• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 288
  • 156
  • 113
  • 47
  • 19
  • 16
  • 11
  • 8
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 719
  • 719
  • 145
  • 115
  • 114
  • 108
  • 107
  • 101
  • 98
  • 86
  • 84
  • 83
  • 82
  • 78
  • 78
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
421

Quantenchemische Berechnungen von Isotopeneffekten auf NMR-chemische Verschiebungen

Böhm, Karl-Heinz 09 July 2012 (has links)
In der vorliegenden Diplomarbeit wurden sekundäre Isotopeneffekte auf NMR-chemische Verschiebungen mit ab-initio quantenchemischen Methoden bestimmt. Um die zu erwartenden Fehler verschiedener Methoden abschätzen zu können, wurden die sekundären Isotopeneffekte von Fluor(2-2H1)ethan auf HF, MP2 und CCSD(T)-Niveau mit tripel- und quadrupel-Zeta Basissätzen berechnet. Anhand der Ergebnisse dieser Rechnungen lässt sich zeigen, dass gauche und antiperiplanare Konformere bereits mithilfe von sekundären Isotopenverschiebungen unterschieden werden können, die auf HF/tz2p-Niveau berechnet wurden. Weiterhin wurde untersucht, ob es eine Abhängingkeit des Isotopeneffektes von den Diederwinkeln zwischen Deuterium- und Fluorsubstituenten gibt. Die sekundären Isotopeneffekte auf 19F-NMR-chemische Verschiebungen von exo- und endo-2-Fluornorbornanen mit Deuterium Substituenten in den endo-3, exo-3, syn-7 oder anti-7 Positionen wurden auf HF/tz2p-Niveau berechnet. Es wird gezeigt, dass die berechneten Isotopeneffekte an 2-Fluornorbornanen eine Identifizierung der verschiedenen Stereoisomere erlauben. / In the present Diploma thesis secondary isotope effects on NMR chemical shieldings were determined using ab-initio quantum chemical methods. In order to estimate errors of various methods, secondary isotope effects on fluoro(2-2H1)ethane were calculated at the HF, MP2 and CCSD(T) level of theory using triple- and quadruple zeta basis sets. On the basis of these calculations it can be shown that gauche and antiperiplanar conformers can already be distinguished by their secondary isotope shifts calculated at the HF/tz2p level of theory. Furthermore it was investigated, whether a dependency of the isotope effects on dihedral angles between the deuterium and the fluorine substituent exists. The secondary isotope effects on 19F chemical shifts of exo- and endo-2-fluoronorbornanes with deuterium subsituents in the endo-3, exo-3, syn-7 or anti-7 positions were calculated at the HF/tz2p level. It is shown that the calculated isotope effects of 2-fluoronorbornanes allow to identify various stereoisomers.
422

Titanium vacancy diffusion in TiN via non-equilibrium ab initio molecular dynamics

Gambino, Davide January 2016 (has links)
Transition metal nitrides (TMNs) refractory ceramic materials are  widely employed as wear-resistant protective coatings in industrial machining as well as diffusion barriers inhibiting migration of metal impurities from the interconnects to the semiconducting region of electronic devices. TiN is the prototype of this class of materials and the most studied among TMNs. However, also for this system, a complete picture of the migration processes occurring at the atomic scale is still lacking. In this work I investigate the stability of Ti vacancy configurations and corresponding migration rates in TiN by means of density functional theory (DFT) calculations and ab-initio molecular dynamics simulations (AIMD). DFT calculations show that Ti vacancies tend to stay isolated because of repulsive interaction which decreases as the inverse of the distance between the vacancies.The equilibrium jump rate of single Ti vacancies in TiN is extrapolated temperature as a function of temperature from the results of non-equilibrium AIMD simulations accelerated by a bias force field according to the color diffusion algorithm. For each force field and, the jump occurrence times are fitted with the two parameters Gamma distribution in order to obtain the non equilibrium jump rate with the corresponding uncertainty. Extrapolated equilibrium values show an Arrhenius-like behavior, with activation energy Ea= (3.78 ± 0.28)eV and attempt frequency A = 4.45 (x3.6±1) x 1014 s-1.
423

