81 |
Etude biochimique comparative des "Actin Depolymerizing Factors"(ADFs) d'Arabidopsis : activité inattendue de pontage des filaments d'actine pour les ADFs appartenant à la sous-classe III / Comparative biochemical analysis of Arabidopsis Actin-Depolymerizing Factors (ADFs) : unexpected actin-crosslinking activity for subclass III ADFsTholl, Stéphane 02 March 2012 (has links)
L'organisation et la dynamique du cytosquelette d'actine sont finement régulées par une multitude de "actin-binding proteins" (ABPs). Parmi ces dernières, les ADFs (actin-depolymerizing factors) jouent un rôle majeur dans le turnover des filaments d'actine en induisant leur découpage et en facilitant leur dépolymérisation. Arabidopsis thaliana possède 11 protéines ADFs fonctionnelles qui peuvent être classées en 4 sous-classes sur la base de leur profil d'expression et liens phylogénétiques. Nous démontrons que l’ADF5 et l’ADF9 de la sous-classe III sont des ADFs atypiques puisqu’elles n’induisent pas la dépolymérisation des filaments d’actine. Au contraire, elles montrent une forte capacité à stabiliser et ponter les filaments d’actine en longs câbles in vitro ainsi que in vivo. Nous décrivons la caractérisation d’un nouveau mutant knockout d’Arabidopsis. Les données suggèrent un rôle d’ADF9 dans l’élongation cellulaire. Ainsi, l’hypocotyle est significativement plus long dans les mutants adf9 que dans les plantules sauvages, et ce phénotype est amplifié par des conditions de croissance à l’obscurité dans lesquelles le gène ADF9 est normalement préférentiellement exprimé. L’analyse des cellules épidermiques d’hypocotyle indique que ce phénotype est essentiellement dut à une augmentation de l’élongation cellulaire. De manière surprenante, les plantules mutantes adf9 présentent également des racines plus courtes que les contrôles, suggérant un lien complexe entre l’organisation du cytosquelette d’actine et l’élongation cellulaire. Finalement, la capacité réduite du cal issue des plantules adf9 à proliférer suggère également un rôle d’ADF9 dans la division cellulaire. / Actin cytoskeleton organization and dynamics are tightly regulated by many actin-binding proteins (ABPs). Among ABPs, the actin-depolymerizing factors (ADFs) play a major role in actin filament turnover by promoting actin filament severing and facilitating pointed end depolymerization. Arabidopsis thaliana has 11 functional proteins that can be classified into four subclasses according to their expression profile and phylogenetic relationships. We provide evidence that subclass III ADF5 and ADF9 are unconventional ADFs since they do not display typical actin filament depolymerizing activities. Instead, they exhibit opposite activities with a surprisingly high ability to stabilize and crosslink actin filaments into long and thick actin bundles both in vitro and in live cells. Competition experiments with ADF1 support that ADF9 antagonizes the depolymerizing activity of conventional ADFs. We report the characterization of a not yet described knockout Arabidopsis mutant. Data strongly suggests a role for ADF9 in cell elongation. Indeed, hypocotyls are significantly longer in adf9 mutant than in wild- type seedlings, and this phenotype is enhanced in dark growth conditions in which the ADF9 gene is normally preferentially expressed. The analysis of hypocotyl epidermal cells indicates that this phenotype is essentially due to an increase of cell expansion. Surprisingly, adf9 seedlings exhibit shorter roots than control plants, suggesting a complex link between actin cytoskeleton organization and cell elongation. Finally, the reduced ability of adf9- derived calli to proliferate supports a role for ADF9 in cell division as well.
