• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 372
  • 133
  • 78
  • 44
  • 31
  • 19
  • 12
  • 10
  • 9
  • 8
  • 4
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 840
  • 444
  • 85
  • 74
  • 69
  • 64
  • 60
  • 59
  • 54
  • 54
  • 52
  • 52
  • 49
  • 47
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
351

Ablation Modeling Of Thermal Protection Systems Of Blunt-nosed Bodies At Supersonic Flight Speeds

Simsek, Bugra 01 February 2013 (has links) (PDF)
The objective of this thesis is to predict shape change due to ablation and to find temperature distribution of the thermal protection system of a supersonic vehicle under aerodynamic heating by using finite element method. A subliming ablative is used as thermal protection material. Required material properties for the ablation analyses are found by using DSC (Differential Scanning Calorimetry) and TGA (Thermogravimetric Analysis) thermal analysis techniques. DSC is a thermal analysis technique that looks at how a material&#039 / s specific heat capacity is changed by temperature and TGA is a technique in which the mass of a substance is monitored as a function of temperature. Moreover, oxyacetylene ablation tests are conducted for the subliming ablative specimens and measured recession values are compared with the analytically calculated values. Maximum difference between experimental results and analytical results is observed as 3% as seen in Table 7. For the finite element analyses, ANSYS Software is used. A numerical algorithm is developed by using programming language APDL (ANSYS Parametric Design Language) and element kill feature of ANSYS is used for simulation of ablation process. To see the effect of mesh size and time step on the solution of analyses, oxyacetylene test results are used. Numerical algorithm is also applied to the blunt-nosed section of a supersonic rocket which is made from subliming ablative material. Ablation analyses are performed for the nose section because nose recession is very important for a rocket to follow the desired trajectory and nose temperature is very important for the avionics in the inner side of the nose. By using the developed algorithm, under aerodynamic heating, shape change and temperature distribution of the nose section at the end of the flight are obtained. Moreover, effects of ablation on the trajectory of the rocket and on the flow around the rocket are examined by Missile DATCOM and CFD (computational fluid dynamics) analysis tools.
352

A cost-utility analysis of liver resection for malignant tumours: a pilot project

McKay, Michael Andrew 08 March 2006 (has links)
This is a prospective, non-randomized pilot study comparing the cost-utility of hepatic resection, radiofrequency ablation (RFA), systemic chemotherapy, and symptom control only for the treatment of colorectal liver metastases. Seven patients underwent hepatic resection, 7 underwent RFA, 20 received chemotherapy, and 6 received symptom control alone. Liver resection provided an average of 2.51 QALY’s compared to 1.99 QALY’s for RFA, and 1.18 QALY’s for chemotherapy, and 0.82 QALY’s for symptom control alone. The costs were $20,122, $ 15,845, $15,069, and $3,899, respectively. The cost-utilities of liver resection and RFA were similar at $8,027 and $7,965 per QALY, respectively, although patients receiving RFA generally had more advanced disease. The cost-utility of chemotherapy was $12,751/QALY and the cost-utility of symptom control alone was $4,788/QALY. RFA is still a relatively new. However, if long-term survival proves promising, it may prove to be a viable alternative to liver resection. / May 2006
353

Synthèse de nanoparticules par ablation laser en liquide et étude de leurs propriétés optiques

Diouf, Mouhamed 25 October 2012 (has links) (PDF)
De nombreux domaines, tels que le biomédical, la micro-fluidique ou l'optique quantique, sont demandeurs de nanoparticules présentant des propriétés optiques spécifiques. L'ablation laser en liquide, PLAL (Pulsed Laser Ablation induced in Liquid) est une méthode de synthèse permettant d'élaborer rapidement des nanoparticules dans une large gamme de matériaux, et donc de tester la conservation ou la modification des propriétés optiques originales identifiées dans certains matériaux lorsque l'on passe aux tailles nanométriques (scintillation, thermoluminescence, photo-stimulation, haut rendement de luminescence...). Dans ce travail de thèse la synthèse, la caractérisation optique et structurale de nanoparticules dopées a été développé. Différents types de matériaux ont été testés dont l'oxyde de gadolinium dopé, l'yttrium aluminium garnet (YAG), l'alumine etc. Cela a permis de montrer la faisabilité et la potentialité de cette technique d'élaboration sur différents matériaux. Par ailleurs un outil de diagnostic du plasma par spectroscopie optique résolue en temps a été mis en place afin de comprendre les processus des croissances des particules formées.
354

Früh- und Langzeitergebnisse der chirurgischen Vorhofflimmerablation mittels verschiedener Energiequellen begleitend zur koronaren Bypass-Operation

