• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 17
  • 2
  • 1
  • 1
  • Tagged with
  • 59
  • 59
  • 14
  • 13
  • 12
  • 11
  • 10
  • 10
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

The role of poly(ADP-ribose) polymerase-1 in base excision repair

Woodhouse, Bethany Clare January 2007 (has links)
No description available.
32

Studies on ADP-Ribose Polymer Metabolism in Cultured Mammalian Cells Following DNA Damage

Maharaj, Geeta 05 1900 (has links)
ADP-ribose polymer metabolism has been studied in human cells derived from a patient with Glutamyl Ribose Phosphate Storage Disease (GRPSD) and in mouse C3H1OT1/2 cells following oxidative stress induced by hydrogen peroxide (H202 ). It has been postulated that GRPSD resulted from an abnormality in ADP-ribose polymer metabolism. This study has shown that these cells exhibit reduced poly(ADP ribose) polymerase activity which is proposed to result from modification of the enzyme with ribose phosphate groups. The modification in the polymerase is proposed to be secondary to a defect in either ADP-ribosyl proteinlyase or an overproduction of a cellular phosphodiesterase. The metabolism of ADP-ribose polymers was rapidly altered by H202 and there were independent effects on adenine nucleotide pools. The results suggest that ADP-ribose polymer metabolism is involved in cellular defenses to oxidative stress.
33

ADP-ribosyl-acceptor Hydrolase 3 (ARH3): Structural and Biochemical Insights into Substrate Specificity, Metal Selectivity, and Mechanism of Catalysis

Pourfarjam, Yasin 29 September 2021 (has links)
No description available.
34

BIOCHEMICAL AND STRUCTURAL STUDIES OF PATHOGEN EFFECTORS ASSOCIATED WITH UBIQUITIN ADP-RIBOSYLATION

Zhengrui Zhang (17081689) 02 October 2023 (has links)
<p dir="ltr">Ubiquitination and ADP-ribosylation are reversible post-translational modifications involved in various cellular activities. Pathogens like <i>Legionella pneumophila</i> and <i>Chromobacterium violaceum</i> target host ubiquitin system via modifications involving ADP-ribosylation. Specifically, <i>Legionella pneumophila</i> mediates atypical ubiquitination of host targets using the SidE effector family in a process that involves ubiquitin ADP-ribosylation on arginine 42 as an obligatory step. On the other hand, <i>Chromobacterium violaceum</i> effector CteC ADP-ribosylates threonine 66 of ubiquitin and causes overall blocking of host ubiquitin signaling. Removal of ADP-ribosylation requires (ADP-ribosyl)hydrolases, with macrodomain enzymes being a major family in this category. In the current study, a proteome-wide screening of ubiquitin interactors in the <i>Legionella</i> secreted proteome was performed, which led to the <i>Legionella</i> macrodomain effector MavL as a regulator of the SidE-mediated ubiquitination pathway by reversing the ubiquitin arginine ADP-ribosylation, likely to minimize potential detrimental effects caused by modified ubiquitin. Crystal structure of ADP-ribose-bound MavL was determined, providing structural insights into substrate recognition and catalytic mechanism. Further bioinformatical analyses reveal DUF4804 as a class of MavL-like macrodomain enzymes uniquely selective for mono-ADP-ribosylated arginine residue. The arginine-specific macrodomains are also present in eukaryotes, as exemplified by two previously uncharacterized (ADP-ribosyl)hydrolases in <i>Drosophila melanogaster</i>. Crystal structures of several proteins in this class provide insights into arginine specificity and a shared mode of ADP-ribose interaction distinct from previously characterized macrodomains. The crystal structure of NAD<sup>+</sup>-bound CteC was also determined, which provided insights into its ADP-ribosylation activity and its ubiquitin specificity. Collectively, the studies described here provide biochemical and structural characterizations and mechanistic insights into bacterial effectors associated with ubiquitin ADP-ribosylation.</p>
35

