mettent en jeu des phénomènes microstructuraux liés à la plasticité du matériau tandis que des phénomènes relatifs à l’endommagement (micro et macro-fissuration) dominent les derniers stades. L’EA continue résulte de l’effet cumulatif de nombreux mouvements de dislocations de faible amplitude et décorrélés entre eux. Cette plasticité continue diminue au cours du 1er stade mais copie l’évolution de la réponse macroscopique de l’échantillon au cours des stades suivants. Ce comportement est lié aux structures de dislocations établies à travers les différents stades de fatigue. En revanche, l’EA de type discret enregistrée lors des trois premiers stades est associée à un autre type de plasticité : la plasticité intermittente, se manifestant à travers des mouvements coopératifs de grande ampleur, les avalanches de dislocations. Ces avalanches de dislocations génèrent des signaux acoustiques de tailles variables, distribuées en loi de puissance. La plasticité intermittente est alors invariante d’échelle tandis que la plasticité continue met en jeu des mouvements ayant une taille caractéristique. Nous mettons ainsi en évidence pour la première fois la coexistence de ces deux types de plasticité dans un matériau cubique à faces centrées CFC, qui ne sont donc pas incompatibles. Au cours des deux derniers stades de fatigue, les signaux acoustiques enregistrés se catégorisent également en deux groupes: l’un est caractérisé par des invariances d’échelle, l’autre associé à une taille caractéristique. La première catégorie comprend des signaux acoustiques indépendants, apparaissant aléatoirement au cours des cycles. Ces signaux sont générés par des phénomènes de microfissuration au sein du volume de l’échantillon (nucléation, percolation…). Le second groupe, réunit des signaux acoustiques générés quasiment au même niveau de contrainte sur plusieurs cycles successifs et ayant une signature acoustique quasi identique. Nous nommons ces signaux multiplets en référence à la sismologie. Nous émettons l'hypothèse que de tels multiplets d’EA sont la signature de la propagation, cycle après cycle, d'une fissure de fatigue dont la trace peut être vu post-mortem avec les stries de fatigue sur une surface de fracture, ou encore la signature de frottements entre les aspérités présentes de part et d’autre des lèvres de fissures. / An analysis of microstructural processes taking place during low-cycle fatigue of pure aluminum is performed by the Acoustic Emission technique (AE) with its two types: continuous and discrete. The main interest of this technique is that it enables the following of the dynamic evolution of the microstructure during the fatigue test. We distinguished five fatigue stages: primary hardening, primary softening, secondary hardening, secondary softening and failure. The various stages of the material’s macroscopic behavior during cyclic loading are clearly differentiated by the acoustic activity. During the first three stages, mainly microstructural phenomena related to plasticity of material are taking place, whereas damage (micro and macro-cracking) dominate the last two stages. The continuous AE results from the cumulative effect of many uncorrelated dislocations’ movements of low amplitude. This continuous plasticity decreases during the 1st stage but reproduces the evolution of the macroscopic behavior of the sample during following stages. This behavior is related to the dislocation structure established during the various fatigue stages. On the other hand, the discrete AE recorded at the time of the first three stages is associated to another type of plasticity: intermittent plasticity. This plasticity is associated to co-operative dislocation movements of great amplitude; dislocation avalanches. These dislocation avalanches generate acoustic signals power law distributed in amplitude and energies. Intermittent plasticity is then scale invariant while continuous plasticity is associated to dislocation movements with a characteristic size. We highlight for the first time the coexistence of these two types of plasticity in FCC materials, which are therefore not incompatible. During the last two stages of fatigue, the recorded acoustic signals are categorized in two groups: the first one is characterized by scale invariance whereas the other is associated to a characteristic size. The first category comprises independent acoustic signals, appearing randomly during cycles. These signals are generated by micro-cracking events within the volume of the sample (nucleation, percolation…). The second group contains acoustic signals generated almost at the same stress level during several successive cycles and having a nearly identical acoustic signature. We name these signals multiplets in reference to seismology. We put forth the hypothesis that such AE multiplets are the signature of fatigue crack propagation, one cycle after the other, whose trace can be observed post-mortem with fatigue striations on fracture surface, or a signature of frictions between the asperities present on both sides of the crack.
17

