• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • Tagged with
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structural and magnetic properties of ultrathin Fe3O4 films: cation- and lattice-site-selective studies by synchrotron radiation-based techniques

Pohlmann, Tobias 19 August 2021 (has links)
This work investigates the growth dynamic of the reactive molecular beam epitaxy of Fe3O4 films, and its impact on the cation distribution as well as on the magnetic and structural properties at the surface and the interfaces. In order to study the structure and composition of Fe3O4 films during growth, time-resolved high-energy x-ray diffraction (tr-HEXRD) and time-resolved hard x-ray photoelectron spectroscopy (tr-HAXPES) measurements are used to monitor the deposition process of Fe3O4 ultrathin films on SrTiO3(001), MgO(001) and NiO/MgO(001). For Fe3O4\SrTiO3(001) is found that the film first grows in a disordered island structure, between thicknesses of 1.5nm to 3nm in FeO islands and finally in the inverse spinel structure of Fe3O4, displaying (111) nanofacets on the surface. The films on MgO(001) and NiO/MgO(001) show a similar result, with the exception that the films are not disordered in the early growth stage, but form islands which immediately exhibit a crystalline FeO phase up to a thickness of 1nm. After that, the films grown in the inverse spinel structure on both MgO(001) and NiO/MgO(001). Additionally, the tr-HAXPES measurements of Fe3O4/SrTiO3(001) demonstrate that the FeO phase is only stable during the deposition process, but turns into a Fe3O4 phase when the deposition is interrupted. This suggests that this FeO layer is a strictly dynamic property of the growth process, and might not be retained in the as-grown films. In order to characterize the as-grown films, a technique is introduced to extract the cation depth distribution of Fe3O4 films from magnetooptical depth profiles obtained by fitting x-ray resonant magnetic reflectivity (XRMR) curves. To this end, x-ray absorption (XAS) and x-ray magnetic circular dichroism (XMCD) spectra are recorded as well as XRMR curves to obtain magnetooptical depth profiles. To attribute these magnetooptical depth profiles to the depth distribution of the cations, multiplet calculations are fitted to the XMCD data. From these calculations, the cation contributions at the three resonant energies of the XMCD spectrum can be evaluated. Recording XRMR curves at those energies allows to resolve the magnetooptical depth profiles of the three iron cation species in Fe3O4. This technique is used to resolve the cation stoichiometry at the surface of Fe3O4/MgO(001) films and at the interfaces of Fe3O4/MgO(001) and Fe3O4/NiO. The first unit cell of the Fe3O4(001) surface shows an excess of Fe3+ cations, likely related to a subsurface cation-vacancy reconstruction of the Fe3O4(001) surface, but the magnetic order of the different cation species appears to be not disturbed in this reconstructed layer. Beyond this layer, the magnetic order of all three iron cation species in Fe3O4/MgO(001) is stable for the entire film with no interlayer or magnetic dead layer at the interface. For Fe3O4/NiO films, we unexpectedly observe a magnetooptical absorption at the Ni L3 edge in the NiO film corresponding to a ferromagnetic order throughout the entire NiO film, which is antiferromagnetic in the bulk. Additionally, the magnetooptical profiles indicate a single intermixed layer containing both Fe2+ and Ni2+ cations.
2

Abbildung von Graphen und CaF2 (111) mittels hochauflösender Nicht-Kontakt-Rasterkraftmikroskopie