Loss of Tiparp results in aberrant layering of the cerebral cortex

Grimaldi, Giulia, Vagaska, B., Ievglevskyi, O., Kondratskaya, E., Glover, J.C., Matthews, J. 08 November 2019 (has links)
Yes / 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible poly-ADP-ribose polymerase (TIPARP) is an enzyme that adds a single ADP-ribose moiety to itself or other proteins. Tiparp is highly expressed in the brain; however, its function in this organ is unknown. Here, we used Tiparp–/– mice to determine Tiparp’s role in the development of the prefrontal cortex. Loss of Tiparp resulted in an aberrant organization of the mouse cortex, where the upper layers presented increased cell density in the knock-out mice compared with wild type. Tiparp loss predominantly affected the correct distribution and number of GABAergic neurons. Furthermore, neural progenitor cell proliferation was significantly reduced. Neural stem cells (NSCs) derived from Tiparp–/– mice showed a slower rate of migration. Cytoskeletal components, such as α-tubulin are key regulators of neuronal differentiation and cortical development. α-tubulin mono-ADP ribosylation (MAR) levels were reduced in Tiparp–/– cells, suggesting that Tiparp plays a role in the MAR of α-tubulin. Despite the mild phenotype presented by Tiparp–/– mice, our findings reveal an important function for Tiparp and MAR in the correct development of the cortex. Unravelling Tiparp’s role in the cortex, could pave the way to a better understanding of a wide spectrum of neurological diseases which are known to have increased expression of TIPARP. / European Union Seventh Framework Program (FP7-PEOPLE-2013-COFUND) Grant n609020-Scientia Fellows (to G.G.) and by the Johan Throne Holst Foundation and the University of Oslo (J.M.).
36

Fonction de l'AmtB dans la régulation de la nitrogénase chez Rhodobacter capsulatus

Abdelmadjid, Imen 04 1900 (has links)
La fixation de l’azote diatomique est un processus très important à la vie, vu sa nécessité dans la biosynthèse de plusieurs molécules de base; acides aminés, acides nucléiques, etc. La réduction de l’azote en ammoniaque est catalysée par la nitrogénase, une enzyme consommatrice de beaucoup d’énergie étant donné qu’elle nécessite 20 à 30 moles d’ATP pour la réduction d’une mole d’azote. De ce fait une régulation rigoureuse est exigée afin de minimiser le gaspillage d’énergie. Plusieurs systèmes de contrôle sont connus, aussi bien au niveau post-traductionnel que traductionnel. Chez la bactérie photosynthétique pourpre non-sulfureuse R. capsulatus, la régulation de l’activité de la nitrogénase nécessite une panoplie de protéines dont la protéine membranaire AmtB, qui est impliquée dans le transport et la perception d’ammonium, et les protéines PII qui jouent plusieurs rôles clés dans la régulation de l’assimilation d’azote. Suite à l’ajout de l’ammonium dans le milieu, une inhibition réversible de l’activité de la nitrogénase est déclenchée via un mécanisme d’ADP-ribosylation de la nitrogénase. La séquestration de GlnK (une protéine PII) par l’AmtB permet à DraT, une ADP-ribosyltransférase, d’ajouter un groupement ADP-ribose sur la protéine-Fe de la nitrogénase l’empêchant ainsi de former un complexe avec la protéine-MoFe. Donc, le transfert d’électrons est bloqué, engendrant ainsi l’inhibition de l’activité de la nitrogénase qui dure aussi long que la concentration d’azote fixé reste élevé, phénomène appelé le « Switch-off/Switch-on » de la nitrogénase. Dans ce mémoire, pour mieux comprendre ce phénomène de régulation, des mutations ponctuelles au niveau de certains résidus conservés de la protéine AmtB, dont D338, G367, H193 et W237, étaient générées par mutagénèse dirigée, afin d’examiner d’avantage leur rôle dans le transport d’ammonium, la formation du complexe AmtB-GlnK, ainsi que dans le « Switch-off » et l’ADP-ribosylation. Les résultats permettent de conclure l’importance et la nécessité de certains résidus telle que le G367 dans la régulation de la nitrogénase et le transport d’ammonium, contrairement au résidu D338 qui ne semble pas être impliqué directement dans la régulation de l’activité de la nitrogénase. Ces résultats suggèrent d’autres hypothèses sur les rôles des acides aminés spécifiques d’AmtB dans ses fonctions comme transporteur et senseur d’ammonium. / The reduction of diatomic nitrogen is a very important biological process given the need of all organisms for fixed nitrogen for the biosynthesis of basic key molecules such as, amino acids, nucleic acids, etc.. The reduction of nitrogen to ammonia is catalyzed by nitrogenase, an enzyme with high energy demands since it requires 20 to 30 moles of ATP for the reduction of one mole of nitrogen. Therefore a strict control is required to minimize energy waste. Several systems of regulation are known, both at the translational and post-translational level. In the purple non-sulfur photosynthetic bacterium R. capsulatus, the post-translational regulation of nitrogenase activity requires an array of proteins, including; the membrane protein AmtB, implicated in the perception and transport of ammonium, and PII proteins, which play key roles in the regulation of nitrogen assimilation. Following the addition of ammonium to the medium nitrogenase activity is reversibly inhibited (nitrogenase switch-off) via a mechanism of ADP-ribosylation of nitrogenase. Sequestration of GlnK (PII protein) by AmtB allows DraT, an ADP-ribosyltransferase, to add an ADP-ribose group to the Fe protein preventing it from forming a complex with the MoFe protein and nitrogenase activity is consequently inhibited. To better understand this phenomenon, in this Master’s thesis point mutations were created by site-directed mutagenesis at specific conserved residues of the AmtB protein, namely, D338, G367, H193 and W237, in order to examine their role in ammonium transport, formation of an AmtB-GlnK complex, and the regulation of nitrogenase (Switch-off/ADP-ribosylation). Plasmid-borne mutant alleles were transferred to a ∆AmtB strain of R. capsulatus, and the resultant strains were subjected to a series of tests. These demonstrated the importance and necessity of certain residues, such as G367, in the regulation of nitrogenase and ammonium transport, in contrast to residue D338, which seems to have no direct role in the regulation of nitrogenase activity. These results suggest further hypotheses about the roles of specific amino acids of AmtB in its functions as a sensor and transporter for ammonium.
37

