Spelling suggestions: "subject:"séparation"" "subject:"préparation""
21 |
Rôle de la poly(ADP-ribose) polymérase 1 dans la reconnaissance et la réparation des dommages directs induits à l'ADN par les radiations ultraviolettesRobu, Mihaela 14 September 2024 (has links)
Tableau d'honneur de la Faculté des études supérieures et postdoctorales, 2017-2018 / La poly(ADP-ribose) polymérase 1 (PARP1) est une enzyme nucléaire très abondante chez les eucaryotes supérieurs, humains compris, mais néanmoins absente chez les bactéries et les levures. En réponse aux dommages à l’ADN, elle utilise le substrat nicotinamide adénine dinucléotide (NAD+) pour former des polymères d’ADP-ribose (PAR) sur elle-même et sur d’autres protéines cibles. L’enzyme PARP1 et son activité catalytique sont impliquées dans la réparation des dommages à l’ADN contenant des cassures simple et double brin. Cependant, l’hypothèse que l’enzyme PARP1 joue un rôle dans la réparation de dommages sans cassures de brin a toujours rencontré des réticences. Par exemple, la PARP1 est activée rapidement par ces dommages, comme ceux induits par les radiations ultraviolettes (UV), mais son rôle dans leur réparation par excision de nucléotides (NER) n’était pas accepté généralement. Ainsi, ce projet de doctorat consiste à déterminer le mécanisme exact par lequel la PARP1 et son activité catalytique contribuent à la NER. Cette voie de réparation utilise plus de 30 protéines pour réparer une très grande variété de dommages. Bien que nous ayons une bonne connaissance des étapes de la NER grâce aux études in vitro chez les bactéries et les levures, les facteurs qui influencent le fonctionnement de la NER chez les eucaryotes supérieurs ne sont pas tous connus. Cependant, de récentes études ont montré que des complexes de remodelage de la chromatine et des modifications post-traductionnelles facilitent la NER dans la chromatine. Dans ce contexte, l’implication de la modification posttraductionnelle effectuée par la PARP1, dite PARylation, est encore inconnue dans la NER. Dans la NER, l’étape cruciale de la réparation globale du génome est la reconnaissance des quelques bases endommagées qui sont entourées de nombreuses bases non modifiées par la protéine «Xeroderma pigmentosum C» (XPC). Un autre facteur clé de cette phase est le facteur «UV-damaged DNA binding protein 2» (DDB2) qui fait partie du complexe ubiquitine-ligase UV-DDB. Ici, nous avons démontré que, après irradiation aux UVC, la PARP1 se lie asymétriquement à la photolésion et elle interagit avec le facteur DDB2. Ce dernier stimule l’activité catalytique de la PARP1 et est à son tour PARylé par la PARP1. Les polymères formés autour de la photolésion agissent comme signal de recrutement pour le complexe PARP1-XPC déjà présent dans le nucléoplasme. La confluence de ces facteurs de réparation au site de dommage assure la séparation de la protéine XPC de ce complexe suivi de son transfert et de sa stabilisation autour du dommage. Ainsi, la PARP1 n'est pas seulement l'une des premières protéines recrutées aux lésions induites par les UV, mais son activation rapide par ces dommages joue un rôle clé dans les étapes situées en aval de la phase de reconnaissance des dommages de la NER. En effet, nous avons montré que l’inhibition ou la déplétion de la PARP1 ralentit radicalement la réparation par la NER des dommages directs induits à l’ADN par les UV. Cette étude montre que la PARP1, en coopération avec les protéines DDB2 et XPC augmente l’efficacité de la voie NER dans les cellules des mammifères. / Poly(ADP-ribose) polymerase 1 (PARP1) is a highly abundant nuclear enzyme which is present in higher eukaryotes but absent in bacteria and yeasts. In response to DNA damage, it uses the nicotinamide adenine dinucleotide (NAD+) to form polymers of ADPribose (PAR) on itself and other target proteins. PARP1 and its catalytic activity are involved in the repair of DNA damages comprising of single and double strand breaks. However, the role of PARP1 in repairing DNA damage without strand breaks has not been readily accepted. For example, although PARP1 is rapidly activated in response to such damages caused by ultraviolet radiation (UV), its role in their repair by nucleotide excision repair pathway (NER) was not generally recognized. Thus, the project of my doctoral work is to determine the exact mechanism by which PARP1 and its catalytic activity influence NER. This pathway uses more than 30 proteins to repair a wide variety of DNA damages. Although we have a good understanding of NER steps through studies in vitro, bacteria and yeasts, we still do not know all the factors that influence the functioning of the NER in higher eukaryotes including humans. Recent studies have shown that chromatin remodelling complexes and post-translational modifications facilitate NER in the context of chromatin. However, the contribution of PARylation, the post-translational modification carried out by PARP1, in NER remains largely unknown. Xeroderma pigmentosum C protein (XPC) plays a crucial role in NER by recognizing the few UV induced lesions in the vast undamaged chromatin. Another key factor in damage recognition is the UV- damaged DNA binding protein (DDB2), which is part of the UV-DDB ubiquitin-ligase complex. Here, we have demonstrated that after UVC irradiation, PARP1 binds asymmetrically to the photolesions and interacts with DDB2. DDB2 stimulates the catalytic activity of PARP1 and in turn it is PARylated. The polymers formed around the photolesion act as recruitment signal for the PARP1-XPC complex already present in the nucleoplasm. The confluence of these repair factors at the damage site ensures the separation of the XPC protein from its complex with PARP1 followed by its transfer and stabilization at the site of damage. Thus, PARP1 is not only one of the first proteins to respond to UV induced DNA damage, but also its early rapid activation plays a key role in the downstream events of NER. Indeed, we have shown that both inhibition and depletion of PARP1 significantly delays the repair of these lesions. This study demonstrates that PARP1 increases the efficiency of NER in cooperation with the DDB2 and XPC proteins in mammalian cells.