Molecular Motion in Frustrated Lewis Pair Chemistry: insights from modelling

Pu, Maoping January 2015 (has links)
Mechanisms of reactions of the frustrated Lewis pairs (FLPs) with carbon dioxide (CO2) and hydrogen (H2) are studied by using quantum chemical modelling. FLPs are relatively novel chemical systems in which steric effects prevent a Lewis base (LB) from donating its electron pair to a Lewis acid (LA). From the main group of the periodic table, a variety of the electron pair donors and acceptors can create an FLP and the scope of the FLP chemistry is rapidly expanding at present. Representative intermolecular FLPs are phosphines and boranes with bulky electron-donating groups on phosphorus and bulky electron-withdrawing groups on boron – e.g., the tBu3P/B(C6F5)3 pair. The intramolecular FLPs feature linked LB and LA centers in one molecule. Investigations of the FLP reaction mechanisms were carried out using the transition state (TS) and the potential energy surface (PES) calculations plus the Born-Oppenheimer molecular dynamics (BOMD) as an efficient and robust implementation of general ab initio molecular dynamics scheme. In BOMD simulations, quantum and classical mechanics are combined. The electronic structure calculations are fully quantum via the density functional theory (DFT). Molecular motion at finite (non-zero) temperature is explicitly accounted for at non-quantized level via Newton’s equations. Due to recent advancements of computers and algorithms, one can treat fairly large macromolecular systems with BOMD and even include significant portion of the first solvation shell surrounding a large reacting complex in the molecular model. Main results are as follows. It is shown that dynamics is significant for understanding of FLP chemistry. The multiscale nature of motion – i.e., light molecules such as CO2 or H2 versus a pair of heavy LB and LA molecules – affects the evolution of interactions in the reacting complex. Motion which is perpendicular to the reaction coordinate was found to play a role in the transit of the activated complex through the TS-region. Regarding the heterolytic cleavage of H2 by tBu3P/B(C6F5)3 FLP simulated in gas phase and with explicit solvent, it was found that (i) the reaction path includes shallow quasi-minima “imbedded” in the TS-region, and (ii) tBu3P/B(C6F5)3 are almost stationary while proton- and hydride-like fragments of H2 move toward phosphorous and boron respectively. For binding of CO2 by tBu3P/B(C6F5)3 FLP, it was found that (i) the reacting complex can “wander” along the “potential energy wall” that temporarily blocks the path to the product, and (ii) the mechanism can combine the concerted and two-step reaction paths in solution. The discovered two-step binding of CO2 by tBu3P/B(C6F5)3 FLP involves solvent-stabilized phosphorus-carbon interactions (dative bonding). These and other presented results are corroborated and explained using TS and PES calculations. With computations of observable characteristics of reactions, it is pointed out how it could be possible to attain experimental proof of the results. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 6: Accepted.</p><p> </p>
424

Étude par simulations numériques de la plasticité dans les métaux

Clouet, Emmanuel 18 December 2013 (has links) (PDF)
Les activités de recherche, présentées dans le cadre de cette HDR, portent sur l'étude du comportement plastique des métaux à travers un travail de modélisation des propriétés des dislocations. Différents outils de simulation ont été utilisés et développés pour étudier la plasticité dans les métaux servant de matériaux de structure, et plus particulièrement les métaux d'intérêt pour l'industrie nucléaire. Dans les alliages à base de fer ou à base de zirconium, la plasticité est contrôlée à basse température par le glissement des dislocations vis. Les simulations atomiques permettent d'étudier les propriétés de cœur de ces dislocations et ainsi de mieux comprendre et quantifier les mécanismes mis en jeu au cours de leur glissement. Néanmoins, la modélisation des dislocations à cette échelle nécessite des techniques particulières à cause du champ élastique créé à longue distance qu'il est impératif de prendre en compte. Une approche reposant à la fois sur les simulations atomiques (simulations en potentiels empiriques ou calculs ab initio) et la théorie élastique a donc été développée afin de pouvoir simuler à une échelle atomique les dislocations et extraire de ces simulations des données quantitatives transposables aux échelles supérieures. Cette approche a été appliquée au fer, pour décrire la variation des propriétés de cœur des dislocations en fonction de leur caractère, ainsi qu'au zirconium, pour identifier l'origine de la forte friction de réseau observée dans les alliages de zirconium et mieux comprendre la compétition entre les différents systèmes de glissement. À haute température, les mouvements des dislocations autres que le glissement simple deviennent importants pour comprendre le développement de la déformation plastique. La montée, correspondant à un déplacement des dislocations à composante coin dans une direction perpendiculaire à leur plan de glissement, est, avec le glissement dévié, un de ces mécanismes opérant à haute température. Une étude à différentes échelles de la montée des dislocations a été réalisée, permettant d'implémenter ce mouvement de montée dans des codes de dynamique des dislocations, et par conséquent de mieux modéliser la déformation à chaud à l'aide de ces codes.
425

Etude de la structure de verres magnésio-silicatés : approche expérimentale et modélisation