Temmen, Matthias 10 January 2017 (has links)
Nach der Entwicklung des Nicht-Kontakt-Rasterkraftmikroskops (NC-AFM) konnten dessen Leistung, Empfindlichkeit und Anwendungsmöglichkeiten deutlich gesteigert und somit neue grundlegende physikalische Eigenschaften von Festkörperoberflächen mit hoher Auflösung und Präzision untersucht werden. Dabei gibt es jedoch immer wieder neue Errungenschaften, die die Technik noch weiter verbessern können – sei es auf dem Gebiet der Signalverarbeitung, der -detektion oder der prinzipiellen Funktionsweise des Mikroskops. So wird in der vorliegenden Arbeit das theoretische Verständnis der Regelkreise und des Rauschverhaltens des NC-AFMs im Messbetrieb verbessert. Die Regelkreise verhalten sich – anders als im freischwingenden System – in Wechselwirkungsnähe mit der Probe hochgradig dynamisch, sodass die ursprünglich gewählten Parameter der Regelkreise sich nicht eins zu eins auf den echten Messbetrieb übertragen lassen und suboptimale Einstellungen die Bildqualität dadurch beeinträchtigen können. Mithilfe der korrekten Modellierung der Regelkreise in Probennähe kann diese Störquelle nun minimalisiert werden, was durch experimentell bestimmte Spektren bestätigt wird. Bei der Exfoliation von Graphen auf CaF2 an der Raumluft werden Wassermoleküle eingeschlossen, die nicht durch Heizen entfernt werden können, ohne dass das Graphen Blasen schlägt und reißt. Unterschiedliche Mengen an Wasser zwischen den Graphenflocken und dem Substrat haben einen großen Einfluss auf das elektrische Kontaktpotenzial, das mithilfe der Kelvin-Sonden-Kraftmikroskopie vermessen werden kann. Ergebnisse der Kapitel sind die berechnete Adhäsionsenergie von Graphen auf CaF2, inwieweit das Wasser das Graphen dotieren kann und die Erklärung des großen Unterschieds des Kontaktpotenzials.
3

Praseodymia on non-passivated and passivated Si(111) surfaces

Gevers, Sebastian 04 July 2011 (has links)
In the presented thesis thin praseodymia films on non-passivated and passivated Si(111) substrates were investigated. The first part deals with PDA of praseodymia films with fluorite structure under UHV conditions in the temperature region from RT to 600°C. Here, a sophisticated model of the annealing process of praseodymia films is established. This is done by detailed analysis of XRD measurements using the kinematic diffraction theory in combination with the analysis of GIXRD, XRR and SPA-LEED measurements. It is shown that the untreated films, which are oxidized in 1 atm oxygen to obtain fluorite structure, do not exhibit pure PrO2 stoichiometry as it was assumed before. Instead, they decompose into two laterally coexisting species exhibiting a PrO2 and a Pr6O11. oxide phase, respectively. These species are laterally pinned to the lattice parameter of bulk Pr6O11. Homogeneous oxide films with Pr6O11 phase can be observed after annealing at 100°C and 150°C. Here, lateral strain caused by the pinning of the species is minimized and an increase of the crystallite sizes is determined. If higher annealing temperatures are applied, the film decomposes again into two coexisting species. Finally, after annealing at 300°C, a mixed crystalline film with both Pr2O3 and Pr2O3+Delta oxide phases is formed, where Delta denotes a considerable excess of oxygen within the sesquioxide phase. Again the lateral strain increases due to the tendency of praseodymia phases to increase their lattice parameters during oxygen loss combined with the lateral pinning. This is accompanied by a decrease of crystallite sizes, which are afterwards comparable to those of the untreated films. Further annealing at temperatures above 300°C does not significantly change the structure of the oxide film. However, the increase of the amorphous Pr-silicate interface between Si substrate and oxide at the expense of the crystalline oxide can be observed after annealing at higher temperatures. Furthermore, an increased mosaic spread of the crystallites occurs, which reduces the lateral strain caused by the oxygen loss. Nevertheless, the crystalline structure is stable against further annealing up to temperatures of 600°C. Transportation of the sample under ambient conditions after annealing at 200°C and 300°C leads to the formation of an additional crystalline structure at the surface which cannot be allocated to any praseodymia phase and may be explained by the contamination of the topmost crystalline layers with Pr-hydroxides. The results obtained from praseodymia films annealed in 1 atm nitrogen show that these films are good candidates to form homogeneous oxide films with pure cub-Pr2O3 structure by subsequent annealing in UHV. Here, a single oxide species is already observed after annealing at 300°C by SPA-LEED measurements which is in contrast to praseodymia films with fluorite structure where higher annealing temperatures (600°C) are necessary. In this case, negative effects like interface growth or increased defect density (mosaics, grain boundaries) can be minimized. Investigations on oxygen plasma-treated praseodymia films to obtain pure PrO2 stoichiometry are presented in the second part. Oxygen plasma-treated samples are compared with samples oxidized in 1 atm oxygen regarding the structure of the crystalline film. For this purpose, XRR and XRD measurements are performed to get structural information of the oxide film, which can be used to identify the corresponding oxide phases. Here, significantly smaller lattice constants of the crystalline oxide species can be observed after plasma treatment, which points to the incorporation of additional oxygen atoms. This verifies former studies, where a higher oxidation state of the oxide film was found by XPS measurements and it shows that plasma-treated films exhibit a higher oxidation state than films oxidized in 1 atm oxygen due to the availability of reactive atomic oxygen in the plasma. Furthermore, the Pr-silicate interface between crystalline film and Si substrate is not increased during plasma treatment. In the last part of the presented thesis, first results from the epitaxy of praseodymia films on Cl-passivated Si substrates are shown. The aim is to suppress the Pr-silicate formation during the growth process. Thus, praseodymia films are grown on passivated and non-passivated substrates to compare the crystallinity of both samples using XSW and LEED measurements. The structure of the oxide films on Cl-passivated Si is determined afterwards by XRR. It is shown that crystalline films with cub-Pr2O3 structure and several nanometer thickness can be successfully grown on Cl-passivated substrates. Here, the Pr-silicate interface layer are restricted to a single mono-layer. In contrast, the films grown on non-passivated substrates are completely amorphous containing Pr-silicates and Pr-silicides.
4