|
22 |
Proteomics of Poly(ADP-ribose) Polymerases during DNA Replication and RepairTedim Ferreira, Maria 29 March 2024 (has links)
En 2017, Statistique Canada a rapporté qu'un Canadien sur quatre mourra d’un cancer. Chaque jour, nous sommes confrontés à des facteurs environnementaux qui imposent à notre ADN un stress génotoxique. Ce stress peut avoir de graves conséquences au point de menacer notre intégrité génomique, comme les cassures d'ADN double-brin (DSBs). Heureusement, nos cellules ont deux voies principales pour combattre ce type de lésions : la recombinaison homologue (HR) et la Classical Non-Homologous End-Joining (CNHEJ). La voie HR, un type de réparation sans erreur utilisé dans la phase-S du cycle cellulaire, assure une réparation fidèle de la zone endommagée et conserve l'intégrité de l'information génétique. Les individus porteurs de mutations dans les protéines de cette voie, telles que BRCA1 et BCRA2, sont plus susceptibles de développer des cancers du sein et de l'ovaire. Récemment, la clinique a connu une percée majeure dans le traitement du cancer de l'ovaire. Une nouvelle classe de médicaments a été autorisée par la US Food and Drug Administration (FDA) pour traiter les cancers de l'ovaire récurrents qui présentent une HR défective. Ces médicaments inhibent un des acteurs les plus précoces dans la réponse aux dommages à l'ADN (DDR): la PARP-1 (Poly(ADP-ribose) polymerase-1). Lors de l'induction de dommages à l'ADN, la PARP-1 devient fortement activée, conduisant à la production massive de polymères de poly(ADP-ribose) (PAR) générés à partir de l'hydrolyse du nicotinamide adénine dinucléotide. Ce polymère agira comme une plateforme pour recruter des facteurs de réparation de l'ADN au site de réparation. L'application clinique réussie des inhibiteurs de la PARP (PARPi) vient des observations où les mutations ou l'extinction de BRCA1/2 entraînent une diminution de l'activité HR. L'inhibition de la PARP-1 combinée à cette déficience en HR favorise la mort cellulaire, un phénomène appelé létalité synthétique. Trois PARPi sont actuellement autorisés par la FDA et sont utilisés pour le traitement du cancer gynécologique. Malgré l'efficacité thérapeutique de ces inhibiteurs, les mécanismes induisant une régression tumorale ne sont pas complètement compris. Ainsi, il devient extrêmement important de déchiffrer davantage ces mécanismes pour atteindre le plein potentiel des PARPi. Pour ce faire, une recherche fondamentale sur les fonctions des PARPs, et de leurs partenaires dans la DDR, est essentielle et constitue l'objectif général de cette thèse. Durant mon doctorat, nous avons étudié l'influence de la PARP-1 dans la voie HR au moment de l'étape initiale de la résection, qui est essentielle pour l'élimination de l'ADN endommagé. Certaines études ont montré l'implication de la PARP-1 dans le recrutement de la protéine de résection MRE11. Ici, nous démontrons que la PARP-1 a une nouvelle fonction dans la résection des DSBs et nous proposons un nouveau modèle pour expliquer la létalité synthétique observée dans les tumeurs avec une HR défective. Pour compléter l'objectif de ce doctorat, nous avons étudié les rôles régulateurs de la PARP-1 au cours du processus HR, mais plus tard dans la résolution des lésions, c'est-à-dire au maximum de la formation des foyers RAD51, une étape cruciale pour la réparation efficace des DSBs via la HR. Nous avons observé que le PAR-interactome (PARylome) est, à ce moment, fortement enrichi en protéines impliquées dans le métabolisme de l'ARN. Plusieurs des protéines les plus abondantes étaient constituées d’hélicases d’ADN et d’ARN, et de facteurs de transcription. Puisque certains de ces gènes sont mutés dans les tumeurs, ils pourraient théoriquement être des cibles prioritaires pour une utilisation conjointe avec des PARPi. Nous avons également étendu notre étude de la PARylation à la chromatine, au niveau des histones. Nous avons constaté que les queues d'histones ne sont pas les seules cibles de la PARP-1 et que les domaines globulaires centraux sont également PARylés. Finalement, le grand intérêt clinique de la PARP-1 méritait une analyse approfondie de son expression systémique. Ainsi, j'ai terminé mes études en décrivant la distribution et l'abondance tissulaire de la PARP-1 dans les organes simiens, avec l'objectif principal de fournir des informations précieuses quant à l'efficacité potentielle des PARPi ou sa résistance, dans un tissu donné et maladies apparentées. En résumé, cette thèse fournit de nouvelles informations importantes sur les mécanismes orchestrés par la PARP-1 lors de la réponse aux DSBs, y compris les réseaux