|
82 |
Analyse fonctionnelle de cIAP1 : identification d'un rôle dans le remodelage du réseau d'actine / CIAP1 functional analysis : a role in actin remodelingMarivin, Arthur 27 February 2012 (has links)
Cellular Inhibitor of Apoptosis Protein 1 (cIAP1) de la famille des IAP (Inhibitor of ApoptosisProtein) est un oncogène à activité E3-ubiquitine ligase. Notre équipe s’intéresse aux processus de différenciation des cellules hématopoïétique. cIAP1 est localisée dans le noyau des précurseurs hématopoïétiques exprimant le marqueur CD34. Lors de leur différenciationnotamment en macrophages ou en cellules dendritiques, cIAP1 est exclue du noyau. L’objectif de ma thèse a été de caractériser de nouvelles fonctions nucléaires et cytoplasmiques de cIAP1. Mes résultats ont contribués à mettre en évidence une fonction nucléaire de cIAP1 dans la régulation du cycle cellulaire via le contrôle du facteur de transcription E2F1. Dans le cytoplasme, cIAP1 est un régulateur de l’activation de la signalisation NF-kB et TNF-α. cIAP1 est un déterminant de la réponse des cellules au TNF-a, favorisant l’activation de NF-kB aux dépens de la mort cellulaire. Le TNF-α est aussi capable de moduler le cytosquelette d’actine et les propriétés morphologiques et migratoires des cellules. Dans les fibroblastes, il induit la formation de fines protrusions membranaires riches en actine appelées filipodes. Mes travaux ont montrés que cIAP1, associée à son partenaire historique TRAF2, régule la formation de ces filipodes. Elle est capable d’interagirdirectement avec la RhoGTPase Cdc42 et de contrôler son activation après un traitement par le TNF- α, mais aussi EGF. De plus, cIAP1 régule aussi la polarisation de l’appareil de Golgi, une fonction spécifiquement attribuée à Cdc42. Cette nouvelle fonction de cIAP1 dans le contrôle de Cdc42 pourrait contribuer aux propriétés oncogéniques de cIAP1 / Cellular Inhibitor of Apoptosis Protein 1 (cIAP1), a IAP family member (Inhibitor of ApoptosisProtein) is an E3 ubiquitin ligase which displays oncogenic properties. The research project of our team is focused on hematopoietic differentiation. cIAP1 is localized in the nucleus of hematopoietic precursors CD34+, and is excluded to the cytoplasm along macrophage and dendritic cell differentiation. The aim of my thesis was to characterize new nuclear and cytoplasmic fonctions of cIAP1. I have contributed to identify a nuclear function of cIAP1 in the regulation of cell cycle through a control of E2F1 transcription factor. In the cytoplasm, cIAP1 is a well-known modulator of NF-kB and TNF-α signaling pathway. It can determine the response of cells to TNF-α, through stimuling the canonical activation of NF-kB and inhibiting cell death. TNF-α can also promote cytoskeleton remodeling which determine morphogenetic properties including morphology or motility. My results suggest a role for cIAP1, when associated its partner TRAF2, in the control of actin rich protrusions called filipodia upon TNF-α stimulation. cIAP1 can interact and control Cdc42 activation, a member of Rho GTPases protein family. cIAP1/TRAF2 appears to control other process controlled by Cdc42 including, filipodia formation in response to EGF, or Golgi polarization. This function of cIAP1 in the control of Cdc42 could contribute to cIAP1 oncogenic properties
|
83 |
Analyse des propriétés oncogéniques de cIAP1 : contribution de ses partenaires cdc42 et E2F1 / cIAP1 oncogenic properties analysis : contribution of its partners cdc42 and E2F1Berthelet, Jean 04 November 2014 (has links)
La protéine cIAP1 (cellular Inhibitor of Apoptosis Protein-1) de la famille des IAP (Inhibitor of Apoptosis Protein) est un oncogène avec une activité E3 ubiquitine ligase. Au cours de la différenciation de nombreux modèles cellulaires (macrophages, cellules dendritiques, cellules épithéliales du colon, cellules souches hématopoïetiques, cardiomyocytes), cIAP1 sort du noyau pour se relocaliser dans le cytoplasme, cette relocalisation étant associée à un arrêt de prolifération. La plupart des fonctions connues de cIAP1 sont liées à sa localisation cytoplasmique où il est un régulateur important des voies de signalisation des récepteurs du TNF-a et de NF-?B. Cependant, cIAP1 est principalement exprimée dans le noyau de différents types cellulaires ce qui n’est pas en accord avec son rôle dans la signalisation cellulaire. Mon travail de thèse a permis d’identifier un rôle de cIAP1 dans la prolifération