Phase transitions of rare earth oxide films grown on Si(111)

Wilkens, Henrik 21 March 2014 (has links)
In this work the structural transitions of the rare earth oxides praseodymia and ceria grown on Si(111) are investigated. It is demonstrated that several of the rare earth intermediate phases can be stabilizied by post deposition annealing in ultra high vacuum. However, in most cases no single phased but coexisting species are observed. In addition, the surface structure and morphology of hex-Pr2O3(0001) as well as reduced ceria films are investigated.
5

Structure and morphology of ultrathin iron and iron oxide films on Ag(001)

Bruns, Daniel 21 November 2012 (has links)
This work investigates the initial growth of iron and iron oxides on Ag(001). Surface structure and morphology of both post deposition annealed Fe films (in UHV and O2 atmosphere) as well as reactive grown iron oxide films will be analyzed in detail by low energy electron diffraction (LEED) and scanning tunneling microscopy (STM). The stoichiometry at the surface of the iron oxide films will be determined by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). The main focus of this work is to shed light on the question whether the growth of iron oxide films on Ag(001) is accompanied by the formation of strain reducing dislocation networks, or superstructures as found for other metal substrates in former studies. Here, we will distinguish between Fe films which were post deposition annealed in a thin O2 atmosphere and reactively grown iron oxide films.
6

Rasterkraftmikroskopie an dünnen organischen und metall/organischen Schichten auf Siliziumoxid