protéiques complexes engagés dans le remodelage des fonctions cellulaires nécessaire au maintien de l'intégrité génomique. / In 2017, Statistics Canada reported that one out of four Canadians will die of cancer. Every day, we face environmental factors that burden our DNA with genotoxic stress. This stress can lead to severe types of DNA damage that can threaten our genomic integrity, namely double-strand breaks (DSBs). Fortunately, our cells have evolved with different repair mechanisms to deal with such lesions. There are two primary types of repair against DSBs: Homologous Recombination (HR) and Classical Non-Homologous End-Joining (CNHEJ). The HR pathway is an error-free repair mechanism used in the S-phase of the cell cycle to ensure faithful repair of the damaged area and thus preserve our genetic information. Individuals that bear mutations in proteins involved in this pathway, such as BRCA1 and BCRA2, have been associated with the development of breast and ovarian cancers. Almost 4 years ago, the field went through a major breakthrough in ovarian cancer care. A new class of drugs was accepted by the US Food and Drug Administration (FDA) to manage recurrent ovarian cancers that display HR-deficiencies. These drugs consist of inhibitor molecules against one of the earliest sensors of DNA damage in the cell: PARP-1 (poly(ADP-ribose) polymerase-1). Upon DNA damage induction, PARP-1 becomes highly activated, leading to the massive production of poly(ADP-ribose) (PAR) polymers, from the hydrolysis of nicotinamide adenine dinucleotide, which in turn modify several proteins posttranslationally and act as a scaffold to recruit DNA repair factors to the repair site. The successful application of PARP inhibitors (PARPi) arose from the observations that mutations or silencing of BRCA1/2, resulted in diminished HR activity. In the context of HR deficiency, the concomitant inhibition of PARP resulted in cell-death, an effect called synthetic lethality. Three PARPi are currently accepted by the FDA and are being clinically used for the treatment of gynaecological cancers. Notwithstanding the great promise of these inhibitors for other types of cancers, the mechanism by which these are inducing cancer lethality is not fully understood. Thus, it becomes of extreme importance to further decipher its mechanistic ways, to achieve full potential of PARPi in the clinic. To achieve this, fundamental research on the functions of PARPs and their protein partners in the DNA damage response is indispensable and constitutes the general aim of this thesis. During my doctoral work, we investigated the influence of PARP-1 during the HR pathway, primarily during the initial step of resection, which is essential for the removal of damaged DNA. Early reports of PARP-1 involvement in resection described the recruitment of the resection protein MRE11 to sites of damage in a PARP-1 dependent manner. Here, we demonstrate that PARP-1 has a novel function in DSB resection and we propose a new model for the synthetic lethality observed in HR-deficient tumors. To further complement the general aim of this doctorate, we investigated the regulatory roles of PARP-1 during the HR pathway, however in a later stage of HR resolution, at the peak formation of RAD51 foci, which is a crucial step for the efficient repair of DSBs through HR. We observed that the PAR-interactome (PARylome) at this stage was abundantly enriched with RNA-processing factors. Several of the most abundant proteins consisted of DNA and RNA helicases, as well as transcription factors, some of which were found to be mutated in tumors, and thus can be seen as potentially druggable targets to be used in combination with PARPi. We also extended our PARylome study to the chromatin proteome and investigated the histone PARylome upon DNA damage. Interestingly, we found that histone tails are not the only targets of PARP-1 and that globular domains are also targets of PARylation. Lastly, the high clinical interest of PARP-1 warrants studies addressing PARP-1 organ distribution. Thus, I finalized my studies by extensively describing and reporting PARP-1 tissular and cellular distribution and abundance in monkey organs, with the main objective of providing valuable information to any study assessing PARP inhibition efficacy and resistance in any given tissue and related diseases. In summary, this thesis provides important new information on the mechanisms PARP-1 is regulating during the response to DSBs, including the networks PARP-1 is orchestrating to potentially help reshape the cell environment, to efficiently repair the most lethal lesion our genome faces.
