• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 139
  • 30
  • 12
  • 8
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 261
  • 49
  • 42
  • 35
  • 31
  • 31
  • 30
  • 28
  • 25
  • 21
  • 19
  • 19
  • 19
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Investigating landscape change and ecological restoration: an integrated approach using historical ecology and GIS in Waterton Lakes National Park, Alberta

Levesque, Lisa Marie 02 September 2005 (has links)
This thesis examines landscape change from 1889 to the present within the foothills-parkland ecoregion of Waterton Lakes National Park (WLNP) in southwestern Alberta, Canada. Land cover dynamics are explored qualitatively and quantitatively using Geographical Information Systems and a combination of historical and contemporary data sources including: (1) Dominion Land Survey (DLS) transect records (1889), (2) repeat oblique photographs (1914 and 2004) and repeat aerial photography (1939 and 1999). Results indicate a consistent increase in woody vegetation cover, particularly aspen forest cover, within the foothills-parkland since 1889, largely at the expense of native grasslands. The primary drivers of these changes likely include: climatic influences, changes to the historical grazing regime, the suppression of natural fire cycles and the cessation of First Nations’ land management practices. This research illustrates the value of integrating multiple historical data sources for studying landscape change in the Canadian Rockies, and explores the implications of this change for ecological restoration in the foothills-parkland of WLNP.
242

Investigating landscape change and ecological restoration: an integrated approach using historical ecology and GIS in Waterton Lakes National Park, Alberta

Levesque, Lisa Marie 02 September 2005 (has links)
This thesis examines landscape change from 1889 to the present within the foothills-parkland ecoregion of Waterton Lakes National Park (WLNP) in southwestern Alberta, Canada. Land cover dynamics are explored qualitatively and quantitatively using Geographical Information Systems and a combination of historical and contemporary data sources including: (1) Dominion Land Survey (DLS) transect records (1889), (2) repeat oblique photographs (1914 and 2004) and repeat aerial photography (1939 and 1999). Results indicate a consistent increase in woody vegetation cover, particularly aspen forest cover, within the foothills-parkland since 1889, largely at the expense of native grasslands. The primary drivers of these changes likely include: climatic influences, changes to the historical grazing regime, the suppression of natural fire cycles and the cessation of First Nations’ land management practices. This research illustrates the value of integrating multiple historical data sources for studying landscape change in the Canadian Rockies, and explores the implications of this change for ecological restoration in the foothills-parkland of WLNP.
243

Endogenous haemoglobins and heterologous <em>Vitreoscilla</em> haemoglobin in hybrid aspen