Reiniger, Michael 18 May 2001 (has links)
Diese Arbeit beschäftigt sich mit der Herstellung von organischen selbstorganisierenden (Sub-)Monolagen (sog. SAM s) auf Siliziumoxid und deren Metallisierung. Die characteristischen Strukturen dieser Oberflächen sind mit der Rasterkraftmikroskopie (RKM) untersucht worden. Im präparativen Abschnitt wird die Abscheidung des SAM (Octadecyltrichlorosilan (OTS)) in einer Toluol/Wasserlösung auf eine Siliziumoxidoberfläche und deren anschließendem lateralen Erscheinungsbild (als Octadecylsiloxan ODS) beschrieben. Die Submonolagen des ODS auf dem Oxid erscheinen in den Topografiebildern des RKM s als eine Art Insellandschaft . Diese Modellstrukturen mit stark unterschiedlicher Oberflächeneigenschaften sind in dem methodischen Teil der Arbeit unter verschiedenen äußeren Bedingungen untersucht worden. Neben der Lateralkraft (Kontakt-Modus) und der Dämpfung (dyn. Nichtkontakt-Modus) stand hier die Kontrastentstehung der Topografie im RKM im Vordergrund. Im Gegensatz zu der theoretischen Länge des ODS-Moleküls wurde eine geringere Höhe des adsorbierten Moleküls gemessen. Im zweiten Teil dieser Arbeit wurde untersucht, wie die ODS-(Unter)Struktur das Wachstum aufgedampfter Metallschichten beeinflusst. Die Ergebnisse der Evaporation mit Silber und Eisen ergaben zum Teil überraschende Ergebnisse. Frisch aufgedampfte Filme ließen die Unterstruktur anhand der Größe der Metallcluster erkennen, wobei das Silber auf ODS größere Cluster bildete als Eisen auf ODS. Nach einer Temperaturbehandlung unterscheiden sich die Systeme sehr stark, im Falle des Fe-Substrates invertierte sich der Kontrast der Topografie.
7

X-ray analysis of praseodymia

Weisemöller, Thomas 11 November 2009 (has links)
In this thesis, it was shown that thin films of hexagonal praseodymium sesquioxide on Si(111) can be transformed to B-oriented twin free films of cubic praseodymium dioxide with oxygen vacancies by post deposition annealing in 1 atm. oxygen at temperatures from 300°C up to 700°C for 30 minutes. Films annealed at 100°C and 200°C are still purely hexagonal praseodymium sesquioxide after the annealing process. In the transformed films, two stoichiometric phases coexist laterally. The lateral lattice constant of both species is almost identical to the one of the originally deposited hexagonal praseodymium sesquioxide. Therefore, we assume that the lateral lattice constant is pinned throughout the oxidation process.The species are hence strained and show different vertical lattice constants, depending on the amount of oxygen vacancies. In some samples, those vacancies were partly ordered vertically, leading to a unit cell twice as large as expected for stoichiometric praseodymium dioxide.During the annealing process, an amorphous interfacial layer between substrate and oxide was detected. While the existence of this layer was known before, it was possible for the first time to quantify the thickness of the praseodymium rich part of this interface for epitaxially grown films. It was shown that this layer starts to grow significantly only during post deposition annealing at 500°C or more.These and other results for thin films were connected to previously published data for bulk praseodymia. The multi column model mentioned above for laterally coexisting praseodymia species in thin films was backed up by powder data. As a matter of fact, it was shown that this coexistence of several praseodymia species can be expected to be the rule rather than the exception.Strong evidence was found that results interpreted previously as stoichiometric cubic praseodymium sesquioxide contain more oxygen than originally thought...
8

Investigation of the growth process of thin iron oxide films: Analysis of X-ray Photoemission Spectra by Charge Transfer Multiplet calculations

Suendorf, Martin 19 December 2012 (has links)
Thin metallic films with magnetic properties like magnetite are an interesting material in current technological applications. In the presented work the iron oxide films are grown by molecular beam epitaxy on MgO(001) substrates at temperatures between room temperature and 600K. The film and surface structure are investigated by x-ray reflectometry (XRR), x-ray diffraction (XRD) and low energy electron diffraction (LEED). The chemical properties are investigated by x-ray photoelectron spectroscopy (XPS). Furthermore, charge transfer multiplet (CTM) calculations are performed as a means to gain additional information from photoemission spectra. It is shown that only for temperatures higher than 500K the oxide film forms a spinel structure. A previously unobserved (2x1) surface reconstruction in two orthogonal domains is found for various preparation conditions. The application of CTMs results in good quantitative and qualitative agreement to other methods for the determination of the film stoichiometry. In addition CTMs can well describe the segregation of Mg atoms into the oxide film either during film growth or during film annealing. It is found that initially Mg substitutes Fe on all possible lattice sites, only for prolonged treatment at high temperature do Mg atoms favour the octahedral lattice sites of divalent Fe.

Page generated in 0.0167 seconds