cellulaire. cIAP1 interagit avec le facteur de transcription E2F1 et favorise son recrutement sur les promoteurs des Cycline E et A impliquées dans les transitions G1/S et G2 du cycle cellulaire, ce qui augmente l’expression des transcrits et des protéines de ces deux cibles. Il semblerait que par cette activité, cIAP1 régule la prolifération des cellules et soit important dans l’équilibre entre la prolifération et la différenciation, deux mécanismes cellulaires étroitement liés. Dans un second travail, nous avons montré que cAIP1 est déterminant dans le remodelage du cytosquelette d’actine en réponse au TNF-a. Dans les fibroblastes, le TNF-a induit la formation de fines protrusions membranaires riches en actine appelées filipodes, cette formation étant régulée par cdc42. Mes travaux ont montrés que cIAP1, associé à son partenaire historique TRAF2, régule la formation de ces filipodes. Il est capable d’interagir directement avec la RhoGTPase Cdc42 et de contrôler son activation après un traitement par le TNF- a, mais aussi par l’EGF. De plus, cIAP1 régule également la transformation oncogénique par HRas en augmentant les propriétés invasives et migratoires des cellules. Ces nouvelles fonctions de cIAP1 pourraient contribuer à ses propriétés oncogéniques. / The inhibitor of apoptosis protein cIAP1 (cellular inhibitor of apoptosis protein-1) from the IAP family (Inhibitor of Apoptosis Protein) is an oncogene with an E3 ubiquitin ligase activity. cIAP1 is relocalized from the nucleus to the cytoplasm during the differentiation of many kind of cellular models (macrophages, dendritic cells, colon epithelial cells, hematopoietic stem cells, cardiomyocytes) and this relocalization is associated with a proliferation arrest. The well-known functions of cIAP1 are associated with its cytoplasmic localization, where it regulates the TNFa receptors and NF-?B signaling pathways. However, cIAP1 is mainly expressed in the nucleus on many cell types which is not in accordance with its cell signalling activity. My work identifies a function of cIAP1 in proliferation regulation. cIAP1 interacts with E2F1 transcription factor and favors its recruitment on Cyclins E and A promoters, both involved in G1/S and G2 phases of the cell cycle, which leads to high level of transcript and protein expression of these two targets. It seems that cIAP1 regulates the cellular proliferation and is important for the balance between proliferation and differentiation, two mechanisms tightly connected in cells. In a second work, we showed that cIAP1 is critical for actin cytoskeleton modification upon TNF-a treatment. In fibroblasts, TNF-a induce filipodia formation, a process regulated by cdc42. Our work showed that cIAP1, when associated with its partner TRAF2, interact and control cdc42 activation, a member of Rho GTPases protein family. We also observed that cIAP1 regulates HRas driven oncogenic transformation and increases the motility and invasiveness of the cells. These new functions of cIAP1 in the control of transcription factor and cell cytoskeleton could be important for its oncogenic properties.
|
84 |
O efeito da prolactina na migração de células de câncer de mama pela remodelação da actina no citoesqueleto / Prolactin effects on breast cancer cell migration through actin cytoskeleton remodelingPriscilla Ludovico da Silva 14 October 2016 (has links)
INTRODUÇÃO: A prolactina é um hormônio polipeptídico que possui reconhecida ação sistêmica, principalmente no sistema reprodutor. O papel desse hormônio no desenvolvimento e na extensão do câncer da mama ainda é muito debatido. A progressão do câncer de mama em grande parte depende do movimento celular e da capacidade da célula em remodelar seu citoesqueleto de actina. Nesse processo, proteínas envolvidas na migração celular, como moesina, FAK e c-Src, são influenciadas por vários hormônios, incluindo a prolactina. O presente estudo teve por objetivo avaliar os efeitos da PRL na migração de células T47D, MCF-7 e ZR75-1 de câncer de mama, bem como os mecanismos envolvidos. MÉTODOS: As células foram cultivadas em placas de cultura com meio suplementado e divididas em oito grupos diferentes de tratamento: Grupo I (veículo); Grupo II (PRL na concentração de 25 ng/mL); Grupo III (PRL na concentração de 50 ng/mL), Grupo IV (PRL na concentração de 100 ng / mL), Grupo V (RNAi + veículo); Grupo VI (RNAi + PRL na concentração de 25 ng/mL); Grupo VII (RNAi + PRL na concentração