Caracterização funcional dos genes codificadores de proteínas ADP-Ribosylation Factor no fungo filamentoso patogênico Aspergillus fumigatus / Functional characterization of the genes which encodes ADP-Ribosylation Factor protein of the pathogenic filamentous fungus Aspergillus fumigatus

Paziani, Mario Henrique 16 December 2016 (has links)
Os fungos filamentosos passam por um crescimento polarizado, desde a germinação ao alongamento das hifas, até formar um complexo micélio. A região apical do crescimento polarizado do fungo apresenta dois tipos diferentes de vesículas, entre elas, as microvesículas. As ADP-ribosylation factors (ARFs), são proteínas monoméricas ligadoras de GTP e pertence ao grupo de proteínas da superfamília Ras. Essas proteínas são divididas em cinco famílias: ARF, RAB, RAN, RAS e RHO que formam um conjunto de sub-sistemas que são responsáveis, entre outras funções, pela regulação do transporte de vesículas no interior da célula fúngica, entre outras funções, como transduções de sinais e regulação do tráfego vesicular na região de crescimento apical, o spitzenkörper. São proteínas de ancoramento e de marcação de vesículas, envolvidas no tráfego, catálise e fusão por meio de sinalização de membrana-alvo para as vesículas de transporte transmembrana. As ARF são importantes para o crescimento das hifas, além de participar da montagem de vesículas por meio de endocitoses, do transporte destas vesículas entre as organelas e na exocitose. Adicionalmente, as ARFs sofrem o processo de N-miristoilação, uma irreversível lipidação proteica em que o miristato do miristoil CoA é covalentemente ligado a uma glicina secundária da proteína alvo, aumentando a sua hidrofobicidade. Além desta regulação, as ARFs são moduladas pela ação das ARF-GAP (GTPase Activating Protein) e ARF-GEFs (Guanine nucleotide Exchange Factor). Neste trabalho foi proposta a deleção de três ARFs preditivamente miristoiladas (arfA, arfB and arlA), além de dupla-deleção com ?gcsA (ARF-GAP) e a caracterização genotípica e fenotípica das ADP ribosylation fator no fungo filamentoso patogênico Aspergillus fumigatus. Como caracterização das linhagens deletadas, notou-se que arfA demonstra ser essencial para A. fumigatus, enquanto que o fungo foi capaz de se desenvolver na ausência de arfB, arlA e duplo mutantes com ?gcsA. Porém, de forma alternada nas linhagens mutantes, houve redução do diâmetro da colônia, desestruturação de conidióforos, polarização dicotômica e redução de corpos lipídicos na região de crescimento apical. Além das alterações da parede celular que implicou em altações na carga de superfície, formação de biofilme e virulência. Testes de sensibilidades, bem como as análises de níveis de expressão gênica frente a a compostos danosos a eucariotos e antifúngicos evidenciaram que as ARFs e GcsA estão envolvidas em reparos a danos frente a diferentes alvos citoplasmáticos. Ainda, a localização das ARFs fusionadas com GFP (Green Flourescence Protein) em A. fumigatus evidenciou que ArfB está nas regiões apicais das hifas e conidióforos, enquanto ArlA está distribuído em todo citoplasma. Portanto as ARFs em A. fumigatus estão envolvidas nos processos básicos do fungo, como: o crescimento, a virulência e a reprodução / The filamentous fungi undergo polarized growth, from germination to hyphae elongation, to form a mycelial complex. The apical region of the polarized growth of the fungus presents two different types of vesicles, among them, the microvesicles. ADP-ribosylation factors (ARFs) are monomeric GTP-binding proteins and belong to a group of superfamily Ras proteins. These proteins are divided into five families: ARF, RAB, RAN, RAS and RHO that form a set of subsystems that are responsible, over others things, for the regulation of vesicle transport within the fungal cell, among other functions, such as signal transduction and regulation of the vesicular traffic in the apical growth region, the Spitzenkörper. They are anchoring and vesicle marking proteins involved in trafficking, catalysis and fusion by means of target membrane signaling to the transmembrane transport vesicles. ARFs are important for the growth of hyphae, besides participating in vesicle assembly through endocytosis, the transport of these vesicles between the organelles and exocytosis. In addition, the ARFs undergo the N-myristoylation process, an irreversible protein lipidation in which the myristoyl CoA myristate is covalently linked to a secondary glycine of the target protein, increasing its hydrophobicity. In addition to this regulation, the Arfs are modulated by the action of Arf-GAP (GTPase Activating Protein) and ARF-GEFs (Guanine nucleotide Exchange Factor). In this work, the deletion of three myristoylated ARFs (arfA, arfB and arlA), as well as double-deletion with ?gcsA (ARF-GAP) and phenotypic and genotypic characterization of ADP ribosylation fator in the pathogenic fungus Aspergillus fumigatus was proposed. As a characterization of the deleted strains, arfA shown to be essential for A. fumigatus, whereas the fungus was able to develop in the absence of arfB, arlA and double mutants with ?gcsA. However, in the mutant strains, there was a decrease in colony diameter, deconjugation of conidiophores, dichotomous polarization and reduction of lipid bodies in the apical growth region. In addition, cell wall changes were registered that implied in surface charge elevations, biofilm formation and virulence. In tests of sensitivities, as well as the analysis of levels of gene expression against compounds harmful to eukaryotes and antifungals showed that ARFs and GcsA (Arf-GAP) are involved in damage repair against different cytoplasmic targets. Furthermore, the location of the GFP-fused GFPs (Green Flourescence Protein) in A. fumigatus evidenced that ArfB is in the apical regions of the hyphae and conidiophores, while ArlA is diffuse in every cytoplasm. Therefore, the ARFs in A. fumigatus are involved in the basic processes of the fungus, such as growth, virulence and reproduction
38

Fonction de l'AmtB dans la régulation de la nitrogénase chez Rhodobacter capsulatus