Badel, Kristin 02 October 2013 (has links) (PDF)
Die hier vorliegende Studie stellt die Früh- und Langzeitergebnisse der chirurgischen Vorhofablation zur Behandlung des ischämischen Vorhofflimmerns (VHF) in Kombination mit einer aortokoronaren Bypass-Anlage vor. Dabei wurden die epikardiale Pulmonalvenenisolation mittels Radiofrequenzenergie (RF) und die endokardiale Kryoablation inklusive einer Box-Läsion und Mitralisthmuslinie miteinander verglichen. Im Zeitraum von 2002 bis 2009 wurden die prä- und postoperativen Daten von 262 Patienten mit paroxysmalem oder lang-persistierendem VHF prospektiv erhoben und anschließend eine Nachbeobachtung von durchschnittlich 2,30 Jahren durchgeführt. Die Kryoablation war im Vergleich zur RF-Ablation mit einer signifikant höheren perioperativen Invasivität und Morbidität verbunden. Die Operations- und Ischämiezeit sowie die postoperative intensivmedizinische Betreuung waren nach der Kryoablation signifikant länger. Die Rate an Schrittmacherimplantationen (4,8 % vs. 0,0 %), kardialen bzw. zerebralen Komplikationen (22,9 % vs. 12,3 %) und die Krankenhausmortalität (8,4 % vs. 2,2 %) lagen ebenfalls signifikant höher. Hingegen waren die Langzeitergebnisse ohne signifikante Unterschiede zwischen den Ablationsmethoden. Sowohl das Überleben (81,9 % vs. 86,0 %) als auch die Konversionsrate in den Sinusrhythmus (55,6 % vs. 61,5 %), die Lebensqualität der Patienten und die Komplikations- und Reinterventionsraten zeigten im Langzeitverlauf vergleichbare Ergebnisse. Auf der Basis der oben erhobenen Befunde kann die endokardiale Kryoablation nicht als Standardverfahren zur Therapie des paroxysmalen und lang-persistierenden ischämischen VHFs begleitend zu einer aortokoronaren Bypass-Anlage empfohlen werden. Die epikardiale RF-Ablation ist hier aufgrund der geringeren operativen Invasivität bei vergleichbaren Früh- und Langzeitergebnissen der endokardialen Ablation vorzuziehen.
355

Early stage sintering and PLAL fragmentation of micro-scale CaCO3

Lin, Peng-Wen 04 July 2012 (has links)
In the first part of this thesis, CaCO3 (calcite) powder ball-milled to micro/nano scale were subjected to isothermal firing in the temperature range of 450-600 ¢XC in an open air furnace in order to study specific-surface area reduction as a result of early-stage sintering/coarsening/coalescence/repacking (denoted as SCCR process) of the fine particles. The surface area and pore size distributions were obtained from the BET and BJH methods, respectively. The H1 type adsorption/desorption hysteresis loop of the type IV isotherm was used as an indicator of cylindrical pore formation upon dry pressing and firing of the powder. The apparent activation energy for the onset SCCR of the dry-pressed calcite powder turned out to be 57.5¡Ó1.0 kJ/mol based on t0.5, i.e. time for 50 % specific surface area reduction. The minimum temperature for such an incipient SCCR process was estimated to be 590K (317¢J) by extrapolating the specific-surface-area reduction rate to null. The mechanism of specific surface area change includes the Brownian motion, coarsening and coalescence/repacking of calcite particles besides sintering via synchronizing diffusion of calcium ion and carbonic acid ion along grain surface and boundary. In the second part of this thesis, pulsed laser ablation on micrometer-sized calcite (type I) powder in liquid H2O (PLAL) was conducted to study the structure and optical property change of calcium carbonate under a dynamic high-temperature. high-pressure aqueous condition. X-ray diffraction (XRD) indicated the fragmented calcite I powder via such a PLAL process change predominantly into a metastable CaCO3 II phase presumably by a displacive type transformation from calcite I and/or nucleated from atom clusters. The refined XRD lattice parameters indicate a significant internal compressive stress (up to 1.5 GPa) was retained for the predominant CaCO3 II nanoparticles having well-developed (013), (010) and (013) faces as revealed by transmission electron microscopy (TEM). Minor calcium carbonate nanoparticles were also identified by TEM to be other high-pressure polymorphs (type III and aragonite), hydrated (monohydrocalcite, ikaite), amorphized (amorphous calcium carbonate), and even decomposed as cubic lime (CaO). Monohydrocalcite occasionally occurred as epitaxial intergrowths within the predominant CaCO3 II matrix. Vibrational spectroscopy (Raman and FTIR) indicated the structure units of the overall nanoparticles by the PLAL process were considerably modified as a combined results of size miniature, protonation and internal compressive stress. The UV-visible absorption results further indicate that the minimum band gap of the colloidal solution was narrowed down to ca. 5 eV and 3 eV for the predominant CaCO3 II and minor accessory phases, respectively, thus shedding light on their potential opto-catalytic applications.
356