Trcera, Nicolas 05 September 2008 (has links) (PDF)
Le magnésium est l'un des quatre éléments majeurs sur Terre. Il est présent dans différentes proportions dans les verres industriels et naturels (jusqu'à 30 poids% dans les komatiites, verres ultramafiques d'âge archéen). Sa présence semble influencer les propriétés physico-chimiques des verres et tout spécialement leur durabilité. Malgré ce comportement, le magnésium a été relativement peu étudié dans les verres et les études précédentes ont conduit à des contradictions sur son environnement (coordinence 4 et 6 par RMN et en coordinence 5 par diffraction des neutrons). Dans le but de lever ces contradictions, l'étude de la structure des verres magnésio-silicatés et de l'environnement du magnésium a été réalisée en utilisant deux méthodes complémentaires : la spectrométrie Raman et la spectroscopie d'absorption des rayons X. La spectroscopie Raman permet d'obtenir des informations sur la structure des verres telle que la connectivité du réseau silicaté, la variation des angles Si-O-Si ou la modification de la taille des anneaux de silicium. Plus précisément, les variations de la région des spectres Raman comprise entre 800 et 1400 cm-1 illustrent l'évolution du degré de polymérisation des verres en fonction du taux de magnésium, du taux de silicium et de la nature de l'alcalin modificateur de réseau. La spectroscopie d'absorption des rayons X au seuil K du magnésium nous a permis d'accéder à l'environnement spécifique autour de cet ion. Les spectres XANES des verres ont été comparés à ceux de références cristallines contenant du magnésium dans différents environnements (coordinence et nature des voisins notamment). Pour aller au-delà de la méthode dite " d'empreinte digitale ", et extraire des informations structurales pertinentes, les spectres XANES des cristaux et des verres ont été calculés. Les calculs ont été réalisés avec un code basé sur une méthode en ondes planes, dans l'espace réciproque avec l'utilisation de potentiel non muffin-tin. L'utilisation des calculs a permis de mettre en évidence des paramètres structuraux pertinents pour expliquer la position des structures XANES. Pour les verres, les structures initiales utilisées pour les calculs ont été obtenus par dynamique moléculaire classique puis relaxée de façon ab initio. L'environnement du magnésium (coordinence/distorsion) peut varier en fonction de la composition du verre. De ce fait, les interprétations classiquement réalisées des spectres Raman des verres doivent être considérées avec précaution
426

Modélisation quantique des agrégats d'hélium dopés

Jiang, Ji 17 January 2013 (has links) (PDF)
La photo-dissociation d'une molécule comme CH3I dans l'agrégat d'hélium présente un grand intérêt pour comprendre la recombinaison et la solvatation des photo-fragments après la dissociation dans un liquide quantique. Après la recombinaison certaines structures de D@Hen(D= Ar^+, I^q, q= -1, 0, +1, +2) montrent les stabilités particulières avec les nombres magiques bien définis. Notre but ultime est d'étudier théoriquement la dynamique de la photo-dissociation de CH3I dans les agrégats d'hélium et de comparer avec les résultats expérimentaux disponibles dans la littérature. Notre recherche préliminaire est motivée par les données disponibles sur les espèces de couche ouverte comme D@Hen (D= Ar^+, Mg^+) et commence par un test sur notre modèle potentiel analytique pour les systèmes D@Hen à plusieurs corps. Notre modèle inclut les énergies électrostatique classique et quantique de dispersion,et également les énergies de charge/dipôle induit et de dipôle induit/dipôle induit dans le cas où le dopant D est ionique. La représentation analytique de l'interaction D-He est obtenue en fittant les fonctions ayant une forme asymptotique physiquement correcte aux résultats de calculs ab initio corrélés de haut niveau pour la molécule D-He. La matrice "Diatomices-in-Molecules" (DIM) de notre modèle potentiel à plusieurs corps est construite pour les situations avec l'anisotropie électronique et le couplage spin-orbite (SOC) pour l'atome lourd D est inclus dans la base de couplage du type s-l pour l'atome D. Les structures et les énergies de cohésion de systèmes D@Hen sont étudiées en fonction de la taille du système n par la méthode MonteCarlo quantique de diffusion (DMC).De nouvelles sous-routines pour évaluer le potentiel D-He ont été programmées pour le programme DMC existant et une fonction d'essai améliorée a été appliquée dans le calcul DMC
427

Elementary steps in aqueous proton transfer reactions : a first principles molecular dynamics study

