1 |
Synthèse de tolérance pour la conception des systèmes mécatroniques : Approche par bond graph inverse / Tolerance synthesis for mechatronic system design : Approach with bond graph.Nguyen, Van Hoa 05 September 2014 (has links)
Dans le contexte de conception des systèmes mécatroniques, cette thèse aborde le problème de synthèse de tolérance paramétrique par rapport aux spécifications incluant incertitudes admissible. Nous prenons en compte deux types d’incertitude : incertitude aléatoire et incertitude épistémique. La méthodologie est basée sur l’inversion du modèle bond graph et sur la propagation de l’incertitude en sortie au paramètre de conception. Les incertitudes aléatoires sont modélisées par les fonctions densité de probabilité (FDP). Les incertitudes épistémiques sont modélisées par les fonctions d’appartenance (FA). Les modèles bond graph probabiliste et bond graph flou correspondants sont alors définis. En affectant la bicausalité et exploitant le modèle bond graph bicausal, nous obtenons le modèle inverse du système. Les FDP et FA sont ensuite propagées à travers ce modèle inverse jusqu’aux paramètres de conception. Nous proposons deux approches pour la propagation de l’incertitude : l’approche globale et l’approche locale. Dans l’approche globale, les FDP et FA en sortie sont propagée grâce à la relation globale entre les sorties et les paramètres de conception (le modèle inverse). Dans l’approche locale, le modèle considéré est divisé en plusieurs sous-modèles et les FDP et FA sont transférées de sous-modèle en sous-modèle jusqu’aux paramètres de conception. Nous utilisons ensuite les FDP et FA obtenues pour synthétiser les tolérances pour les paramètres de conception. La méthodologie proposée permet le traitement de l’incertitude aléatoire et l’incertitude épistémique par des outils appropriés, dans un problème de synthèse de tolérance paramétrique incluant des spécifications complexes. / In the context of mechatronic systems design, this thesis addresses the problem of parametric tolerance synthesis with respect to specifications including allowable uncertainties. We consider two types of uncertainty: aleatory uncertainty and epistemic uncertainty. The methodology is based on the inversion of the bond graph model and the propagation of uncertainty from output to design parameter. Aleatory uncertainties are modeled by the density probability functions (PDF). Epistemic uncertainties are modeled by membership functions (MF). The probabilistic and fuzzy bond graph are then defined. By affecting bicausality and exploiting the bicausal bond graph model, we obtain the inverse model of the system. The PDF and MF are then propagated through the inverse model to the design parameters. We propose two approaches for the propagation of uncertainty: the global approach and the local approach. In the global approach, the output PDF and MF are propagated through the overall relation between the outputs and the design parameters (the inverse model). In the local approach, the model is divided into several sub-models and the PDF and MF are transferred from sub-model to sub-model until they reach the design parameters. We then use the obtained PDF and MF for synthesizing the tolerances of the design parameters. The proposed methodology allows the treatment of aleatory uncertainty and epistemic uncertainty by appropriate tools, in a problem of parametric tolerance synthesis including complex specifications.
|
2 |
Synthèse de contrôle par supervision pour des systèmes HVDC à base de convertisseurs modulaires multiniveaux / Supervisory control synthesis for MMC-based HVDC systemsRomero Rodríguez, Miguel 09 November 2018 (has links)
Ces dernières années, les technologies à courant continu haute tension (en anglais, HVDC) basées sur les convertisseurs modulaires multiniveaux (MMC) sont adoptées comme solution pour l'intégration efficace des énergies renouvelables dans les réseaux électriques. Cependant, ces technologies présentent de nouveaux défis dans la façon dont les systèmes de transmission de puissance sont contrôlés et exploités, car des stratégies de contrôle plus rapides et plus complexes seront nécessaires dans un domaine qui repose aujourd'hui fortement sur la décision humaine. Dans ce contexte, la modélisation des systèmes à événements discrets (SED) et la théorie du contrôle par supervision (TCS) sont des outils puissants pour la synthèse de superviseurs qui assurent que le système à contrôler respecte un ensemble de spécifications comportementales, imposées par le concepteur, dans ses limites physiques. Ce travail propose une méthode pour le développement complet, de la conception à la mise en œuvre, du contrôle par supervision d'un système Multi-Terminal DC (MTDC). Une analyse du système considéré a été effectuée afin d'identifier les principaux composants et modes de fonctionnement du réseau. La solution proposée repose sur la modélisation par événements discrets du comportement en temps continu des composants du système. A partir de là, les concepts de la TCS sont appliqués de manière à obtenir une architecture de contrôle hiérarchique prenant en compte la priorité de certaines actions de contrôle à traiter au niveau local. De plus, les contrôleurs discrets obtenus présentent une structure de commutation de mode afin de réaliser une gestion de mode pendant le fonctionnement du réseau MTDC. Enfin, une méthode pour la mise en œuvre des contrôleurs obtenus dans un logiciel de simulation de système électrique répandu est proposée. L'ensemble dutravail a été validé par la simulation d'une étude de cas impliquant la gestion des modes d'un système MTDC bipolaire à trois terminaux. / The growth of renewable energy production is changing the future of power transmission systems. In recent years, High-Voltage Direct Current (HVDC) technologies based on Modular Multilevel Converters (MMC) are embraced by industry and academia as a solution for the efficient integration of renewable energies into electrical grids. However, this type of technology introduces new challenges in the way power transmission systems are controlled and operated, as faster and more complex control strategies will be needed in a domain which nowadays relies heavily on human decision. In this context, Discrete Event Systems (DES) modeling and Supervisory Control Theory (SCT) are powerful tools for the synthesis of supervisors ensuring that the system to be controlled respects a set of behavioral specifications, imposed by the designer, within its physical limitations. This work proposes a method for the full development, from conception to implementation, of the supervisory control of a multi-terminal DC (MTDC) system. A functional analysis on the considered system has been done so as to identify the main components and operational modes of the grid. Then, the proposed solution is based on the discrete-event modeling of the continuous-time behavior of the components in the system. From there, SCT concepts are applied so as to obtain a hierarchical control architecture taking into account the priority of some control actions that should be treated at the local level. Furthermore, the obtained discrete controllers present a mode-switching structure in order to realize mode management during the operation of the MTDC grid. Finally, a method for the implementation of the obtained controllers in widespread power system simulation software is proposed. The whole work has been validated through the simulation of a case study, involving the mode management of a 3-terminal bipolar MTDC system.