Jokipii-Lukkari, S. (Soile) 19 April 2011 (has links)
Abstract In plants, there are at least three types of haemoglobins (Hbs): symbiotic, non-symbiotic and truncated. Symbiotic Hbs are known to participate in nitrogen fixation, but the roles of the latter two groups are more obscure. Previous reports have connected both plant non-symbiotic and truncated Hbs to the scavenging of an important signal molecule, nitric oxide (NO). The aim of the present thesis was to study the effects of a bacterial Hb of Vitreoscilla sp. (VHb) on a woody model organism, hybrid aspen (Populus tremula x tremuloides), and the role of endogenous hybrid aspen Hbs. To store the produced hybrid aspen lines, the suitability of different cryopreservation methods was also tested. VHb-expressing hybrid aspens were generated by Agrobacterium-mediated gene transfer. The effects of VHb expression were examined in standard greenhouse conditions, under elevated UV-B light as well as during culture with ectomycorrhizal fungi. Both slow cooling and vitrification methods were applied in cryostoring samples of the different genetic backgrounds. Hybrid aspen non-symbiotic and truncated Hb genes PttHb1 and PttTrHb, respectively, were also isolated. The function of the genes and corresponding proteins PttHb1 and PttTrHb were studied using non-transgenic and VHb hybrid aspen lines as well as a mutant yeast (Saccharomyces cerevisiae) defective in NO resistance. VHb expression did not improve the general growth of hybrid aspen but resulted in enhanced starch accumulation in chloroplasts, pointing to changes in energy metabolism. Of the studied cryopreservation protocols, the slow cooling of dormant in vivo buds proved to be the most feasible way of cryostoring hybrid aspen lines. The culture with the ectomycorrhizal fungus was shown to increase the expression of both PttHb1 and PttTrHb in the roots of non-transgenic lines. However, the fungi did not up-regulate the hybrid aspen Hb genes in the VHb lines. Therefore, it is hypothesized that endogenous Hbs may contribute to the growth of roots and that VHb may compensate this function. When expressed alone in the mutant yeast, the recombinant PttHb1 and PttTrHb did not protect cells against the toxicity of NO. Subsequently, a novel mRNA transcript of the heterotrophic ferredoxin NADP+ oxidoreductase gene PtthFNR was found. The absence of a plastid presequence in the transcript suggests targeting of the encoded protein into cytosol. The coexpression of PttHb1 and cytosolic PtthFNR partially rescued the mutant yeast during NO treatment, demonstrating for the first time that plant Hb1 with an applicable reductase scavenges NO in vivo at a physiologically relevant rate. This thesis extends current knowledge about plant Hbs and the effects of VHb on a phenotype of a tree. It also provides new information about plant ferredoxin reductase genes. / Tiivistelmä Kasvihemoglobiinit jaetaan symbioottisiin, ei-symbioottisiin sekä ns. katkaistuihin eli truncated-hemoglobiineihin. Symbioottisten hemoglobiinien tiedetään osallistuvan typen sitomiseen, kun taas kahden muun ryhmän toiminta tunnetaan heikosti. Aiemmissa tutkimuksissa ei-symbioottiset ja truncated-hemoglobiinit on yhdistetty tärkeän signaalimolekyylin, typpimonoksidin (NO), haitallisuuden vähentämiseen. Tämän työn tarkoituksena oli tutkia Vitreoscilla sp. -bakteerin VHb-hemoglobiinin vaikutuksia puuvartiseen mallikasviin, hybridihaapaan (Populus tremula x tremuloides), sekä hybridihaavan omien hemoglobiinien merkitystä. Lisäksi työssä kokeiltiin eri nestetyppisäilytysmenetelmiä hybridihaapalinjojen varastoimiseksi. VHb:tä ilmentävät hybridihaavat tuotettiin Agrobacterium-välitteisellä geeninsiirrolla. VHb:n vaikutuksia tutkittiin kasvihuoneolosuhteissa, kohotetussa UV-B-säteilyssä sekä sienijuurikasvatuksen aikana. Eri linjojen nestetyppisäilytykseen sovellettiin sekä hidasta että nopeaa jäähdytystä. Tutkimuksissa myös eristettiin hybridihaavan PttHb1- ja PttTrHb-hemoglobiinigeenit. Näiden geenien sekä niiden koodaamien PttHb1- ja PttTrHb-proteiinien toimintaa tutkittiin siirtogeenittömien ja VHb-hybridihaapalinjojen sekä NO-herkän hiivamutantin (Saccharomyces cerevisiae) avulla. VHb-ilmennys ei parantanut hybridihaavan kasvua, mutta lisäsi tärkkelyksen kertymistä viherhiukkasiin, mikä viittaa muutoksiin energia-aineenvaihdunnassa. Tutkituista menetelmistä parhaiten hybridihaapalinjojen nestetyppisäilytykseen soveltui lepovaiheessa olevien in vivo -silmujen hidas jäähdytys. Toisin kuin VHb-kasveissa, sienijuurikasvatus voimisti sekä PttHb1:n että PttTrHb:n ilmenemistä siirtogeenittömien hybridihaapojen juurissa. Tästä johtuen esitettiin, että hybridihaavan hemoglobiinit voivat vaikuttaa juurien kasvuun ja VHb pystyy korvaamaan tämän toiminnon. Kun PttHb1 ja PttTrHb ilmennettiin yksin mutanttihiivassa, proteiinit eivät suojanneet soluja NO:n myrkyllisyydeltä. Tämän jälkeen työssä kuvattiin heterotrofisen ferredoksiini-NADP+-oksidoreduktaasi-geenin PtthFNR:n uusi mRNA-muoto. Plastidiin ohjaavan sekvenssin puuttuminen geenituotteesta viittaa siihen, että mRNA:n koodaama proteiini sijoittuu solulimaan. PttHb1:n ja PtthFNR:n yhtäaikainen ilmentäminen mutanttihiivassa paransi solujen elossa säilymistä NO-käsittelyn aikana, mikä osoittaa ensimmäistä kertaa, että kasvin Hb1 pystyy sopivan reduktaasin kanssa vähentämään NO-pitoisuutta elävässä eliössä. Tämä työ laajentaa tietämystä kasvihemoglobiineista sekä VHb:n vaikutuksesta puiden ilmiasuun. Työ myös lisää tietoa kasvien ferredoksiinireduktaasi-geeneistä.
244