Amorçage et propagation des fissures de fatigue dans les alliages d'aluminium 2050-T8 et 7050-T7451 / Fatigue crack initiation and propagation in aluminium alloys 2050-T8 and 7050-T7451

Nizery, Erembert 04 December 2015 (has links)
Les alliages d'aluminium utilisés dans les structures aéronautiques (fuselage, voilure) sont soumis à des chargements cycliques, faisant de la fatigue l'un des facteurs dimensionnant. Dans cette thèse, les mécanismes d'amorçage de ces fissures de fatigue – au niveau des particules intermétalliques – et de micropropagation sont étudiés expérimentalement et numériquement sur les alliages 2050-T8 et 7050-T7451. Les analyses des premiers chapitres portent sur la description des particules intermétalliques qui sont les plus susceptibles de donner lieu à une amorce de fissure dans la matrice d'aluminium. Les effets de la nature des particules et de leur taille sont quantifiés. La proximité entre les particules intermétalliques et les pores y est décrite. Cette analyse expérimentale fait intervenir des observations de surface en microscopie électronique à balayage (MEB), ainsi que des caractérisations tridimensionnelles (3D) réalisées à l'aide de la tomographie par rayonnement synchrotron. Dans les chapitres suivants, les analyses traitent de la prévision des chemins de fissuration à l'échelle d'un grain. Elles s'appuient sur des observations expérimentales de surface et des simulations de plasticité cristalline 3D pour comprendre les chemins de fissuration. Un modèle d'endommagement tenant compte de la cristallographie est alors proposé pour simuler la propagation de fissure par éléments finis. / Aluminium alloys used for aerospace structures (wing, fuselage) are subjected to cyclic loading. Fatigue properties of such alloys are therefore taken into account for the design of such parts. In this thesis, initiation mechanisms of fatigue cracks – near intermetallic particles – and micropropagation are studied experimentally and numerically on alloys 2050-T8 and 7050-T7451. In the first chapters, the analysis focuses on intermetallic particles which are most prone to initiate a fatigue crack in the aluminium matrix. The effects of the nature of particles as well as their size are quantified. The proximity between intermetallic particles and pores is described. This experimental analysis use surface observations obtained with a scanning electron microscope (SEM), and three-dimensional (3D) characterizations using synchrotron tomography. In the last chapters, analysis are oriented towards the prediction of crack paths at the grain size. They rely on surface experimental observations and 3D crystal plasticity modelling in order to understand crack paths. A damage model taking into account crystallography is proposed to simulate crack propagation using the finite element method.
18

Caractérisation et modélisation du rôle des défauts microstructuraux dans la fatigue oligocyclique des alliages d'aluminium de fonderie : Application au procédé à modèle perdu / Characterization and modeling of the role of microstructural defects on the low cycle fatigue behavior of cast aluminum alloys : Application to the lost foam casting process