|
3 |
Development of a new technique for objective assessment of gestures in mini-invasive surgery / Développement d'une nouvelle technique pour l'évaluation objective des gestes en chirurgie mini-invasiveCifuentes Quintero, Jenny Alexandra 03 July 2015 (has links)
L'une des tâches les plus difficiles de l'enseignement en chirurgie, consiste à expliquer aux étudiants quelles sont les amplitudes des forces et des couples à appliquer pour guider les instruments au cours d'une opération. Ce problème devient plus important dans le domaine de la chirurgie mini-invasive (MIS) où la perception de profondeur est perdue et le champ visuel est réduit. Pour cette raison, l'évaluation de l'habileté chirurgicale associée est devenue un point capital dans le processus d'apprentissage en médecine. Des problèmes évidents de subjectivité apparaissent dans la formation des médecins, selon l'instructeur. De nombreuses études et rapports de recherches concernent le développement de techniques automatisées d'évaluation du geste. La première partie du travail présenté dans cette thèse introduit une nouvelle méthode de classification de gestes médicaux 3D reposant sur des modèles cinématiques et biomécaniques. Celle-ci analyse de manière qualitative mais aussi quantitative les mouvements associés aux tâches effectuées. La classification du geste est réalisée en utilisant un paramétrage reposant sur la longueur d'arc pour calculer la courbure pour chaque trajectoire. Les avantages de cette approche sont l'indépendance du temps, un système de repérage absolu et la réduction du nombre de données. L'étude inclue l'analyse expérimentale de plusieurs gestes, obtenus avec plusieurs types de capteurs et réalisés par différents sujets. La deuxième partie de ce travail se concentre sur la classification reposant sur les données cinématiques et dynamiques. En premier lieu, une expression empirique, entre la géométrie du mouvement et les données cinématiques, sert à calculer une nouvelle variable appelée vitesse affine. Les expériences conduites dans ce travail de thèse montrent la nature constante de cette grandeur lorsque les gestes médicaux sont simples et identiques. Une dernière technique de classification a été implémentée en utilisant un calcul de l'énergie utilisée au cours de chaque segment du geste. Cette méthode a été validée expérimentalement en utilisant six caméras et un laparoscope instrumenté. La position 3-D de l'extrémité de l'effecteur a été enregistrée, pour plusieurs participants, en utilisant le logiciel OptiTrack Motive et des marqueurs réfléchissants montés sur le laparoscope. Les mesures de force et de couple, d'autre part, ont été acquises à l'aide des capteurs fixés sur l'outil et situés entre la pointe et la poignée de l'outil afin de capturer l'interaction entre le participant et le matériau manipulé. Les résultats expérimentaux présentent une bonne corrélation entre les valeurs de l'énergie et les compétences chirurgicales des participants impliqués dans ces expériences. / One of the most difficult tasks in surgical education is to teach students what is the optimal magnitude of forces and torques to guide the instrument during operation. This problem becomes even more relevant in the field of Mini Invasive Surgery (MIS), where the depth perception is lost and visual field is reduced. In this way, the evaluation of surgical skills involved in this field becomes in a critical point in the learning process. Nowadays, this assessment is performed by expert surgeons observation in different operating rooms, making evident subjectivity issues in the results depending on the trainer in charge of the task. Research works around the world have focused on the development of the automated evaluation techniques, that provide an objective feedback during the learning process. Therefore, first part of this thesis describe a new method of classification of 3D medical gestures based on biomechanical models (kinematics). This new approach analyses medical gestures based on the smoothness and quality of movements related to the tasks performed during the medical training. Thus, gesture classification is accomplished using an arc length parametrization to compute the curvature for each trajectory. The advantages of this approach are mainly oriented towards time and location independence and problem simplification. The study included several gestures that were performed repeatedly by different subjects; these data sets were acquired, also, with three different devices. Second part of this work is focused in a classification technique based on kinematic and dynamic data. In first place, an empirical expression between movement geometry and kinematic data is used to compute a different variable called the affine velocity. Experiments carried out in this work show the constant nature of this feature in basic medical gestures. In the same way, results proved an adequate classification based on this computation. Parameters found in previous experiments were taken into account to study movements more complex. Likewise, affine velocity was used to perform a segmentation of pick and release tasks, and the classification stage was completed using an energy computation, based on dynamic data, for each segment. Final experiments were performed using six video cameras and an instrumented laparoscope. The 3-D position of the end effector was recorded, for each participant, using the OptiTrack Motive Software and reflective markers mounted on the laparoscope. Force and torque measurements, on the other hand, were acquired using force and torque sensors attached to the instrument and located between the tool tip and the handle of the tool in order to capture the interaction between participant and the manipulated material. Results associated to these experiments present a correlation between the energy values and the surgical skills of the participants involved in these experiments.
|
Page generated in 0.0272 seconds