Thomas, Vibin 11 1900 (has links)
La nature des acides dans un environnement aqueux est primordiale dans de nombreux aspects de la chimie et de la biologie. La caractéristique principale d'un acide est sa capacité à transférer un proton vers une molécule d'eau ou vers n'importe quelle base, mais ce procédé n'est pas aussi simple qu'il y paraît. Il peut au contraire être extrêmement complexe et dépendre de manière cruciale de la solvatation des différents intermédiaires de réaction impliqués. Cette thèse décrit les études computationnelles basées sur des simulations de dynamique moléculaire ab initio qui ont pour but d'obtenir une description à l'échelle moléculaire des divers procédés de transferts de proton entre acide et bases dans un milieu aqueux. Pour cela, nous avons étudié une serie de système, dont l'acide hydrofluorique aqueux, l'acide trifluoroacétique aqueux, et un système modèle constitué d'un phénol et d'une entité carboxylate reliés entre eux par une molécule d'eau en solution aqueuse. Deux états intermédiaires ont été identifiés pour le transfert d'un proton depuis un acide. Ces intermédiaires apparaissent stabilisés par un motif local de solvatation via des ponts H. Leurs signatures spectroscopiques ont été caractérisées au moyen de la spectroscopie infrarouge, en utilisant le formalisme de la dynamique moléculaire ab initio, qui inclut l'effet quantique nucléaire de manière explicite. Cette étude a aussi identifié trois chemins de réaction élémentaire, qui sont responsable pour le transfert d'un proton d'un acide à une base, ainsi que leurs échelles de temps caractéristiques. Les conclusions tirées de ces études sont discutées dans les détails, au niveau moléculaire, avec une emphase sur les comparaisons entre les résultats théoriques et les mesures expérimentales obtenues dans a littérature ou via des collaborateurs. / The nature of acids in an aqueous environment is fundamental to many aspects of chemistry and biology. The defining feature of an acid is its ability to transfer a proton to water or to any accepting base, but this seemingly simple process can be complex and highly dependent on the solvation involving different reaction intermediate species. This thesis describes computational studies based on first principles molecular dynamics simulations aimed at obtaining molecular-level descriptions of diverse proton transfer process involving acids and bases in liquid water. For that, we have investigated a variety of systems including aqueous hydrofluoric acid, aqueous trifluoroacetic acid and a model system comprising of a phenol and a carboxyate molecule bridged by a water molecule in aqueous solution. Two different intermediate stages of proton transfer from an acid were identified which are found to be stabilized by distinct local H-bond solvation pattern. Their spectroscopic signatures were characterized using infrared spectroscopy computed from first principles molecular dynamics simulations which incorporate nuclear quantum effects explicitly. This study also identified three elementary reaction pathways that are responsible for proton translocation from acid to the base and their characteristic time scales. Conclusions drawn from this study are discussed in molecular detail, highlighting experimental comparisons.
428

Toughness enhancement in transition metal nitrides

Sangiovanni, Davide Giuseppe January 2011 (has links)
Toughness enhancements can be induced in cubic-B1 transition metal nitride alloys by an increased occupation of the d-t2g metallic states. In this Licentiate Thesis I use density functional theory to investigate the mechanical properties of TiN and VN and of the ternaries obtained by replacing 50% of Ti and V atoms with M (M = V, Nb, Ta, Mo, and W) to form ordered structures with minimum number of inter-metallic bonds. The calculated values of elastic constants and moduli show that ternary alloys with high valence electron concentrations (M = Mo and W), have large reductions in shear moduli and C44 elastic constants, while retaining the typically high stiffness and incompressibility of ceramic materials. These results point to significantly improved ductility in the ternary compounds. This important combination of strength and ductility, which equates to material toughness, stems from alloying with valence electron richer dmetals. The increased valence electron concentration strengthens metal–metal bonds by filling metallic d-t2g states, and leads to the formation of a layered electronic configuration upon shearing. Comprehensive electronic structure calculations demonstrate that in these crystals, stronger Ti/V – N and weaker M – N bonds are formed as the valence electron concentration is increased. This phenomenon ultimately enhances ductility by promoting dislocation glide through the activation of an easy slip system.
429

The ground and excited state molecular structure of model systems undergoing photochemical processes and the characterization of active agents by means of vibrational spectroscopy and theoretical calculations / Die Molekularstruktur des Grund- und angeregten Zustandes von Modelsystemen bei Photochemischen Prozessen und die Charakterisierung von Wirkstoffen mittels Schwingungsspektroskopie und Theoretische Rechnungen