Abdelmadjid, Imen 04 1900 (has links)
La fixation de l’azote diatomique est un processus très important à la vie, vu sa nécessité dans la biosynthèse de plusieurs molécules de base; acides aminés, acides nucléiques, etc. La réduction de l’azote en ammoniaque est catalysée par la nitrogénase, une enzyme consommatrice de beaucoup d’énergie étant donné qu’elle nécessite 20 à 30 moles d’ATP pour la réduction d’une mole d’azote. De ce fait une régulation rigoureuse est exigée afin de minimiser le gaspillage d’énergie. Plusieurs systèmes de contrôle sont connus, aussi bien au niveau post-traductionnel que traductionnel. Chez la bactérie photosynthétique pourpre non-sulfureuse R. capsulatus, la régulation de l’activité de la nitrogénase nécessite une panoplie de protéines dont la protéine membranaire AmtB, qui est impliquée dans le transport et la perception d’ammonium, et les protéines PII qui jouent plusieurs rôles clés dans la régulation de l’assimilation d’azote. Suite à l’ajout de l’ammonium dans le milieu, une inhibition réversible de l’activité de la nitrogénase est déclenchée via un mécanisme d’ADP-ribosylation de la nitrogénase. La séquestration de GlnK (une protéine PII) par l’AmtB permet à DraT, une ADP-ribosyltransférase, d’ajouter un groupement ADP-ribose sur la protéine-Fe de la nitrogénase l’empêchant ainsi de former un complexe avec la protéine-MoFe. Donc, le transfert d’électrons est bloqué, engendrant ainsi l’inhibition de l’activité de la nitrogénase qui dure aussi long que la concentration d’azote fixé reste élevé, phénomène appelé le « Switch-off/Switch-on » de la nitrogénase. Dans ce mémoire, pour mieux comprendre ce phénomène de régulation, des mutations ponctuelles au niveau de certains résidus conservés de la protéine AmtB, dont D338, G367, H193 et W237, étaient générées par mutagénèse dirigée, afin d’examiner d’avantage leur rôle dans le transport d’ammonium, la formation du complexe AmtB-GlnK, ainsi que dans le « Switch-off » et l’ADP-ribosylation. Les résultats permettent de conclure l’importance et la nécessité de certains résidus telle que le G367 dans la régulation de la nitrogénase et le transport d’ammonium, contrairement au résidu D338 qui ne semble pas être impliqué directement dans la régulation de l’activité de la nitrogénase. Ces résultats suggèrent d’autres hypothèses sur les rôles des acides aminés spécifiques d’AmtB dans ses fonctions comme transporteur et senseur d’ammonium. / The reduction of diatomic nitrogen is a very important biological process given the need of all organisms for fixed nitrogen for the biosynthesis of basic key molecules such as, amino acids, nucleic acids, etc.. The reduction of nitrogen to ammonia is catalyzed by nitrogenase, an enzyme with high energy demands since it requires 20 to 30 moles of ATP for the reduction of one mole of nitrogen. Therefore a strict control is required to minimize energy waste. Several systems of regulation are known, both at the translational and post-translational level. In the purple non-sulfur photosynthetic bacterium R. capsulatus, the post-translational regulation of nitrogenase activity requires an array of proteins, including; the membrane protein AmtB, implicated in the perception and transport of ammonium, and PII proteins, which play key roles in the regulation of nitrogen assimilation. Following the addition of ammonium to the medium nitrogenase activity is reversibly inhibited (nitrogenase switch-off) via a mechanism of ADP-ribosylation of nitrogenase. Sequestration of GlnK (PII protein) by AmtB allows DraT, an ADP-ribosyltransferase, to add an ADP-ribose group to the Fe protein preventing it from forming a complex with the MoFe protein and nitrogenase activity is consequently inhibited. To better understand this phenomenon, in this Master’s thesis point mutations were created by site-directed mutagenesis at specific conserved residues of the AmtB protein, namely, D338, G367, H193 and W237, in order to examine their role in ammonium transport, formation of an AmtB-GlnK complex, and the regulation of nitrogenase (Switch-off/ADP-ribosylation). Plasmid-borne mutant alleles were transferred to a ∆AmtB strain of R. capsulatus, and the resultant strains were subjected to a series of tests. These demonstrated the importance and necessity of certain residues, such as G367, in the regulation of nitrogenase and ammonium transport, in contrast to residue D338, which seems to have no direct role in the regulation of nitrogenase activity. These results suggest further hypotheses about the roles of specific amino acids of AmtB in its functions as a sensor and transporter for ammonium.
39

Rôle de l'AmtB dans la régulation de la nitrogénase et la production d'hydrogène chez la bactérie Rhodobacter capsulatus