Acidic dissolution of apatite and laser ablation condensation of SnO2-NiO

Tseng, Wan-Ju 18 July 2006 (has links)
This thesis is about the kinetics of anisotropic acidic/hydrothermal dissolution of apatite bulk single crystal vs. nanorods, and the kinetic phase change of dense nanocondensates of SnO2 vs. Ni-dissolved SnO2 prepared by laser ablation condensation technique. In the first regard, directional dissolution of a natural (OH,F,Cl)-bearing apatite has been studied at various solution pH values (0~3) and 30 oC. This apatite showed abnormally high O-H stretching frequencies due to the substitution of Cl for OH. The advance of dissolution front indicated that steady-state directional dissolution for pH = 0-2 followed an apparent rate law of rate(mole / m2h)¡×kaH+n, where the rate constants (k) are 2.15 and 1.61; and the rate orders (n) are 1.44 and 1.30 for [0001] and <11 0> directions, respectively. Previous study, however, indicated a smaller n value (n = 0.55~0.70) for fluorapatite powders at higher pHs. A nonlinear pH dependence of logarithmic dissolution rate at a wide pH range implied that the surface active sites and/or rate-determining steps have changed when the acidity of solution and/or the composition of the apatite were changed. The opening of etch pits on basal planes further indicated that the dissolution rates along the three principal directions have the following relationship: [0001] > <11-20> > <10-10> for pH=0-1, but the order was reversed for pH > 3. As a comparison, static immersion of needle-like hydroxyapatite nanoparticles in neutral hydrothermal solution at 100oC caused preferential dissolution along the crystallographic c-axis to form nanorods with a lower aspect ratio. The anisotropic dissolution behavior is due to diffusion-controlled rapid dissolution at the sharp tip, and interface-controlled dissolution at side surfaces in terms of active sites. Extensive dissolution was accompanied with amorphization via explosive generation of dislocations, forming corrugated surface with both negative and positive curvature regions. The amorphous residue was significantly Ca and OH depleted when treated in the hydrothermal solution at pH=3. The BET specific surface area of the apatite nanoparticles remained 45¡Ó1 m2/g after immersion in neutral solution at 100oC for 36 h, but drastically decreased to 24.5 m2/g in acidic (pH =3) solution at 100oC for 8 h due to coalescence of the partially amorphized apatite powders. The specific surface area and average pore size also remained nearly unchanged for the dry pressed powders subject to firing at 100oC, but decreased and increased, respectively when sintered shortly at 600oC in air. BJH measurements at 77 K indicated the N2 adsorption/desorption hysteresis loops shift toward high relative pressure for sintered/hydrothermally etched powders indicating a higher activation energy of forming overlain liquid-like nitrogen layers. This can be attributed to a lower surface energy of the powders due to their shape change and/or partial amorphization. Alternatively, desorption through cavitation via the small voids could occur, in particular for such treated samples with characteristic bimodal pore size distribution. In the second subject, dense SnO2 with fluorite-type related structures were synthesized via very energetic Nd-YAG laser pulse irradiation of oxygen-purged Sn target. Combined effects of rapid heating to very high temperatures, nanophase effect, and dense surfaces account for the condensation of fluorite-type structure which transformed martensitically to baddeleyite-type accompanied with twinning, commensurate shearing and shape change. Alternatively Pa-3-modified fluorite-type hardly survived transformation to a-PbO2 type and rutile type in the dynamic process analogous to the case of static decompression. In addition, the rutile-type SnO2 nanocondensates have {110}, {100} and {101} facets, which are beneficial for {~hkl} vicinal attachment to form edge dislocations, faults and twinned bicrystals. The {011}-interface relaxation, by shearing along <011> directions, accounts for a rather high density of edge dislocations near the twin boundary thus formed. The rutile-type SnO2 could be alternatively transformed from orthorhombic CaCl2-type structure (denoted as o) following parallel crystallographic relationship, (0 1)r//(0 1)o; [111]r//[111]o, and full of commensurate superstructures and twins parallel to (011) of both phases. Furthermore, SnO2-NiO solid solution (ss) condensates were fabricated by laser ablation on Ni-Sn target at 1.1 J/pulse and oxygen flow of 50 L/min. AEM observations indicated that the particles were more or less coalesced/agglomerated as nano chain aggregate or in close packed manner. The Ni-rich condensates have rock salt structure with defect clusters not in paracrystalline distribution as would otherwise develop into the spinel phase. The Sn-rich condensates are predominantly rutile-type with minor baddeleyite-type, which are vulnerable to martensitic transformation/relaxation to form {101} incommensuare faults as well as epitaxial twin variants of rutile upon rapid cooling and/or electron irradiation. Islands of metallic Ni-Sn-NiSn were partially oxidized/solidified when deposited on silica glass.
357

none

Tsai, Meng-Hsiu 17 July 2002 (has links)
none
358

Studies of rare earth oxidation reactions by laser ablation techniques and emission spectroscopy.