Impacts of global change on the biogeochemical cycling of water and nutrients in the soil-plant system and consequences for vegetation growth in south-western Siberia / Impacts du changement global sur les cycles biogéochimiques de l’eau et des nutriments dans le système sol–plante et conséquences pour la croissance de la végétation en Sibérie du sud-ouest

Brédoire, Félix 31 March 2016 (has links)
Dans un contexte de changement global, prédire l’évolution de la productivité de la végétation dans le sud-ouest (SO) Sibérien reste un défi du fait d’incertitudes fortes sur les processus régulant la disponibilité en eau et en nutriments. Nous avons mis en évidence des relations entre cycles biogéochimiques, climat et propriétés du sol sur six sites contrastés.La croissance radiale des tiges de peuplier est principalement sensible au bilan hydrique du sol en forêt de steppe, au sud du SO Sibérien, alors qu’elle est stimulée par de hautes températures estivales en sub-taïga, dans le nord de la région.Des mesures de terrain et des simulations du bilan hydrique du sol ont montré que la fonte des neiges est importante pour la recharge des réserves hydriques du sol au sud. Au nord, ces réserves sont souvent rechargées en automne. La fonte des neiges est alors associée à du drainage. De plus, au nord, une épaisse couverture de neige protège le sol du gel en hiver. La distribution des racines fines est plus profonde en forêt de steppe qu’en sub-taïga, impactée par le déficit hydrique et le gel.L’homogénéité du statut en phosphore (P) des sols dans le SO Sibérien montre qu’il n’est pas encore très impacté par la pédogénèse. Les stocks en P élevés, notammen tles formes disponibles pour les plantes, suggèrent que le P n’est pas et ne sera pas limitant dans le futur.La décomposition des litières aériennes et la libération de l’azote (N) sont plus rapides en sub-taïga qu’en forêt de steppe. Un fort drainage pourrait expliquer un transfert profond du N dans les sols en sub-taïga. Cependant ces sols semblent efficaces pour retenir le N, limitant les pertes pour le système sol–plante. / Predicting the evolution of vegetation productivity in SW Siberia in the contextof global change remains a challenge because of major uncertainties concerningthe biogeochemical cycling and the plant-availability of water and nutrients. Weprovided insights on their relation to climate and soil properties, investigating sixcontrasting sites.Aspen stem radial growth is mainly sensitive to soil water budget in the foreststeppezone established in the south of SW Siberia while it is enhanced by highsummer temperatures in the sub-taiga, in the north of the region.Field measurements and water budget simulations revealed that snow-melt isimportant re-filling soil water reserves in the south. In the north, these reservesare mostly re-filled in autumn and snow-melt is associated with drainage. A thicksnow-pack also prevents soil from freezing in winter in the sub-taiga. Water deficitand soil freezing largely impact the distribution of fine roots within the soil profilewhich is deeper in forest-steppe than in sub-taiga.The homogeneous soil phosphorus (P) status in the region investigated revealedthis nutrient has not been yet very impacted by contrasting soil processes. High Pstocks, and in particular plant-available forms, suggest P is unlikely to be limitingunder current and future conditions.By contrast, we found differences in nitrogen (N) status. Above-ground litterdecay and the release of N occurs faster in sub-taiga than in forest-steppe. Higherdrainage may explain deeper N transfer in sub-taiga soils. However, sub-taiga soilsalso seem to be efficient in retaining N, limiting losses from the soil–plant system.
245

Conception et analyse technico-économique de la production de méthanol à partir de la gazéfication des produits de la pyrolyse

Zhang, Zhihai January 2021 (has links) (PDF)
No description available.
246

Novel Fire and Herbivory Regime Impacts on Forest Regeneration and Plant Community Assembly