Szeghalmi, Adriana Viorica January 2005 (has links) (PDF)
The present thesis reports about vibrational and quantum chemical investigations on model systems undergoing photochemical processes and pharmaceutically active compounds, respectively. Infrared (IR) and Raman spectroscopy were applied for the characterization of the ground state molecular structure. Moreover, resonance Raman (RR) spectra contain additional information about the resonantly enhanced excited state molecular structure. A quantitative resonance Raman intensity analysis in conjunction with the simultaneous simulation of the absorption spectra by means of time-dependent propagation methods was accomplished in order to extract valuable information about the excited state molecular structures of the investigated systems. Surface enhanced Raman scattering (SERS) allows one to determine the interaction and adsorption site of active agents on a metal substrate. Furthermore, density functional theory (DFT) and potential energy distribution (PED) calculations were carried out for an exact assignment of the vibrational spectra. Complete active space self consistent field (CASSCF) and configuration interaction (CI) calculations for some model systems were also performed to assess the experimental results on the excited state potential surfaces. The fundamentals of resonance Raman spectroscopy are treated in detail, describing the physical processes and emphasizing the theoretical methodologies which allow one to obtain the information about the resonantly excited state via an RR intensity analysis. The Brownian oscillator model to determine the solvent reorganization energy is briefly presented. Furthermore, the SERS enhancement mechanisms and selection rules to determine the orientation of the molecules adsorbed on the metal substrate are discussed. The Hartree-Fock approach to calculate the ground state geometry is expatiated, and the basic characteristics of the CI and CASSCF calculations are specified. The chapter ends with a short description of the DFT calculations. Chapter 4 deals with the investigation of the excited state intramolecular proton transfer of the model system, 1-hydroxy-2-acetonaphthone (HAN). The vibrations showing the highest displacement parameters correspond to stretching and in-plane deformation modes of the naphthalene ring and the conjugated carbonyl group, while the OH stretching mode exhibits no observable enhancement. The cooperative effect of the skeletal vibrations reduces the distance between the carbonyl and hydroxyl oxygen atoms in accordance with a general electron density redistribution. Hence, the leading force in the proton transfer process is the increase in electron density on the carbonyl group and the decrease of the negative charge on the hydroxyl oxygen. In chapter 5 the structural and vibrational characteristics of the organic mixed valence system N,N,N’,N’-tetraphenylphenylenediamine radical cation (1+) are discussed. The resonance Raman measurements showed that at least eight vibrational modes are strongly coupled to the optical charge transfer process in (1+). These Franck-Condon active modes were assigned to symmetric vibrations. The most enhanced band corresponds to the symmetric stretching mode along the N-phenylene-N unit and exhibits the largest vibrational reorganization energy. Nevertheless, symmetric stretching modes of the phenylene and phenyl units as well as deformation modes are also coupled to the electronic process. The total vibrational reorganization energy of these symmetrical modes is dominant, while the solvent induced broadening and reorganization energy are found to be small. Hence, (1+) adopts a symmetrical delocalized Robin-Day Class III structure in the ground state. Chapter 6 reports about a vibrational spectroscopic investigation of a model organic photorefractive thiophene derivative, 2-(N,N-diethylamino)-5-(2’,2’-dicyanovinyl)-thiophene. The geometry of the first excited state were optimized and the FC parameters were calculated using the configuration interaction with single excitations method. These calculations show that the contribution of the zwitterionic structure to the excited state is significantly higher than in the ground state. The resonance Raman spectra indicate that several stretching modes along the bonds connecting the donor and acceptor moieties as well as the S-C stretching vibrations are enhanced. Chapter 7 presents the vibrational analysis of an aziridinyl tripeptide, a cysteine protease inhibitor active drug. The vibrational analysis reveals stronger H-bonding of the aziridine NH unit in the solid state of the aziridinyl tripeptide than in the liquid electrophilic building block, indicating medium strong intermolecular H-bond interactions in the crystal unit. The amide hydrogen atoms of the aziridinyl tripeptide are involved in weaker H-bonds than in an epoxide analogon. Furthermore, the characteristic vibrational modes of the peptide backbone were discussed. Chapter 8 reports on the adsorption mechanism of two related anti-leukemia active agents, 6-mercaptopurine (6MP) and 6-mercaptopurine-ribose (6MPR) on a silver colloid. Both molecules adsorb through the N1 and possibly S atom on the metal surface under basic conditions. The SERS spectra recorded for acidic pH values showed that the ribose derivative exhibits a different adsorption behavior compared to the free base. 6MP probably adsorbs on the silver sol through the N9 and N3 atoms, while 6MPR interacts with the surface via the N7 and probably S atoms. Around critical biological concentrations and pH values i.e. at low concentrations and almost neutral condition (pH 7-9), 6MPR interacts with the substrate through