Boukharouba, Narimane 12 1900 (has links)
L’azote est l’élément le plus abondant dans l’atmosphère terrestre avec un pourcentage atteignant 78 %. Composant essentiel pour la biosynthèse des matériels organiques cellulaires, il est inutilisable sous sa forme diatomique (N2) très stable par la plupart des organismes. Seules les bactéries dites diazotrophiques comme Rhodobacter capsulatus sont capables de fixer l’azote moléculaire N2 par le biais de la synthèse d’une enzyme, la nitrogénase. Cette dernière catalyse la réduction du N2 en ammonium (NH4) qui peut alors être assimilé par d’autres organismes. La synthèse et l’activité de la nitrogénase consomment beaucoup d’énergie ce qui implique une régulation rigoureuse et son inhibition tant qu’une quantité suffisante d’ammonium est disponible. Parmi les protéines impliquées dans cette régulation, la protéine d’intérêt AmtB est un transporteur membranaire responsable de la perception et le transport de l’ammonium. Chez R. capsulatus, il a été démontré que suite à l’addition de l’ammonium, l’AmtB inhibe de façon réversible (switch off/switch on) l’activité de la nitrogénase en séquestrant la protéine PII GlnK accompagnée de l’ajout d’un groupement ADP ribose sur la sous unités Fe de l’enzyme par DraT. De plus, la formation de ce complexe à lui seul ne serait pas suffisant pour cette inactivation, ce qui suggère la séquestration d’une troisième protéine, DraG, afin d’inhiber son action qui consiste à enlever l’ADP ribose de la nitrogénase et donc sa réactivation. Afin de mieux comprendre le fonctionnement de l’AmtB dans la régulation et le transport de l’ammonium à un niveau moléculaire et par la même occasion la fixation de l’azote, le premier volet de ce mémoire a été d’introduire une mutation ponctuelle par mutagénèse dirigée au niveau du résidu conservé W237 de l’AmtB. La production d’hydrogène est un autre aspect longtemps étudié chez R. capsulatus. Cette bactérie est capable de produire de l’hydrogène à partir de composés organiques par photofermentation suite à l’intervention exclusive de la nitrogénase. Plusieurs études ont été entreprises afin d’améliorer la production d’hydrogène. Certaines d’entre elles se sont intéressées à déterminer les conditions optimales qui confèrent une production maximale de gaz tandis que d’autres s’intéressent au fonctionnement de la bactérie elle même. Ainsi, le fait que la bioproduction de H2 par fermentation soit catalysée par la nitrogénase cela implique la régulation de l’activité de cette dernière par différents mécanismes dont le switch off par ADP ribosylation de l’enzyme. De ce fait, un mutant de R. capsulatus dépourvu d’AmtB (DG9) a été étudié dans la deuxième partie de cette thèse en termes d’activité de la nitrogénase, de sa modification par ADP ribosylation avec la détection des deux protéines GlnK et DraG qui interviennent dans cette régulation pour connaitre l’influence de différents acides aminés sur la régulation de la nitrogénase et pour l‘utilisation future de cette souche dans la production d’H2 car R. capsulatus produit de l’hydrogène par photofermentation grâce à cette enzyme. Les résultats obtenus ont révélé une activité de la nitrogénase continue et ininterrompue lorsque l’AmtB est absent avec une activité maximale quand la proline est utilisée comme source d’azote durant la culture bactérienne ce qui implique donc que l’abolition de l’activité de cette protéine entraine une production continue d’H2 chez R. capsulatus lorsque la proline est utilisée comme source d’azote lors de la culture bactérienne. Par ailleurs, avec des Western blots on a pu déterminer l’absence de régulation par ADP ribosylation ainsi que les expressions