|
23 |
Implication de PIM1 dans la réparation de l'ADN par la jonction d'extrémités non-homologues en hypertension artérielle pulmonaireLampron, Marie-Claude 23 May 2024 (has links)
Introduction : L’hypertension artérielle pulmonaire (HTAP) est une maladie caractérisée par une augmentation des pressions pulmonaires menant à une défaillance cardiaque droite. Les cellules musculaires lisses des artères pulmonaires (CMLAP) sont exposées à un niveau de stress accru notamment dû à l’inflammation des tissus et du milieu pseudo-hypoxique. Malgré cet environnement hostile, elles arrivent à proliférer et à survivre. Toutefois, cela entraine une augmentation anormale du dommage à l’ADN. Il existe, cependant, un équilibre entre les dommages à l’ADN et les mécanismes de réparation. PIM1, une onco-protéine à l’activité kinase, est surexprimée en HTAP. Elle est impliquée dans plusieurs voies de signalisation cellulaire, telles la survie et la prolifération, mais la voie de réparation du dommage à l’ADN n’a jamais été explorée en HTAP. De plus, l’inhibiteur de PIM1, le SGI-1776, a été testé en essai clinique en cancer, ainsi l’évaluation de son efficacité pour les patients HTAP pourrait rapidement être mise en place. Objectifs : Évaluer le potentiel thérapeutique du SGI-1776 et élucider l’implication de PIM1 dans la réparation du dommage à l’ADN en HTAP. Méthodes/Résultats : Nous démontrons premièrement que les poumons de patients HTAP (n=10) ainsi que les CMLAP-HTAP (n=5) présentent une surexpression de PIM1. Sur ces mêmes tissus et lignées cellulaires, le précurseur de la reconnaissance des dommages à l’ADN (γH2AX) est également augmenté comparativement aux sujets sains. Ce précurseur est essentiel à l’initiation de la réparation à l’ADN et l’inhibition de PIM1 par SGI-1776 (1,3 et 5μM) diminue la capacité de la réponse au dommage à l’ADN via la voie de la jonction des extrémités non-homologues (NHEJ) : le traitement cause une diminution des facteurs du NHEJ comme Ku70, DNA-PKcs et γH2AX (n=4). Par essai comet, nous démontrons que les dommages sont toujours présents et que ceci diminue la prolifération (Ki67 n=3; p<0.05) et augmente l’apoptose (AnnexinV n=3; p<0.05). In vivo, le SGI-1776 diminue les pressions pulmonaires (n=30, 30±2mmHg vs 49±5mmHg) et diminue le remodelage des artères pulmonaires distales (H&E, 45% vs 65%), ce qui est principalement dû à la restauration de la balance entre la prolifération (Ki67 n=25; p<0.05) et l’apoptose (TUNEL n=25; p<0.05) des artères pulmonaires distales. Conclusion : Nous avons démontré pour la première fois l’implication de PIM1 dans la réparation du dommage à l’ADN en HTAP et que l’inhibition de son activité améliore in vitro et in vivo l’HTAP. / RATIONALE: Pulmonary Arterial Hypertension (PAH) is a fatal disease characterized by the narrowing of pulmonary arteries (PA) due to vascular remodeling. It is now established that this phenotype is associated with enhanced pulmonary artery smooth muscle cells (PASMC) proliferation and suppressed apoptosis. This phenotype is sustained in part by the activation of several DNA repair pathways allowing PASMC to survive despite the environmental stresses seen in PAH. PIM1 is an oncoprotein upregulated in PAH and that has been implicated in many pro-survival pathways in cancer, including DNA repair. PIM1 inhibitors, like SGI-1776, are already in clinical trials in cancer and could thus be beneficial to PAH patients. OBJECTIVES: The aim of this study is to demonstrate the implication of PIM1 in the DNA damage response and the beneficial effect of its inhibition by SGI-1776 in human PAH-PASMC and in rat preclinical model of PAH. METHODS/RESULTS: Using western blot we showed in both human PAH lungs (n=10) and PAH-PASMC (n=5) a significant upregulation of PIM1 compared to control donor (n=5). PIM1 upregulation in PAH was associated with a significant activation of DNA damage sensor (γH2AX), which is critical for DNA repair initiation. We showed that PIM1 inhibition using SGI-1776 (1,3, and 5μM) significantly impaired DNA repair capacity in PASMC (n=4) with a significant repression of Ku70, DNA-PKcs, and γH2AX and decreased ATM expression. We showed no diminution of DNA damage with SGI-1776 treatment (Comet Assay, n=3). As expected, the lack of DNA repair in SGI-1776 treated PAH-PASMC lead to a significant reduction in proliferation (Ki67 n=3; p<0.05) and resistance to apoptosis (AnnexinV assay n=3; p<0.05). In vivo, SGI-1776 10mg*kg-1 given 3 times a week, improves significantly (n=30; p<0.05) monocrotaline-induced PH (decreased RVSP, mean PA pressures and vascular remodeling). CONCLUSION: We demonstrated for the first time that PIM1 is implicated in DNA repair signaling in PAH-PASMC and that repressing its activity everses PAH both in vitro and in vivo.