de 50 ng/mL) e Grupo VIII (RNAi + PRL na concentração de 100 ng / mL). Nos Grupos de I a IV, a reorganização da actina do citoesqueleto foi analisada por imunofluorescência após 30 minutos do tratamento. Em todos os grupos estudados foram realizadas análise da migração horizontal com auxílio de microscopia de luz e avaliadas as expressões de Moesina, p-Moesina, FAK, p-FAK, c-Src e p-c-Src por Western Blot após 48 horas do tratamento. RESULTADOS: As células de câncer de mama expostas à prolactina apresentaram um aumento da expressão de Moesina, p-Moesina, FAK, p-FAK, c-Src e p-c-Src. Essas alterações moleculares estão associadas à reorganização da actina do citoesqueleto e ao aumento da mobilidade das células. CONCLUSÕES: Nossos dados sugerem que a prolactina aumenta a migração das células T47D, MFC-7 e ZR75-1 de câncer de mama e remodela a actina do citoesqueleto pela via de sinalização intracelular das proteínas c-Src, FAK e moesina / INTRODUCTION: Prolactin is a polypeptide hormone with a recognized systemic action mainly on reproductive physiology. The role of this hormone on breast cancer development and progression has been debated a lot yet. Breast cancer invasion largely depends on cell movement and on the ability to remodel the actin cytoskeleton. In this process, proteins involved in cell migration, such as moesin, FAK and c-Src, are influenced by a large number of hormones, such as prolactin. The present study was aimed for evaluating the effects of PRL on migration of T47D, MCF-7 and ZR75-1 breast cancer cells as well as the molecular mechanisms in this process. METHODS: The cells were cultured in dishes with supplemented medium and were divided in eight different assays: Group I (control); Group II (25ng/ml of prolactin); Group III (50ng/ml of prolactin); Group IV (100ng/ml of prolactin); Group V (RNAi + control); Group VI (RNAi + 25ng/ml of prolactin); Group VII (RNAi + 50ng/ml of prolactin); Group VIII (RNAi + 100ng/ml of prolactin). In Groups I to IV, the actin cytoskeletal reorganization was analyzed by immunofluorescence 30 minutes after the treatment. In all groups, were performed the horizontal migration analysis with light microscopy and evaluated the expression of moesin, p-moesin, FAK, p-FAK, c-Src and p-c-Src by Western blot after 48 hours of treatment. RESULTS: Breast cancer cells exposed to prolactin display an elevated moesin, p-moesin, FAK, p-FAK, c-Src and p-c-Src expression. These molecular changes are associated with the reorganization of actin cytoskeleton and increased mobility of cells. CONCLUSION: Our data suggest that prolactin enhances the migration of T47D, MFC-7 and ZR75-1 breast cancer cells through the actin cytoskeleton remodeling by intracellular signaling pathway of c-Src, FAK and moesin proteins
|
85 |
Die Reorganisation des Aktinzytoskeletts in Hypoxie: Neue Erkenntnisse über die Rolle von ArhGAP29 / Remodeling of the actin cytoskeleton in hypoxia: An emerging role for ArhGAP29Peters, Johannes 22 August 2019 (has links)
No description available.
|
86 |
Struktur-Funktion-Wechselwirkungen in lateral eingeschränkten ZellenMüller, Andreas 04 November 2020 (has links)
Die Zellform ist wichtig für die Ausübung der Zellfunktion und spielt darüberhinaus eine essenzielle Rolle bei der Entwicklung eines Zellhaufens zu einem mehrzelligen Organismus. Dabei wird die Zellform neben biochemischen auch von biophysikalischen Prozessen beeinflusst: Zellkräfte sind ebenso beteiligt wie räumliche Einschränkung. Der Umfang der Wechselwirkung zwischen Umgebung, Zellform und Zellfunktion ist jedoch im Detail oft unverstanden. Ziel dieser Arbeit war daher, eine umfassende Charakterisierung von Zellen in räumlicher Einschränkung durchzuführen, um Aussagen zur Beeinflussung von Zellmorphologie und der Kraftentwicklung zu gewinnen.
In dieser Arbeit wurde die Reaktion humaner Primärzellen (HUVECs) auf laterale Einschränkung untersucht. Die Zellen wurden dafür sowohl auf Glas- als auch auf Hydrogel-Substraten kultiviert, die mittels Mikrokontaktdruck von Fibronektin mit Streifenmustern im Breitenbereich von 5μm bis 80μm strukturiert worden waren. Die Zellen wurden nach der Phase der initialen Adhäsion (> 1 h) hinsichtlich ihrer allgemeinen Morphologie, des Erscheinungsbildes ihres Aktinskeletts und ihres Zellzugkraftverhaltens quantitativ beschrieben. Zusätzlich erfolgten Lebendzellmessungen, um die Dynamik des Aktinskeletts und der Zellzugkräfte zu charakterisieren.