Huang, Tzu-Tsang 29 July 2002 (has links)
none
359

Pulsed laser ablation condensation of ZnO/Zn for artificial epitaxy and subsequence {hkil}-specific VLS growth

Huang, Bang-Hao 29 July 2008 (has links)
Wurtzite (W)-type ZnO condensates showed preferred orientation {10 1} when deposited on glass substrate by pulsed laser ablation on Zn target in the presence of oxygen. Such an artificial epitaxy depends on the well developed {10 1} surfaces of the condensates, which enabled {10 1}-specific coalescence to form twin and single crystal regardless of the co-deposited Zn. The W-ZnO condensates have decreasing particle size with increasing oxygen flow rate and a considerable residual stress due to the combined effects of rapid heating/cooling and thermal/lattice mismatch with Zn following parallel epitaxy or (01 )W-ZnO//(01 0)Zn; [ 2 3]W-ZnO//[0001]Zn involving {10 1} slip (Part I). In addition, wurtzite (W)-type ZnO/Zn composite deposit with preferred orientation {10 1}W-ZnO and (0001)Zn respectively on glass substrate in chapter I under Isothermal (600oC) atmospheric annealing caused self-catalyzed vapor-liquid-solid growth of rod-like W-ZnO whiskers with unusual habit. Analytical electron microscopic observations indicated that the W-ZnO whiskers extend along the zone axis of the well-developed polar surfaces {10 1} for a beneficial lower electrostatic energy and surface energy. Alternatively, the whiskers extend via {11 1}-specific growth twinning and/or coalescence twinning for a beneficial fair coincidence-site lattice at the twin boundary (Part II). Furthermore, Zn particulates overlain with wurtzite (W)-type ZnO condensates having nearly orthogonal {10 1} and {11 1} facets were found to self-catalyze unusual tapered W-ZnO whiskers upon isothermal atmospheric annealing, i.e. thermal oxidation, at 600oC. Analytical electron microscopic observations indicated that such whiskers formed tapered slabs having mosaic {10 1} and {2 1} twinned domains. The tapered whiskers can be rationalized by unconventional vapor-liquid-solid growth, i.e. {hkil}-specific coalescence twinning growth from the ZnO condensates taking advantage of a partially molten bottom source of Zn and the adsorption of atoms at the whisker tips and steps under the influence of capillarity effect (Part III). Finally, Electron irradiation of nano-size wurtzite (W)-type ZnO condensates with intimate mixture of parallel epitaxial Zn caused {10 1}W slip to form a single domain of rock salt (R)-type core and W-type shell. The two polymorphs follow (1 1)R//(0 11)W; [011]R//[ 2 3]W, i.e. chair type Peierls distortion with additional 38 degree tilting (001)R along the ( 2 0)W plane for a fair match of (10 1)W/(1 1)R, the same as one of the two paths for the back-transformation of R-ZnO into a lower crystal symmetry. The martensitic nucleation of R-type ZnO can be attributed to dynamic migration of interstitials/vacancies, lattice mismatch stress, and capillarity effect.
360

Physical enhancement of transdermal drug delivery: polysaccharide dissolving microneedles and micro thermal skin ablation

Lee, Jeong Woo 07 April 2009 (has links)
Transdermal drug delivery system has been limited to small and lipophilic drugs because skin has the intrinsic function to protect the body preventing entry of the external species into the body. In this thesis, two physical methods were studied to overcome the skin barrier in the controlled breakage of the skin barrier and to deliver macromolecules-based drugs through the skin; (1) polysaccharide dissolving microneedles and (2) micro thermal skin ablation. Polysaccharide dissolving microneedles system was designed to break the skin barrier in a minimized size with the mechanically poor material, to release them into skin with the dissolution of microneedles, and to deliver human growth hormone into the living hairless rats. Micro thermal skin ablation was designed to fabricate the device generating the energy impact with the basis of arc discharge, to transfer the energy impact on the skin, to remove stratum corneum selectively with three-dimensionally controlled manner, and to deliver hydrophilic macromolecules through skin.

Page generated in 0.0155 seconds