both N7 and N1 atoms, possibly forming two differently adsorbed species, while for 6MP only the species adsorbed via N1 was evidenced. / In der vorliegenden Arbeit wurden schwingungsspektroskopische und quanten-chemische Untersuchungen an unterschiedlichen Modellsystemen, die an photochemischen Prozessen beteiligt sind, und an verschiedenen Pharmazeutika durchgeführt. Die Methoden der Infrarot- (IR) und Raman-Spektroskopie wurden für die Charakterisierung der Grund-zustandsgeometrie verwendet. Darüber hinaus konnten aus Resonanz-Raman- (RR) Spektren zusätzliche Informationen über den elektronisch angeregten Zustand erhalten werden. Diese aufschlussreichen Aussagen über die elektronisch angeregten Zustände der untersuchten Systeme wurden durch die simultane quantitative Analyse der Resonanz-Raman-Spektren und des Absorptionsspektrums gewonnen. Die Anregungsprofile für die Resonanz-Raman-Streuung und die Absorptionsquerschnitte wurden mittels zeitabhängiger Propagationsmethoden berechnet. Oberflächen-verstärkte Raman-Streu- (SERS) Experimente ermöglichten die Charakterisierung der Wechselwirkungen und Adsorptionsbindungsstellen von Wirkstoffen an Metalloberflächen. Des Weiteren wurden Dichtefunktionaltheorie- (DFT) und PED-Rechnungen durchgeführt, um eine genaue Zuordnung der Schwingungsspektren zu gestatten. CASSCF- und CI-Rechnungen wurden in einzelnen Fällen durchgeführt, um sie mit den experimentellen Ergebnissen für die Potenzialhyperfläche des angeregten Zustands vergleichen zu können. Die Grundlagen der Resonanz-Raman-Spekroskopie wurden ausführlich diskutiert. Dabei wurden die physikalischen Prozesse beschrieben und die mathematischen Techniken, die die Bestimmung der Parameter des angeregten Zustands durch die RR-Intensitätsanalyse ermöglichen, hervorgehoben. Das Modell des Brownian-Oszillators für die Ermittlung der Lösungsmittel-Reorganisations-energie wurde kurz beschrieben. Weiterhin wurden die SERS Verstärkungsmechanismen und Auswahlregeln diskutiert. Der Hartree-Fock-Ansatz zur Berechnung des Grundzustandes sowie die CI- und CASSCF-Methoden wurde erläutert. Das Kapitel endete mit einer kurzen Beschreibung der Grundlagen von DFT-Rechnungen. Im vierten Kapitel wurden die Untersuchungen an einem Modell-Systems (1-hydroxy-2-acetonaphthone HAN), das einen Protonentransferprozess im angeregten Zustand zeigt, dargestellt. Die Streck- und Deformationsmoden des Naphthalinrings und der konjugierten Carbonylgruppe weisen die größten Displacement-Parameter auf, während die O-H-Streckschwingung keine Resonanz-Verstärkung erfährt. Diese Gerüst-schwingungsmoden verringern den Abstand zwischen den Carbonyl- und Hydroxyl-Sauerstoffatomen, was mit einer generellen Umverteilung der Elektronendichte einhergeht. Daher wird der Protonentransferprozess durch die Zunahme der Elektronendichte auf dem Carbonylsauerstoffatom und der gleichzeitigen Abnahme der negativen Ladung auf dem Hydroxylsauerstoffatom gesteuert. Im fünften Kapitel wurden die strukturellen und vibronischen Eigenschaften eines organischen gemischtvalenten Systems, des N,N,N’,N’-tetraphenylphenylenediamine Radikalkations (1+), untersucht. Die Resonanz-Raman-Experimente zeigten, dass mindestens acht Schwingungsmoden stark an den optischen Ladungstransferprozess gekoppelt sind. Diese Franck-Condon aktiven Moden wurden vornehmlich symmetrischen Moden zugeordnet. Die am meisten verstärkte Mode entspricht der symmetrischen Streckschwingung entlang der N-Ar-N-Achse. Jedoch sind auch symmetrische Streckschwingungsmoden der Phenyl- und Phyenylen-Gruppen und Deformationsmoden an dem elektronischen Prozess beteiligt. Der Beitrag dieser symmetrischen Moden zur Reorganisationsenergie dominiert, während die Lösungsmittelreorganisationsenergie nur sehr gering ist. Die erhaltenen Ergebnisse beweisen, dass es sich hier um ein symmetrisches delokalisiertes Robin-Day-Class-III-System handelt. Das sechste Kapitel beschäftigt sich mit einer schwingungsspektroskopischen Analyse eines photorefraktiven Thiophen-Derivat-Modellsystems, 2-(N,N-diethylamino)-5(2’,2’-dicyanovinyl)-thiophen. Die Geometrien des Grund- und ersten angeregten Zustands wurden optimiert und die FC Parameter unter Anwendung der CIS Methode berechnet. Diese Rechnungen ergaben, dass der Anteil der zwitterionischen Struktur im angeregten Zustand dominiert. Die Resonanz-Raman-Spektren zeigten, dass mehrere Streckschwingungsmoden entlang der Bindungen, die die Donor- und Akzeptor-Einheiten verknüpfen, und die S-C Streckschwingungsmoden verstärkt wurden. Das siebte Kapitel behandelt die Analyse eines Aziridinyl-Tripeptids, ein Wirkstoff gegen Cystein-Proteasen. Die Schwingungsanalyse ergab eine stärkere Wasserstoffbrückenbindung der Aziridin NH-Gruppe des Aziridinyl-Tripeptids im festen Zustand als in der flüssigen Baueinheit. Die Wasserstoffatome der Amidgruppen des Tripeptids sind an schwächeren Wasserstoffbrückenbindungen als die des Epoxid-Analogons beteiligt. Darüber hinaus wurden die charakteristischen Gerüstschwingungsmoden des Tripeptids diskutiert. Im vorletzten Kapitel wurde der Adsorptionsmechanismus von zwei Anti-Leukämie-Wirkstoffen, 6-Mercaptopurin (6MP) und 6-Mercaptopurin-ribose (6MPR) diskutiert. Unter basischen Bedingungen adsorbieren beide Moleküle über die N1- und S-Atome an der Metalloberfläche. Für biologisch kritischen Konzentrationen und pH-Werten, d.h. für nahezu neutrale Bedingungen (pH-Wert 7-9) und eine geringe Konzentration, wurde festgestellt, dass das 6MPR-Molekül mit dem Substrat sowohl über das N7- als auch N1-Atom wechselwirkt, wobei wahrscheinlich zwei unterschiedlich adsorbierte Spezies vorhanden sind. Im Gegensatz dazu weist das 6MP-Molekül nur eine über das N1-Atom adsorbierte Spezies auf.
430