|
24 |
Analyse fonctionnelle d'un variant d'épissage de FANCL contenant une exlusion de l'exon 4 sur la réparation de l' ADN dans la voie FANC-BRCASt-Laurent Pedneault, Christopher 19 April 2018 (has links)
L’anémie de Fanconi (FA) est une maladie congénitale rare résultant d’une mutation sur chaque allèle parental d’un gène FANC. Nous avons récemment identifié un variant d'épissage de FANCL contenant une exclusion de l'exon 4. Une analyse par minigène nous a permis de démontrer que le polymorphisme de séquence (SNP) rs7958831 augmente substantiellement le saut de l'exon 4 de FANCL, et que les porteurs de ce SNP ont une quantité significativement plus élevée de transcrits FANCL∆4. L'étude de fractions ribosomales nous a permis de confirmer que le transcrit alternatif est bel et bien traduit en protéine. Toutefois, une protéine de fusion FANCL∆4-GFP ne migre pas au noyau comme le fait FANCLwt-GFP. L'isoforme FANCL∆4 n'est pas en mesure d'accomplir la fonction principale de FANCL, soit de monoubiquitiner FANCD2. De plus, des cellules EUFA868 déficientes en FANCL complémentées avec FANCL∆4 ne retrouvent pas leur phénotype normal en test de survie et ont une proportion plus importante bloquée en phase G2/M. Ces résultats nous permettent de penser que le SNP rs7958831 pourrait moduler le risque de cancer du sein puisque l'isoforme FANCL∆4 ne semble pas fonctionnelle.
|
25 |
Élaboration d'une méthode d'analyse de la capacité de réparation de l'ADN : application à une population exposée à l'arsenic via la consommation d'eau souterraineZinflou, Corinne 18 April 2018 (has links)
L'exposition via l'eau potable à des concentrations élevées d'arsenic (>10 ug/L), est mondialement répandue et s'associe à de sévères pathologies dont certains cancers. Un mécanisme sous-jacent implique l'altération de la capacité de réparation de l'ADN (CRA), un important modulateur de la susceptibilité au cancer. Notre but était d'élaborer une méthode d'évaluation de la CRA et d'estimer son applicabilité à l'étude de la CRA de 102 résidents de Chaudière-Appalaches (Québec, Canada) chroniquement exposés à différentes concentrations d'arsenic dans l'eau (0.01-140 ug/L). Deux tests in vitro ont été développés, pour évaluer la réparation par excision/resynthèse d'ADN, de lymphocytes congelés et non-stimulés. Les mesures dans notre échantillon indiquent 42% des individus montrant une activité de réparation in vitro ralentie; l'absorption d'As3+ était négativement corrélée avec la proportion d'individus à l'activité ralentie (p = 0.0155). Nos résultats suggèrent que ces tests permettraient d'évaluer la CRA dans le cadre d'études épidémiologiques de carcinogénèse environnementale.