Die laterale Einschränkung führte zur strukturellen und funktionellen Adaption der Zellen. Da die Zelllänge nur geringfügig von der Streifenbreite abhing, kam es durch die seitliche Einschränkung zu einer Flächenabnahme bei gleichzeitiger Erhöhung des Zellseitenverhältnisses, wovon auch der Zellkern betroffen war. Die Ausrichtung der Aktinfasern korrelierte stark mit der Zellelongation und Zellen auf schmalen Streifen zeigten ein geringer vernetztes Aktinskelett. Messungen der Aktindynamik ergaben einen einwärts gerichteten Transport von Stressfasern. Weiterhin wurde eine Abnahme der Zugkräfte mit zunehmender Einschränkung gemessen, während gleichzeitig eine Polarisierung der Zugkräfte stattfand. Das beobachtete Verhalten der struktur- und funktionsbezogenen Zellparameter konnte gut durch die laterale Einschränkung erklärt werden, sodass die vorliegende Arbeit zu einem besseren Verständnis der Zellanpassung an räumliche Einschränkung
beitragen konnte. / Proper cell shape is a precondition for the proper performance of specialized cells and changes of cell shape are paramount for the development from a cell cluster to an adult organism. Cell shape can be regulated biochemically and also biophysically, e. g., by involvement of cellular force generation and spatial confinement. However, the understanding of the interaction between exterior space, cellular form, and function is incomplete. Therefore, the aim of this thesis was to thoroughly characterize cells in spatial confinement in order to better understand how cell morphology and force generation can be linked.
During the course of this work, the adaptation of human primary cells (HUVECs) to lateral constraints was investigated. Cells were seeded on both glass and hydrogel substrates which had been micropatterned with fibronectin by microcontact printing. The structures were composed of stripes with varying width (5–80 μm). After initial adhesion had taken place (> 1 h), cell morphology, actin cytoskeleton architecture, and cell traction forces were quantified. In addition, measurements were performed on live cells in order to better understand the dynamics of the actin cytoskeleton and the cell traction forces.
Laterally confined cells showed both structural and functional changes. Because cell length was only weakly dependent on stripe width, cells in strong lateral confinement were highly elongated and had decreased spread areas, which also affected the nucleus. The orientation of actin fibers was strongly linked to cell elongation. In cells on narrow stripes, a reduced actin cytoskeleton was observed, i.e., with a lower degree of interconnectivity. Time resolved analysis revealed an inward transport of actin fibers. Furthermore, cell force generation was shown to be impaired on narrow stripes, most likely due to decreased cell spread area. At the same time, force polarization strongly increased in cells in strong lateral confinement. This study demonstrated how various cellular parameters, both linked
to cell structure and function, are influenced by lateral confinement and by each other, thereby contributing to a better understanding of cell adaptation to spatial constraint.
|
87 |
Emergent structure formation of the actin cytoskeletonHuber, Florian 09 February 2012 (has links)
Anders als menschengemachte Maschinen verfügen Zellen über keinen festgeschriebenen Bauplan und die Positionen einzelner Elemente sind häufig nicht genau festgelegt, da die Moleküle diffusiven Zufallsbewegungen unterworfen sind. Darüber hinaus sind einzelne Bauteile auch nicht auf eine einzelne Funktion festgelegt, sondern können parallel in verschiedene Prozesse einbezogen sein. Basierend auf Selbstorganisation und Selbstassemblierung muß die Organisation von Anordnung und Funktion einer lebenden Zelle also bereits in ihren einzelnen Komponenten inhärent enthalten sein.
Die intrazelluläre Organisation wird zum großen Teil durch ein internes Biopolymergerüst reguliert, das Zytoskelett. Biopolymer-Netzwerke und –Fasern durchdringen die gesamte Zelle und sind verantworlich für mechanische Integrität und die funktionale Architektur. Unzählige essentielle biologische Prozesse hängen direkt von einem funktionierenden Zytoskelett ab.
Die vorliegende Arbeit zielt auf ein besser Verständnis und den Nachbau zweier verschiedener funktionaler Module lebender Zellen anhand stark reduzierter Modellsysteme. Als zentrales Element wurde Aktin gewählt, da dieses Biopolymer eine herausragende Rolle in nahezu allen eukaryotischen Zellen spielt.