Structure and magnetic properties in half-doped manganites Ln0.5Ca0.5MnO3 (Ln=La, Pr, Nd, …, Lu) : A systematic study by neutron scattering and ab-initio calculations / Propriétés structurelles et magnétiques dans les composants de manganèse Ln0.5Ca0.5MnO3 (Ln=La, Pr, Nd, …, Lu) : Une étude systématique par diffusion des neutrons et calculs ab initio.

Pusceddu, Emanuela 16 May 2011 (has links)
Le but de ce travail était de réaliser une étude systématique de la structure électronique et magnétique de la famille des manganites semi-dopés du Ca: Ln0.50Ca0.50MnO3 (Ln=REE). Nous avons focalisé notre attention sur l'ordre de charge (CO) et l'ordre orbital (OO) présents dans les manganites. Nous avons dérivé un modèle microscopique de structure nucléaire et magnétique à partir de la diffraction neutronique sur les poudres (NPD) et de calculs ab-initio afin de comparer les résultats expérimentaux et les modèles numériques et comprendre ainsi le rôle de l'inhomogénéité chimique et magnétique dans ces systèmes. La modification de l'état de spin électronique et du métal de transition par le dopage correspond à une modification structurale de la géométrie du polyèdre de coordination des atomes autour du métal de transition, induisant des changements structurels de coopération. En contraste avec l'ordre par le dopage chimique, un désordre chimique intrinsèque est associé à l'élément de dopage sur le site A du perovskite (formule générale ABO3) où sont placés les ions trivalents (RE3+) et bivalents (Ca2+). Ceci est dû à la différence de rayon ionique et d'affinité chimique entre ces ions. Afin d'étudier systématiquement l'effet de la substitution au niveau du site A et la relation entre les propriétés structurales et magnétiques, plusieurs échantillons ont été caractérisés. Les résultats de NPD sont une étape fondamentale vers la compréhension de la relation entre les propriétés structurales et magnétique et sont une source de motivation pour l'étude de la structure magnétique et des phénomènes de CO/OO par des simulations ab-initio. L'effet Jahn-Teller, les interactions de double- et super-échange, et le modèle de Zener seront introduits. Les propriétés magnétiques macroscopiques ont été mesurées en fonction de la température á l'aide d'un SQUID. La technique microscopique principale utilisée pour cette étude a été la NPD. Les instruments utilisés à l'institut Laue Langevin à Grenoble, D20 et D1A, et la méthode de Rietveld utilisée pour affiner les données expérimentales et en extraire les informations structurales seront décrits. Les résultats expérimentaux correspondant à l'étude systématique sur les échantillons de manganites de Ln0.50Ca0.50MnO3 (Ln = Pr, Nd, Tb, Dy, Ho, Tm, Yb and Lu) et une description de leur préparation seront présentés. La susceptibilité magnétique mesurée jusqu'à 530 K présente un pic large à températures élevées correspondant à la température de CO (TCO). Nous définissons la nature des corrélations magnétiques au-dessus et en-dessous de TCO dans le cadre du modèle des polarons de Zener. Nous présentons la structure nucléaire et magnétique pour tous les échantillons en fonction de la température et les déformations dues au dopage et à l'effet du rayon ionique. Tous nos systèmes ont une configuration magnétique de type pseudo-CE à la plus basse température correspondant à un état de type CE avec un effet de canting. Nous décrirons les calculs ab-initio pour modéliser notre série : le programme VASP, utilisé pour les calculs, la théorie DFT, les approximations faite, comme le fonctionnelle d'échange-corrélation (GGA-PBE), la correction d'Hubbard (GGA+U) seront présentée. Les calculs ont été effectués pour confirmer les résultats expérimentaux et pour accéder à d'autres quantités significatives comme la densité d'états électroniques. Les simulations ont été effectuées avec la DFT spin-polarisée, le GGA-PBE, et la GGA+U, pour considérer la corrélation électronique forte. Nous avons choisi deux systèmes purs: CaMnO3 et NdMnO3. Deux systèmes semi-dopés (Ln=Nd et Lu), ont été considérés, parce que les composés avec le La et le Pr ont été déjà étudié (Picozzi, Anisimov), et nous suivons la série avec Ln=Nd, et