|
26 |
La réparation de l'ADN par la recombinaison homologue et le développement de molécules anticancéreusesPauty, Joris 23 April 2018 (has links)
Le cancer est une cause majeure de décès dans le monde. Il est à présent établi que les mutations de l'information génétique des cellules initient et participent à son développement, et que certaines mutations transmises au sein des familles prédisposent à son apparition. C'est le cas notamment des mutations des gènes BRCA1 et BRCA2 qui prédisposent aux cancers du sein et de l'ovaire. Les protéines produites par ces gènes sont directement impliquées dans la protection de l'information génétique puisqu'elles participent à la réparation des cassures se produisant dans le support de cette information : l'ADN. L'ADN peut être endommagé par diverses lésions mais les plus déstabilisatrices de l'information génétique sont les cassures double-brin. Afin de protéger son génome, la cellule possède de nombreux mécanismes de réparation dont la recombinaison homologue qui permet une réparation fidèle, c'est-à-dire sans perte ou modification de l'information génétique, permettant ainsi de prévenir l'apparition du cancer. La recombinaison homologue repose principalement sur l'activité de la protéine RAD51 qui nécessite l'utilisation des médiateurs BRCA2 et PALB2. Tout comme les gènes BRCA1 et BRCA2, PALB2 est un gène suppresseur de tumeur et ses mutations ont été associées avec une susceptibilité aux cancers du sein, de l'ovaire et du pancréas. En plus de la chirurgie, le traitement de ces cancers implique la radiothérapie et la chimiothérapie. Celles-ci font l'objet d'intenses recherches afin de proposer de nouveaux traitements plus efficaces avec moins d'effets secondaires. De nouvelles stratégies chimiothérapeutiques ont notamment émergé et on s'oriente à présent vers le développement de traitements personnalisés qui sont basés sur une meilleure connaissance des spécificités moléculaires des tumeurs. Les travaux présentés dans cette thèse apportent de nouvelles informations concernant le rôle de PALB2 dans la protection du génome lors du stress réplicatif et sur la régulation de ses fonctions par le contrôle de sa localisation cellulaire. Plus précisément, nous montrons que PALB2 et BRCA2 permettent de maintenir la Polymérase η au niveau des fourches de réplication bloquées et stimulent son activité de synthèse de l'ADN pour réinitier la réplication. Grâce à l'analyse de mutations germinales identifiées dans des cancers du sein et de l'ovaire, nous révélons la présence d'une séquence d'export nucléaire qui provoque l'exclusion de PALB2 du noyau vers le cytoplasme. Enfin, nous rapportons le développement d'une nouvelle molécule chimiothérapeutique, SFOM-0046, qui provoque des cassures double-brin de l'ADN en induisant un stress réplicatif et qui potentialise les effets de l'UCN-01, une molécule qui a été étudiée en clinique. Nous proposons l'utilisation de cette nouvelle molécule comme agent d'amélioration de thérapies ciblées existantes ou pour le développement de nouvelles thérapies anticancéreuses personnalisées.
|
27 |
Régulation de l’hélicase FBH1 et conséquences sur le maintien de la stabilité génétique chez l’homme / Regulation of FBH1 helicase and consequences on human genome stabilityBacquin, Agathe 19 October 2012 (has links)
Bien que la recombinaison homologue (RH) soit requise, notamment, pour la réparation fidèle des cassures double brins et la prise en charge des fourches de réplication bloquées, une mauvaise régulation de ce mécanisme peut provoquer des réarrangements chromosomiques importants et des pertes d’hétérozygoties. Chez la levure S. cerevisiae, la forme SUMOylée du facteur de processivité des polymérases réplicatives, PCNA, recruterait l’hélicase Srs2 au niveau des fourches de réplication bloquées afin de prévenir les évènements de RH inappropriés via la dissociation du nucléofilament de Rad51. Préalablement à ce projet, notre équipe a montré que la SUMOylation de PCNA sur la lysine 164 existe chez l’homme et qu’elle est présente en particulier dans les cellules déficientes en polymérase translésionnelle η (Pol η). Au cours de cette thèse, nous avons d’abord examiné la localisation de cette forme SUMOylée et montrons qu’elle s’accumule au niveau des dommages induits par une irradiation aux ultra-violets (UV), ce qui suggère son implication dans la réponse à ce type de lésions.Dans le but de préciser la fonction de cette forme modifiée, nous nous sommes demandé si celle-ci était impliquée dans le recrutement d’une hélicase anti-recombinogène.L’hélicase humaine FBH1 a été proposée récemment comme homologue fonctionnel potentiel de Srs2 : elle complémente partiellement les levures déficientes en Srs2, possède une activité anti-recombinogène et s’accumule aux sites de cassures double brins ou de stress réplicatif. Afin de caractériser plus précisément la fonction et le mode de régulation de l’hélicase FBH1 dans les cellules humaines, nous avons examiné sa localisation subcellulaire en l’absence de dommage et après traitement aux UV et à un agent méthylant l’ADN. Nous montrons que FBH1 est recrutée au niveau des foyers de