Dézécot, Sébastien 15 December 2016 (has links)
Cette étude s’attache à caractériser les mécanismes d’endommagement qui mènent à la rupture d'un alliage AlSi7Cu3Mg élaboré par un procédé à modèle perdu sous sollicitations cycliques isothermes à 250°C en condition de plasticité généralisée. Sa caractérisation par micro-tomographie aux rayons X (µCT) a montré la complexité et l'aspect 3D marqué de la microstructure: présence de pores de morphologies complexes de grandes tailles (>1mm) et d'un réseau inter-connecté de particules. Un montage expérimental a été développé pour réaliser des essais de fatigue à haute température suivis in situ par µCT synchrotron. Ces essais ont mis en évidence les interactions entre les fissures et les éléments microstructuraux. Les fissures s'amorcent au cœur des éprouvettes à proximité des cavités de retrait au niveau de particules dures. La propagation des fissures apparaît corrélée à la rupture progressive des particules présentes en pointe de fissure. Ces observations ont été complétées par des essais de fissuration réalisés sur des éprouvettes macroscopiques. Un matériau sans pore (similaire au premier) à été produit pour dissocier le rôle des pores et celui des particules dans la fissuration du matériau. L’influence des pores se révèle du premier ordre pour l’amorçage. Des maillages éléments finis réalistes ont été générés pour réaliser des simulations élasto-viscoplastiques qui ont permis de proposer un critère d’amorçage. Les zones critiques vis-à-vis de l’amorçage de fissures sont celles où l’énergie de déformation inélastique est maximale. Les chemins de fissuration correspondent aux zones localisant les déformations inélastiques et présentant de fortes triaxialités des contraintes. L’ensemble de ces analyses a donc permis de proposer un scénario complet d’endommagement. Enfin, les essais sur éprouvettes macroscopiques ont permis de proposer un modèle pour décrire la vitesse de propagation des fissures et ceci pour les deux matériaux. Ce modèle, facilement utilisable en bureau d’étude, a été validé pour différents niveaux de chargements. / This study aims to characterize the fatigue damage mechanisms that lead to the rupture of a cast aluminum alloy AlSi7Cu3Mg produced by lost foam casting at 250°C under large scale yielding. Its characterization by X-ray micro-tomography (µCT) showed the complexity and the strong 3D aspect of its microstructure: large pores with complex shapes (>1mm) and a network of interconnected hard particles are present. An experimental setup was developed to perform high-temperature fatigue tests monitored in situ by synchrotron µCT. These tests revealed the interactions between cracks and microstructural elements. Cracks initiated, in the bulk, on hard particles located in the vicinity of shrinkage cavities. Cracks propagation appears to be correlated to the progressive rupture of particles present in front of the crack tip. These observations were completed by crack growth tests carried out on macroscopic specimens. A pore-free material (similar to the first) was produced to dissociate the role of pores and particles on the low cycle fatigue behavior of the material. Pores appear to be more critical regarding cracks initiation. Realistic finite element meshes have been generated to perform elasto-viscoplastic simulations which have allowed to propose a criterion for cracks initiation. Critical areas regarding cracks initiation are correlated to areas where the inelastic strain energies are maximum. The crack paths correspond to areas where inelastic strains are located and where the levels of stress triaxiality are high. All these informations allowed to propose a damage scenario. Finally, the tests on macroscopic specimens allowed to propose a crack growth speed model for both materials. This model, easily usable by engineers, have been validated for different loadings.
19

Etude de l'endommagement en fatigue d'alliages d'aluminium brasés pour échangeurs thermiques automobiles / Study of fatigue damage mechanisms of brazed aluminium alloys used in heat thermal exchangers