Mit dem ersten Modellsystem wird der bewegliche Aktin-Polymerfilm an der Vorderkante migrierender Zellen betrachtet. Die wichtigsten Elemente dieser hochdynamischen Netzwerke sind bereits bekannt und wurden in dieser Arbeit benutzt um ein experimentelles Modellsystem zu etablieren. Vor allem aber lieferten detailierte Computersimulationen und ein mathematisches Modell neue Erkenntnisse über grundlegende Organisationsprinzipien dieser Aktinnetzwerke. Damit war es nicht nur möglich, experimentelle Daten erfolgreich zu reproduzieren, sondern das Entstehen von Substrukturen und deren Charakteristika auf proteinunabhängige, generelle Mechanismen zurückzuführen.
Das zweite studierte System betrachtet die Selbstassemblierung von Aktinnetzwerken durch entropische Kräfte. Aktinfilamente aggregieren hierbei durch Kondensation multivalenter Ionen oder durch Volumenausschluss hochkonzentrierter inerter Polymere. Ein neu entwickelter Experimentalaufbau bietet die Möglichkeit in gut definierten zellähnlichen Volumina, Konvektionseinflüsse zu umgehen und Aggregationseffekte gezielt einzuschalten. Hierbei wurden neuartige, regelmäßige Netzwerkstrukturen entdeckt, die bislang nur im Zusammenhang mit molekularen Motoren bekannt waren. Es konnte ferner gezeigt werden, dass die Physik der Flüssigkristalle entscheidend zu weiteren Variationen dieser Netzwerke beiträgt. Dabei wird ersichtlich, dass entstehende Netzwerke in ihrer Architektur direkt die zuvor herrschenden Anisotropien der Filamentlösung widerspiegeln.:1 Introduction 1
2 General background 7
2.1 General concepts 7
2.1.1 Coarse-graining as hierarchical reduction 8
2.1.2 Functional modules and redundancies 10
2.1.3 Emergence 11
2.1.4 Self-organization and self-assembly 13
2.1.5 Bottom-up and top-down 13
2.2 The cytoskeleton 15
2.2.1 From actin monomers to filaments 16
2.2.2 Accessory proteins and actin networks 21
2.3 Biopolymer pattern formation 25
2.3.1 Random networks and nematic phases 25
2.3.2 Linker and motor induced networks 28
3 Lamellipodial actin network formation 33
3.1 Background: crawling cell migration 33
3.1.1 Leading edge actin structures 35
3.1.2 Lamellipodial self-organization into oriented branches? 40
3.1.3 Lamellipodial modeling 41
3.1.4 Beyond the lamellipodium: adhesion and network contraction 42
3.2 Methods: lamellar treadmilling model 45
3.2.1 Assumptions 45
3.2.2 Choice of model parameters 51
3.2.3 Computer simulation (implementation) 52
3.2.4 Mathematical modeling 56
3.3 Modeling results 63
3.3.1 Reproduction of motile cell characteristics 64
3.3.2 Self-organization into lamellipodium and lamellum 65
3.3.3 Filament severing and annealing influence network properties 70
3.3.4 Unconfined network growth 74
3.4 Feasible model extensions 76
3.4.1 Alternative nucleation mechanisms 77
3.4.2 Convergence zone through myosin-driven network contraction 80
3.5 Experimental bottom-up approach 82
3.6 Discussion: Arp2/3 induced actin networks 87
4 Actin network patterns in confined systems 91
4.1 Background: counterion condensation and depletion forces 91
4.1.1 Actin, a polyelectrolyte: counterion condensation 92
4.1.2 Actin and molecular crowding: depletion forces 95
4.2 Methods: Experimental design and data analysis 97
4.2.1 Protein purification and handling 98
4.2.2 Droplet formation 98
4.2.3 Volume monitoring and pattern analysis 100
4.3 Actin pattern formation 105
4.3.1 Counterion-induced network formation 105
4.3.2 Depletion force induced network formation 111
4.4 First modeling attempts: bundling simulation 116
4.4.1 Model concept and assumptions 116
4.5 Discussion: Counterion and depletion-based network assembly 119
5 Discussion & Outlook 125
Appendix 129
A. Variation of filament orientation 129
B. Analytical solution of the mathematical model 131
C. Pre-alignment of filaments 132
D. Protocols 134
d1. Acetone Powder Prep 134
d2. Actin prep 135
d3. Actin labling with rhodamine dye 137
Bibliography 141
Acknowledgements 157
|
88 |
EspFU, an Enterohemorrhagic E. Coli Secreted Effector, Hijacks Mammalian Actin Assembly Proteins by Molecular Mimicry and Repetition: A DissertationLai, YuShuan (Cindy) 25 April 2014 (has links)