Tanner, Devri A. 06 December 2023 (has links) (PDF)
Human activities are increasing the occurrence of megafires that have the potential to alter the ecology of forest ecosystems. The objective of this study was to understand the impact of a 610 km2 megafire on patterns of forest regeneration and herbivory of three forest types (aspen/fir, oak/maple, and pinyon/juniper) within the burn scar. Sapling density, meristem removal, and height were measured across a transect network spanning the area of the burn scar over three years from 2019-2021. The network consisted of 17 burned/unburned transect pairs in adjacent burned/unburned forest stands (6 aspen/fir, 5 oak/maple, and 6 pinyon/juniper). Species that regenerated through sprouting generally responded positively to fire while regeneration from seed showed very little post-fire response. Browse pressure was concentrated on deciduous tree species and tended to be greater in burned areas but the effect diminished over time. Meristem removal of sprouting species was below the critical threshold resulting in positive vertical growth across years. Our results indicate that forest regeneration within the megafire scar was generally positive and experienced sustainable levels of ungulate browsing that are likely to result in forest recruitment success. Novel fire regimes are becoming increasingly common and megafires have burned across ecotonal boundaries across multiple forest types. Plant community structure and composition may be critically affected by changing fire regimes. Our objective was to investigate how a megafire that burned across multiple forest types impacted understory plant community assembly and biodiversity. Paired vegetation transects were installed in burned and unburned areas across aspen/fir, oak/maple, and pinyon/juniper forests within the 2018 Pole Creek Megafire burn scar. Percent cover of understory plants was measured in the summer of 2022 and plants were identified to the species level. Richness and diversity indices were then calculated and analyzed using mixed effects models. Fire decreased species richness of the aspen/fir forest understory and increased plant cover in pinyon/juniper forests, while not significantly impacting oak/maple understories. The significant effects of fire were largely driven by changes in forb species. Fire decreased the richness of native plants in aspen/fir forests but increased the richness of non-native plants in oak/maple and pinyon/juniper forests. Non-native plant abundance also increased in post-fire pinyon/juniper forests. Our results suggest that forest understory communities show variable responses to megafires that burn across multiple forest types with important implications for post-fire plant community structure, diversity, and invasibility. Large mammal herbivores (ungulates) are increasing in number and spreading into novel habitats throughout the world. Their impact on forest understory plant communities is strong and varies by herbivore, plant growth form, and season. The objective of this study was to determine the individual and collective herbivory impacts of native versus domestic ungulates on the understory plant community composition of post-fire aspen forests. Four-way fencing treatments were installed in 2012 to separate ungulate species, and Daubenmire frames were used to collect percent cover estimates for each understory plant species. Vegetation data were later used to calculate richness and diversity indices. Total understory plant cover, richness, and diversity were not significantly impacted by the herbivory fencing treatment. However, woody plant species' percent cover was 90% greater in full ungulate exclusion plots than in the fenceless controls. Herbivores likely targeted woody plant species due to their high nutrient levels that last longer into the winter than those of forb or graminoid species. Herbivory treatment did not affect non-native species. Our results indicate that herbivore fencing can protect forest understory plant communities, particularly the woody species. Successful regeneration of woody species can benefit the diversity of the entire understory plant community and preserve forest structure.
247

Integration and Simulation of a Bitumen Upgrading Facility and an IGCC Process with Carbon Capture

El Gemayel, Gemayel 19 September 2012 (has links)
Hydrocracking and hydrotreating are bitumen upgrading technologies designed to enhance fuel quality by decreasing its density, viscosity, boiling point and heteroatom content via hydrogen addition. The aim of this thesis is to model and simulate an upgrading and integrated gasification combined cycle then to evaluate the feasibility of integrating slurry hydrocracking, trickle-bed hydrotreating and residue gasification using the Aspen HYSYS® simulation software. The close-coupling of the bitumen upgrading facilities with gasification should lead to a hydrogen, steam and power self-sufficient upgrading facility with CO2 capture. Hydrocracker residue is first withdrawn from a 100,000 BPD Athabasca bitumen upgrading facility, characterized via ultimate analysis and then fed to a gasification unit where it produces hydrogen that is partially recycled to the hydrocracker and hydrotreaters and partially burned for power production in a high hydrogen combined cycle unit. The integrated design is simulated for a base case of 90% carbon capture utilizing a monoethanolamine (MEA) solvent, and compared to 65% and no carbon capture scenarios. The hydrogen production of the gasification process is evaluated in terms of hydrocracker residue and auxiliary petroleum coke feeds. The power production is determined for various carbon capture cases and for an optimal hydrocracking operation. Hence, the feasibility of the integration of the upgrading process and the IGCC resides in meeting the hydrogen demand of the upgrading facility while producing enough steam and electricity for a power and energy self-sufficient operation, regardless of the extent of carbon capture.
248