réplication où elle est colocalisée avec PCNA. Après traitement génotoxique, FBH1 s’accumule aux sites de dommages de l’ADN de façon précoce et transitoire. Nous montrons que PCNA contrôle l’accumulation de FBH1 pendant la réplication et en réponse à des dommages via une interaction directe par le biais de deux motifs distincts d’interaction à PCNA : PIP et APIM. FBH1 n’interagit cependant pas de façon préférentielle avec PCNA-SUMO.De plus, nous montrons que le recrutement de FBH1 est suivi de sa polyubiquitination et de sa dégradation par la voie du protéasome. Cette dégradation dépend de l’action conjuguée de PCNA et du complexe ubiquitine-ligase CRL4Cdt2. Elle est nécessaire au recrutement optimal de Pol η.Notre hypothèse est donc que FBH1 serait recrutée sur l’ADN via une interaction avec PCNA au moment de la réplication ou en réponse à un stress génotoxique, afin de limiter les événements de recombinaison non programmés dépendant de RAD51. Par la suite, PCNA et CRL4Cdt2 provoqueraient la dégradation de FBH1 afin de limiter le temps de résidence de l’hélicase qui pourrait interférer avec la prise en charge des dommages par le mécanisme de synthèse translésionnelle. / Although Homologous Recombination (HR) is required for error-free repair of double-strand breaks and stalled or collapsed replication forks, it has to be highly regulated to prevent unscheduled genome rearrangements and loss of heterozygosity. In yeast S. cerevisiae, the SUMOylated form of Proliferating Cell Nuclear Antigen (PCNA) recruits the DNA helicase Srs2 at stalled replication forks to prevent unscheduled HR events by disrupting Rad51 nucleoprotein. In our laboratory, previous results showed that PCNA is also SUMOylated in human on lysine 164, especially in translesion polymerase η (Pol η) deficient cells.During my phD, I first studied the localization of SUMO-PCNA and showed that it accumulates at UV-induced DNA damage. It suggests that PCNA is involved in the DNA damage response to this kind of lesions. To characterize the function of this modified form of PCNA, we wondered whether it could recruit an anti-recombinogenic helicase.The human FBH1 helicase was recently thought to act as a functional homolog of Srs2, since it can partially complement Srs2-deficient S. cerevisiae strains. Besides, hFBH1 has an anti-recombinogenic activity and accumulates at sites of DNA breaks or replication stress.To further characterize the function and regulation of hFBH1 in human cells, we examined its subcellular localization in response to several DNA damaging agents. Our results showed that, without external treatment, FBH1 accumulates into replication foci where it colocalizes with PCNA. After genotoxic treatment, FBH1 accumulates early ant transiently to DNA damage. We show that PCNA coordinates the accumulation of FBH1 during replication and after DNA damage through direct interaction via two distinct PCNA interaction motifs: PIP and APIM. However, FBH1 does not interact preferentially with SUMO-PCNA.We also show that FBH1 recruitment is followed by its polyubiquitination and degradation by the proteasome. This degradation depends on PCNA and the ubiquitin-ligase CRL4Cdt2 and is required for Pol η proper recruitment to UV-induced DNA damage. These findings suggest that PCNA recruits FBH1 at stalled replication forks or in response to DNA damage to limit unscheduled RAD51-dependent recombination. Then, PCNA and CRL4Cdt2 would promote FBH1 degradation to enable translesion synthesis.
|
28 |
Inhibition de la réparation des dommages à l'ADN par la protéine IE1 du virus HHV-6ALambert, Léa 03 October 2024 (has links)
Le virus herpétique humain 6 de type A (HHV-6A) est reconnu pour sa capacité à établir des infections persistantes, à échapper à la réponse immunitaire et à intégrer son génome aux chromosomes cellulaires. Il s'agit d'un virus à ADN linéaire double-brin. À la suite de son entrée dans la cellule, les extrémités du génome viral pourraient être perçues comme une cassure double brin (CDB). La détection des dommages à l'ADN est assurée par le complexe protéique MRN, composé de MRE11, RAD50 et NBS1, qui entraîne l'autophosphorylation de la kinase ATM engageant une cascade de signalisation visant à réparer les CDB. Dans un contexte infectieux, le virus pourrait être affecté par ce mécanisme de réparation. La protéine virale *immediate-early* 1 (IE1A) est l'une des premières protéines exprimées à la suite de l'entrée du virus et est responsable de préparer un environnement cellulaire favorable à l'infection. Nous avons posé l'hypothèse que IE1A interagit avec le complexe MRN de la cellule afin de prévenir l'activation des mécanismes de réparation des CDB et ainsi affecter la réplication virale. Des études par microscopie confocale révèlent que la protéine IE1A est colocalisée avec la protéine NBS1 et que l'expression ectopique d'IE1A est suffisante et responsable du blocage des voies de réparation des CDB en bloquant ATM. L'expression de protéines tronquées d'IE1A a permis d'identifier que le domaine amino-terminal se situant entre 325 et 481 acides aminés semble responsable de l'interaction avec la protéine NBS1 du