Enterohemorrhagic E. coli (EHEC) is a major cause of food borne diarrheal illness worldwide. While disease symptoms are usually self-resolving and limited to severe gastroenteritis with bloody diarrhea, EHEC infection can lead to a life threatening complication known as Hemolytic Uremic Syndrome (HUS), which strikes children disproportionately and is the leading cause of kidney failure in children. Upon infection of gut epithelia, EHEC produces characteristic lesions called actin pedestals. These striking formations involve dramatic rearrangement of host cytoskeletal proteins. EHEC hijacks mammalian signaling pathways to cause destruction of microvilli and rebuilds the actin cytoskeleton underneath sites of bacterial attachment. Here, we present a brief study on a host factor, Calpain, involved in microvilli effacement, and an in depth investigation on a bacterial factor, EspFU, required for actin pedestal formation in intestinal cell models. Calpain is activated by both EHEC and the related pathogen, enteropathogenic E. coli (EPEC), during infection and facilitates microvilli disassembly by cleavage of a key membrane-cytoskeleton anchoring substrate, Ezrin. Actin pedestal formation is facilitated by the injection of two bacterial effectors, Tir and EspFU, into host cells, which work in concert to manipulate the host actin nucleators N-WASP and Arp2/3. EspFU hijacks key host signaling proteins N-WASP and IRTKS by mimetic displacement and has evolved to outcompete mammalian host ligands. Multiple repeats of key functional domains of EspFU are essential for actin pedestal activity through proper localization and competition against the an abundant host factor Eps8 for binding to IRTKS.
|
89 |
Cellular Mechanisms of Gravitropism in ARG1 (Altered Response to Gravity) Mutants of <i>Arabidopsis Thaliana</i>Kumar, Neela Shiva 12 August 2008 (has links)
No description available.
|
90 |
Probing the roles of actin dynamics in the cytoskeleton of animal and plant cellsJune hyung Kim (18432030) 26 April 2024 (has links)
<p dir="ltr">The actin cytoskeleton is a dynamic structure that regulates various important cellular processes, such as cell protrusion, migration, transport, and cell shape changes. Cells employ different actin architectures best suited for each of these functions. We have employed an agent-based model to illuminate how the actin cytoskeleton plays such functions in animal and plant cells, via dynamic interactions between molecular players.</p><p dir="ltr">Lamellipodia found in animal cells are two-dimensional actin protrusion formed on the leading edge of cells, playing an important role in sensing surrounding mechanical environments via focal adhesions. Various molecular players, architecture, and dynamics of the lamellipodia have been investigated extensively during recent decades. Nevertheless, it still remains elusive how each component in the lamellipodia mechanically interacts with each other to attain a stable, dynamic steady state characterized by a retrograde flow emerging in the branched actin network. Using the agent-based model, we investigated how the balance between different subcellular processes is achieved for the dynamic steady state. We simulated a branched network found in the lamellipodia, consisting of actin filament (F-actin), myosin motor, Arp2/3 complex, and actin crosslinking protein. We found the importance of a balance between F-actin assembly at the leading edge of cells and F-actin disassembly at the rear end of the lamellipodia. We also found that F-actin severing is crucial to allow for the proper disassembly of an actin bundle formed via network contraction induced by motor activity. In addition, it was found that various dynamic steady states can exist.</p><p dir="ltr">The actin cytoskeleton in plant cells plays a crucial role in intracellular transport and cytoplasmic streaming, and its structure is very different from the actin cytoskeleton in animal cells. The plant actin cytoskeleton is known to show distinct dynamic behaviors with homeostasis. We used the agent-based model to simulate the plant actin cytoskeleton with the consideration of the key governing mechanisms, including F-actin polymerization/depolymerization, different types of F-actin nucleation events, severing, and capping. We succeeded in reproducing experimental observations in terms of F-actin density, length, nucleation frequency, and rates of severing, polymerization, and depolymerization. We found that the removal of nucleators results in lower F-actin density in the network, which supports recent experimental findings.</p>
|
Page generated in 0.0339 seconds