respectives de GlnK et DraG inchangées entre R. capsulatus sauvage et muté. En conclusion, la nitrogénase n’est pas modifiée et inhibée lorsque l’amtB est muté ce qui fait de la souche R. capsulatus DG9 un candidat idéal pour la production de biohydrogène en particulier lorsque du glucose et de la proline sont respectivement utilisés comme source de carbone et d'azote pour la croissance. / Nitrogen is the most abundant element in the Earth's atmosphere with a percentage of 78 %. This element is essential for the biosynthesis of cellular organic material and is unusable in its stable diatomic form (N2) by most organisms. Only bacteria called diazotrophs such as Rhodobacter capsulatus are able to fix molecular nitrogen N2 through the synthesis of the nitrogenase enzyme. The latter catalyzes the reduction of N2 to NH4 which can then be absorbed by other organisms. The synthesis and activity of nitrogenase consumes a lot of energy and therefore implies a strict regulation and its inhibition when a sufficient amount of ammonium is available. Among the proteins involved in this regulation, is the membrane transporter AmtB which is responsible for the sensing and transportation of ammonia. In R. capsulatus, it was shown that following the addition of ammonium, AmtB reversibly inhibits (switch off / switch on) nitrogenase activity by sequestering the PII protein GlnK accompanied by the addition of an ADP ribose group onto the Fe subunit of the enzyme by DraT. In addition, the formation of this complex alone would not be sufficient for this inactivation, suggesting the sequestration of a third protein, DraG is required to inhibit its action of removing the ADP ribose from the nitrogenase and therefore its reactivation. To better understand the role of the AmtB in the fixation of nitrogen, regulation and transport of ammonium at the molecular level, the first part of this study was to introduce a point mutation by directed mutagenesis in the conserved residue W237 of AmtB . Hydrogen production is another property of R. capsulatus that has been studied for a long time. This bacterium is capable of producing hydrogen from organic compounds following photofermentation and the exclusive enzymatic intervention of nitrogenase. Several studies have been undertaken to improve the production of hydrogen. Some of them were involved in determining the optimum conditions that give maximum gas production while others were interested in improving the growth of the bacterium itself. Thus, since the bio-production of H2 by fermentation is catalyzed by the nitrogenase, it is important to study the regulation of the activity of this enzyme by different mechanisms such as the switch off by ADP ribosylation. Therefore, a mutant of R. capsulatus (DG9) lacking AmtB was studied in the second part of this thesis for its nitrogenase activity, its modification by GlnK-DraG, and to see the effects of different amino acids used in the growth medium on the regulation and therefore the future use of this strain for the production of H2. The results showed a continuous and uninterrupted activity of the nitrogenase when AmtB was absent with a maximum activity when proline was used as a nitrogen source for bacterial growth. In addition, Western blots were used to demonstrate the effect of ADP ribosylation on regulation and that the expression of GlnK and DraG were unchanged between the wild –type and mutant R. capsulatus. In conclusion, nitrogenase is not modified or inhibited when mutated amtB what makes the R. capsulatus strain DG9 an ideal candidate for biohydrogen production especially when glucose and proline are respectively used as source carbon and nitrogen for growth.
40