Buteri, Aurélien 14 September 2012 (has links)
L'automobile nécessite l'utilisation d'échangeurs thermiques permettant d'assurer au moteur des conditions de fonctionnement en température acceptables (autour de 90°C). La fiabilité de ces échangeurs ne peut être négligée car ils peuvent être à l'origine de complications mécaniques importantes en cas de dysfonctionnement. La maîtrise des divers modes d'endommagement des échangeurs thermiques liés aux conditions d’utilisation devient dès lors un enjeu incontestable pour les industriels en charge de leur production, tant du point de vue matériaux, que du comportement général de la structure en service (influence du procédé d'assemblage, design,...). Les échangeurs thermiques présentent aujourd’hui une sensibilité accrue aux sollicitations thermomécaniques cycliques induites en service, du fait, essentiellement, d’une constante diminution des épaisseurs des composants. Celle-ci est responsable d’une augmentation significative des contraintes internes pour des conditions en service identiques, pouvant avoir pour conséquence directe et irréversible la rupture d’un tube, témoin d’une incompatibilité matière/design/process. Deux configurations matières industrielles ont ici été étudiées. Il s’agit de structures tri-couches colaminées de type tube, constituées respectivement de deux et trois alliages d’aluminium distincts (4xxx/3xxx/4xxx ou 4xxx/3xxx/7xxx), pour une épaisseur totale de 270µm. Ces dernières ont été développées pour permettre l’utilisation du procédé de brasage comme procédé d’assemblage (alliage 4xxx). Toutefois, une telle architecture, combinée à un procédé thermique d’assemblage sévère (600°C), est responsable d’une modification profonde de la microstructure avec l’apparition de structures de solidification, responsables entre autres de nombreuses irrégularités de surface (appelées Gouttes de Placage Résiduelles - GPR) ainsi que d’importants gradients de propriétés mécaniques dans l’épaisseur. Ces travaux de recherche s’appuient sur une approche expérimentale et numérique développée pour étudier les mécanismes d'endommagement en fatigue relatifs à de telles structures fines hétérogènes. Associant diverses techniques expérimentales telles que la corrélation d’images numériques (2D-3D) ou la tomographie à rayons X (de laboratoire ou à l’ESRF), elle permet une analyse précise des mécanismes d’amorçage et de propagation des fissures de fatigue (sur éprouvette de fatigue classique ou de type échangeur thermique). Le rôle des différents placages dans chacune des phases de l’endommagement a ainsi été mis en évidence (4xxx : amorçage, 7xxx : propagation des fissures). Des simulations par la méthode des éléments finis nous ont permis de compléter ces observations en proposant une quantification précise de l’influence de l’état de surface (GPR) sur la tenue en fatigue des éprouvettes testées. Enfin, des essais de fatigue réalisés directement sur échangeurs thermiques ont permis de corroborer les résultats obtenus sur éprouvettes modèles. / The automotive industry, like many other industrial fields, requires the use of heat thermal exchangers to allow optimal thermal service conditions of the engine (around 90°C for a car engine). The exchangers’ reliability has to be guaranteed to avoid a decrease of the engine efficiency or detrimental mechanical damage resulting from too high service temperatures. It is therefore necessary to control the different damage modes of such thermal heat exchangers according to the conditions of use. Thanks to their good thermal, corrosion and mechanical properties, aluminium alloys have steadily replaced copper alloys and brass for manufacturing heat exchangers in cars or trucks. Such components have been constantly optimized in terms of exchange surface area and, nowadays, this has led to Al components in heat exchangers with a typical thickness of the order of 0.2 to 1.5 mm. With such small thicknesses, the load levels experienced by heat exchangers components has drastically increased leading to an important research effort in order to improve the resistance to damage development during service life. Two industrial materials made of 3 co-rolled aluminium alloys (total thickness 0.27 mm) have been studied. In spite of their small thickness, the materials exhibit a composite structure comprising a core material (3xxx alloy) and 2 clads (4xxx and/or 7xxx alloys according to material configuration: 4xxx/3xxx/4xxx or 4xxx/3xxx/7xxx). The lower melting point 4xxx alloy is used for producing the heat exchanger assembly during a brazing process while the 7xxx alloy improves internal corrosion resistance. Such complex architecture, combined to the severe brazing thermal treatment, leads to important microstructural modifications, mainly characterized by the formation of brazing joints or Clad Solidification Drops (CSD) on the surface. Both of them are responsible for significant gradients of the mechanical properties on the thickness. The present study is based on an original experimental and numerical approach developed to characterise the different fatigue damage mechanisms operating in such thin heterogeneous structures. Digital image correlation (2D-3D) and X-rays tomography (at different resolutions) have been used to analyze the crack initiation and propagation mechanisms, highlighting the impact of each clad on each damage step. While the 4xxx clad corresponds to preferential crack initiation zones, the 7xxx clad seems to affect significantly the crack propagation phase. Finite Elements simulations have been carried out to complete these experimental observations, putting forward an accurate quantification of the surface state influence (through the CSD). All the different results and observations made on fatigue samples with a simplified geometry have been finally confirmed by fatigue tests on thermal exchanger configurations.
20

Influence of casting defects on the fatigue behaviour of an A357-T6 aerospace alloy / Influence des défauts de fonderie sur le comportement en fatigue de l'alliage aéronautique A357-T6