l’outre parce que le Lu, à l'instar de La, est saturé au niveau de ses orbitales 4f et qu'il présente de surcroit le plus petit rayon ionique dans la série de lanthanides. / The aim of this work was to realize a systematic study of the electronic and magnetic structure of Ca half-doped manganite family: Ln0.50Ca0.50MnO3 (Ln=REE). In particular, we focused our attention on charge ordering (CO) and orbital ordering (OO) phenomena present in manganites. We derived a microscopic model of nuclear and magnetic structure using both neutron powder diffraction (NPD) techniques and ab-initio calculations in order to compare experimental results and numerical models and to understand the role of chemical and magnetic in-homogeneity in our systems. The change of the electronic and spin state of the transition metal by doping, corresponds to a structural modification of the coordination polyhedron geometry of the atoms around the transition metal, inducing cooperative structural changes. In contrast with this order induced by doping, an intrinsic chemical disorder is associated with the doping element on the A site of the perovskite (general formula ABO3) on which the trivalent (RE3+) and divalent ions (Ca2+) reside. This disorder is due to the difference of the ionic radius and chemical affinity between the ions. In order to study systematically the effect of the A site substitution and the relation between the structural properties and the macroscopic magnetic properties, several samples have been synthesized and characterized by macroscopic magnetic measurements. Neutron diffraction is a fundamental step towards understanding the relation between the structural and macroscopic properties. The resulting structures represent a good starting point for ab-initio calculations in the study of magnetic structure and CO/OO phenomena. Important concepts and models are described: Jahn-Teller effect, double and super-exchange interaction and the Zener polarons model. The macroscopic magnetic properties have been measured versus temperature by using a SQUID magnetometer. The principal microscopic technique used for this thesis was NPD. The technique and the layout of the instruments - D20 and D1A at the Institute Laue Langevin, Grenoble - are described together with details of the Rietveld method used to refine the diffraction data. Experimental results from the systematic study of the Ln0.50Ca0.50MnO3 (Ln = Pr, Nd, Tb, Dy, Ho, Tm, Yb and Lu) manganites, are presented, with a description of sample preparation. The magnetic susceptibility, measured up to 530 K for our samples, presents a broad peak at high temperatures corresponding to the onset of the CO (TCO). From these results we define the nature of the magnetic correlations above and below TCO in the framework of the Zener polarons model. We also present the details of the nuclear and magnetic structure for all samples versus temperature, analyzing the distortions due to the doping and the effect of the ionic radius of the cations. All our samples have a pseudo-CE magnetic configuration at the lowest temperatures, corresponding to a CE-type ground state with canting. We describe the ab-initio method using the density functional theory (DFT), that have been used to model the Ln0.50Ca0.50MnO3 series. We present DFT and we discuss the most important features (spin polarization), approximations (pseudo-potentials and exchange-correlation functional) and (Hubbard) corrections used in this work, including a presentation of the VASP code used for the DFT calculations, with the corresponding input files. These calculations have been performed to confirm our experimental results and to access other significant quantities such as the electronic density of states. The computational approach has been tested on two pure systems: CaMnO3 and NdMnO3. Two half-doped systems have been chosen with Ln=Nd and Lu. The first because the La and Pr compounds were already studied (Picozzi, Anisimov) so we continued the series with the Nd system, and the Lu has the smallest ionic radius in the lanthanides series, its 4f shell is full and Lu is therefore comparable with La.

Page generated in 0.0363 seconds