Cellular targets of Pseudomonas aeruginosa toxin Exoenzyme S

Henriksson, Maria January 2003 (has links)
<p><i>Pseudomonas aeruginosa</i> is an opportunistic pathogen that can cause life-threatening infections in immunocompromised patients. It uses a type III secretion dependent mechanism to translocate toxic effector proteins directly into the eukaryotic cell. The enzymatic activity of two of these toxins, Exoenzyme S (ExoS) and Exoenzyme T (ExoT), have been studied in this thesis. ExoS is a bi-functional toxin known to contain a C-terminal ADP-ribosyltransferase activity, which has been shown to modify members of the Ras family in vitro. The N-terminal of ExoS contains a GTPase Activating Protein (GAP) domain, which shows specificity towards Rho proteins in vitro. ExoT shows high homology (76%) towards ExoS and has also been reported to contain ADP-ribosyltransferase activity <i>in vitro</i>. To study the biological effect of the two toxins, we inserted ExoS or ExoT into eukaryotic cells using the heterologous type III secretion system of <i>Yersinia pseudotuberculosis</i>. We found that Ras was ADP-ribosylated <i>in vivo</i> and this modification altered the ratio of GTP/GDP bound directly to Ras. We also found that ExoS could ADP-ribosylate several members of the Ras superfamily <i>in vivo</i>, modulating the activity of those proteins. In contrast, ExoT showed no ADP-ribosylation activity towards any of the GTPases tested. This suggests that ExoS is the major ADP-ribosyltransferase modulating small GTPase function encoded by <i>P. aeruginosa</i>. Furthermore, we have demonstrated that the GAP activity of ExoS abolishes the activation of RhoA, Cdc42 and Rap1 <i>in vivo</i>, and that ExoT shows GAP activity towards RhoA <i>in vitro</i>. </p><p>The ADP-ribosyltransferase activity of ExoS is dependent on the eukaryotic protein 14-3-3. 14-3-3 proteins interact with ExoS in a phospho-independent manner. We identified the amino acids <sup>424</sup>DALDL<sup>428</sup> on ExoS to be necessary for the specific interaction between ExoS and 14-3-3. Deletion of these five amino acids abolishes the ADP-ribosylation of Ras and hence the cytotoxic effect of P. aeruginosa on cells. Thus the 14-3-3 binding motif on ExoS appears to be critical for both the ADP-ribosylation activity and the cytotoxic action of ExoS <i>in vivo</i>.</p>

Page generated in 0.4842 seconds