Integration and Simulation of a Bitumen Upgrading Facility and an IGCC Process with Carbon Capture

El Gemayel, Gemayel 19 September 2012 (has links)
Hydrocracking and hydrotreating are bitumen upgrading technologies designed to enhance fuel quality by decreasing its density, viscosity, boiling point and heteroatom content via hydrogen addition. The aim of this thesis is to model and simulate an upgrading and integrated gasification combined cycle then to evaluate the feasibility of integrating slurry hydrocracking, trickle-bed hydrotreating and residue gasification using the Aspen HYSYS® simulation software. The close-coupling of the bitumen upgrading facilities with gasification should lead to a hydrogen, steam and power self-sufficient upgrading facility with CO2 capture. Hydrocracker residue is first withdrawn from a 100,000 BPD Athabasca bitumen upgrading facility, characterized via ultimate analysis and then fed to a gasification unit where it produces hydrogen that is partially recycled to the hydrocracker and hydrotreaters and partially burned for power production in a high hydrogen combined cycle unit. The integrated design is simulated for a base case of 90% carbon capture utilizing a monoethanolamine (MEA) solvent, and compared to 65% and no carbon capture scenarios. The hydrogen production of the gasification process is evaluated in terms of hydrocracker residue and auxiliary petroleum coke feeds. The power production is determined for various carbon capture cases and for an optimal hydrocracking operation. Hence, the feasibility of the integration of the upgrading process and the IGCC resides in meeting the hydrogen demand of the upgrading facility while producing enough steam and electricity for a power and energy self-sufficient operation, regardless of the extent of carbon capture.
249

Short-term effects of controlled conservation burning

Rindzevičius, Vytautas January 2014 (has links)
In this study, the immediate and short term (three months) effects of conservation burning have been investigated in coniferous forests in southeastern Sweden. Five tree species were investigated Picea abies (Norway spruce), Pinus sylvestris (Scots pine), Populus tremula (aspen), Betula pendula (silver birch) and Betula pubescens (downy birch), as well as ground vegetation of mosses, dwarf shrubs and ground lichens. Burning increased the proportion of live deciduous tree shoots from 51 % to 81 % and the live tree shoot size distribution of four tree species was significantly changed by fire. Fire affected the tree species differently. Three months after burning deciduous tree species exhibited strong sprouting, while P. sylvestris had established many seedlings, significantly increasing its share of the tree stand. P. abies lacked any visible positive response to burning and its number of live shoots decreased by 83 %. Mineral soil was exposed on only the moss vegetation and covered just 4 % of the studied plot area. The initial vegetation response to fire was negative, but significant dwarf shrub recovery was detected three months after burning.
250

Evolution and Environmental Degradation of Superhydrophobic Aspen and Black Locust Leaf Surfaces

Tranquada, George Christopher 17 July 2013 (has links)
The current study is focused on the characterization of four natural leaf species (quaking, bigtooth and columnar european aspen as well as black locust) possessing a unique dual-scale cuticle structure composed of micro- and nano-scale asperities, which are able to effectively resist wetting (superhydrophobic), characteristic of The Lotus Effect. Scanning Electron Microscopy (SEM) was used to track the growth and evolution of their distinctive nano-scale epicuticular wax (ECW) morphologies over one full growing season. In addition, the stability of their superhydrophobic property was tested in various environments. It was determined that the long-term stability of these surfaces is tentatively linked to various environmental stress factors. Specifically, a combination of high temperature and humidity caused the degradation of nano-scale asperities and loss of the superhydrophobic property. The dual-scale surface structure was found to provide a suitable template for the design of future superhydrophobic engineering materials.

Page generated in 0.2487 seconds