complexe MRN. Il a également été possible d'identifier que les huit derniers acides aminés du domaine carboxy-terminal d'IE1A sont essentiels à la fonction d'inhibition de l'autophosphorylation de la kinase ATM. Ces travaux ont permis de mettre en lumière la capacité de la protéine IE1A à interférer avec les mécanismes de réparation CDB. Éventuellement, des virus HHV-6A recombinants dans lesquels les domaines de liaison à NBS1 et d'inhibition de l'ATM sont délétés permettront d'étudier l'impact d'une infection HHV-6A sur la cascade signalétique menant à la réparation de l'ADN et l'importance de cette fonction dans l'infection et l'intégration du génome viral. / Human herpesvirus 6 type A (HHV-6A) is known for its ability to establish persistent infections, evade the immune response and integrate its genome into cellular chromosomes. HHV-6A possesses a linear double-stranded DNA genome, the ends of which could be perceived by the cells as double-strand breaks (DSB). DNA damages are detected by the MRN protein complex, composed of MRE11, RAD50 and NBS1 proteins. Activation of this complex leads to the autophosphorylation of the ATM kinase, initiating a signaling cascade aimed at initiating DSBs repair. During infection, the viral replication is likely to be affected by DNA repair mechanisms. Being one the first protein expressed upon infection, we hypothesized that the immediate-early 1 (IE1A) viral protein interferes with the cell's MRN complex to inhibit DSB repair mechanisms. Confocal microscopy studies revealed that the IE1A protein colocalized with the NBS1 protein, and that ectopic expression of IE1A was sufficient in blocking DSB repair pathways. Expression of truncated IE1A proteins identified the amino-terminal domain between 325 and 481 amino acids to be responsible for interaction with the NBS1 protein of the MRN complex. It was also possible to identify that the terminal eight amino acids of the IE1A carboxy-terminal domain are essentials for inhibition of ATM phosphorylation of H2AX. This work highlighted the ability of IE1A to interfere with DSB repair mechanisms. Eventually, recombinant HHV-6A viruses in which the NBS1-binding and ATM inhibition domains are deleted will be used to study the impact of these mutations on the signaling cascade leading to DNA repair, and the importance of this function in infection and viral genome integration.
|
29 |
La méthylation des arginines : impact sur la fonction de la protéine MRE11 dans le maintien de la stabilité du génomeDéry, Ugo 13 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2007-2008. / Le complexe MRN (MRE11-RAD50-NBS1) est essentiel au maintien de la stabilité du génome chez les eucaryotes supérieurs. Il a été démontré que la sous-unité MRE11 du complexe MRN, qui possède une activité nucléase nécessaire aux mécanismes de réparation des cassures double-brin (CDBs). est méthylée sur les arginines de façon asymétrique. Cette méthylation est effectuée par la protéine PRMT1 et survient sur les arginines du motif GAR (Glycine-Arginine Rich) de la protéine MRE11. Cet événement arrive apparemment avant l'incorporation de MRE11 dans le complexe MRN. Le motif GAR de MRE11 influence la relocalisation in vivo de MRN en réponse aux CDBs. en plus d'affecter la réponse de signalisation des CDBs. De plus, une analyse des mutants ponctuels sur les arginines du motif GAR de MRE11 montre que ces arginines normalement méthylées influencent l'activité nucléase de MRE11 in vitro. Finalement, nous montrons que le domaine GAR de MRE11 permet la liaison de la protéine SMN par son domaine tudor, in vivo et in vitro. Cette interaction suggère la participation de SMN au niveau de la réparation des CDBs, ce qui est supporté par la sensibilité aux CDBs des cellules mutantes pour le gène smnl. Nos résultats démontrent, pour la première fois, une implication possible de SMN dans la réparation de l'ADN.
|
30 |
Implication de la poly (ADP-ribose) polymérase-1 dans la réparation de l'ADN par excision de nucléotides : caractérisation d'une interaction fonctionnelle avec la protéine DDB2Petitclerc, Nancy 20 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2012-2013. / Le dommage à l'ADN provoqué par le rayonnement ultraviolet est réparé par excision de nucleotides (NER). La vitesse de ce mécanisme est réduite lorsque la PARP-1, une enzyme impliquée dans plusieurs autres voies de réparation de l'ADN, est inhibée ou réduite par interférence stable à l'ARN. Ce travail vise à déterminer si cette implication de la PARP-1 transite par la première protéine de reconnaissance du NER : DDB2. Nous avons démontré une augmentation de l'interaction entre la PARP-1, son produit le poly(ADP-ribose) et DDB2 suite à l'irradiation aux UVC, et une quasi abolition de l'interaction entre DDB2 et la PARP-1 suite à l'inhibition catalytique de celle-ci. Cette inhibition, sans affecter le recrutement aux lésions de DDB2, affecte plutôt celui de XPC, la seconde protéine de reconnaissance du NER. Ces résultats suggèrent une coopération entre la PARP-1 et DDB2 dans le NER possiblement impliquée dans le recrutement de XPC aux dommages.
|
Page generated in 0.0967 seconds