Serrano Munoz, Itziar 28 November 2014 (has links)
L’excellente coulabilité, les coûts de production relativement bas, et ratio poids/résistance mécanique élevé des alliages de fonderie Al-Si-Mg en font une des solutions les plus intéressantes dans le secteur automobile ainsi que dans le domaine aérospatial. Toutefois, il est bien connu que la durée de vie de ces composants moulés à grand nombre de cycles (105 < Nf < 107 cycles) est sévèrement réduite lorsque des défauts de fonderie (notamment pores et oxydes) sont débouchants et/ou subsurfaciques sont présents. Ces défauts concentrent les contraintes et peuvent considérablement réduire la période d’amorçage des fissures de fatigue en fonction de leur taille, forme et des caractéristiques microstructurales du matériau. Les défauts internes (à partir desquels les fissures peuvent amorcer et propager sans interaction avec l’air ambiant) ainsi que les défauts de surface (ceux qui sont placés à la surface et en contact direct avec l’air ambiant) vont également nuire la durée de vie des composants moulés. Toutefois, dans le cas des défauts internes, les coefficients de sécurité préconisés par les règles de conception ne font pas intervenir la distance de défaut par rapport à la surface. Le suivi de fissures de fatigue effectué à la surface d’éprouvettes macroscopiques de traction indique que la présence d’un défaut avec une taille supérieure à celle des fissures microstructuralement courtes (√A ≈ 500 μm, taille contrôlée par la SDAS) produit une remarquable réduction de la durée vie. En revanche, la durée de vie n’est pas affectée lorsqu’un défaut plus petit (√A ≈ 300 μm) est présent à la surface car l’amorçage et les premiers stades de propagation sont encore influencés par la SDAS. Les essais de fatigue en torsion pure montrent que la morphologie des surfaces de rupture est fortement influencée par le niveau de contrainte. De plus, le nombre de cycles à l’amorçage est réduit par rapport à la traction. Cet amorçage est multi-site et plusieurs fissures peuvent croitre simultanément au cours de la durée de vie d’une éprouvette, la rupture finale se produisant lors de la jonction de certaines de ces fissures. La propagation des fissures en torsion est largement influencée par la cristallographie locale et les retassures ne semblent pas être des sites de nucléation préférentiels. Les durées de vie odes échantillons macroscopiques contenant défauts artificiel internes (Øeq ≈ 2 mm) sont pratiquement similaires à celles obtenues avec un matériau de référence. L’amorçage et la propagation de fissures internes a été rarement observé lors des expériences de tomographie synchrotron. Dans les rares cas où de telles fissures ont pu être observées, le chemin de fissuration semble fortement influencé par la cristallographie alors que les fissures amorcées depuis la surface se propagent globalement en mode I. La vitesse de propagation des fissures internes est très inférieure à celle des fissures se propageant à partir de la surface. / The excellent castability, relatively low production costs, and high strength to weight ratios make Al-Si-Mg cast alloys an attractive choice for use in cheaper and lighter engineering components, in both automotive and aerospace industries. However, it is well known that High Cycle Fatigue (HCF) lives (105 < Nf < 107 cycles) of cast components are severely reduced when casting defects (notably pores and oxides) are present at the free surface or subsurface. They act as stress raisers which can considerably reduce the crack incubation period depending on their size, shape and the microstructural features of the surrounding material. Internal casting defects are of special interest to this work. The application of safety coefficients considers that all casting defects present in a component have the same deleterious effect and no attention is paid, for example, to their distance to the free surface. In other words, internal defects (corresponding to the case where the depth of the defect allows crack nucleation and propagation to essentially occur without interaction with the air environment) are considered as damaging to fatigue life as surface defects (those placed at the free surface and in contact with the air environment). Surface crack monitoring performed on uniaxial fatigue specimens indicates that the presence of a surface microshrinkage exceeding the size of microstructurally small cracks (√A ≈ 500 μm, controlled by the SDAS) readily nucleates a fatigue cracks producing steady crack propagation and remarkable reduction in the expected fatigue life. A smaller surface defect (√A ≈ 300 μm) nucleated a crack that did not reduced the expected fatigue life as in this case early stages of propagation are still nfluenced by the SDAS. Pure torsional cycling reveals that the morphology of fracture surfaces is highly influenced by the stress level. In general, torsional fatigue behaviour is described by having reduced (with respect to uniaxial testing) and multisite crack nucleation periods. Several dominant cracks can evolve simultaneously and the final failure occurs by the linkage of some of those cracks. Crack propagation is controlled by the crystallography and pores do not appear to be preferential nucleation sites. S-N curves show that macroscopic specimens containing Øeq ≈ 2 mm internal artificial defect produce similar fatigue lives to those obtained with a defect-free material. Internal crack nucleation was rarely observed during synchrotron tomography experiments; instead the fatal cracks initiated from much smaller surface defects. Tomographic images show that, in the case of internal propagation, crystallographic paths are formed while surface cracks propagate in mode I. The crack growth rate of internal cracks is much smaller than that of cracks propagating from the free surface.

Page generated in 0.0268 seconds