• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 100
  • 40
  • 7
  • Tagged with
  • 140
  • 65
  • 40
  • 24
  • 22
  • 21
  • 21
  • 16
  • 16
  • 16
  • 15
  • 15
  • 15
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Identification par complémentation d'un gène qui restaure la sécrétion de l'invertase chez Saccharomyces cerevisiae W303-1b

Huard, Sylvain 03 1900 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal. / Chez les cellules eucaryotes, la biosynthèse des protéines est essentielle à la vie. Pour accomplir leurs fonctions biologiques, les protéines doivent être acheminées au bon endroit dans la cellule, notamment par la voie de sécrétion. Cette voie de transport est organisée en diverses structures membranaires distinctes. La porte d'entrée des protéines sécrétées et des protéines membranaires dans la voie de sécrétion est le réticulum endoplasmique. À cet endroit, les protéines sont repliées correctement, glycosylées et forment des ponts disulfures. Par la suite, la plupart d'entre elles sont acheminées à l'appareil de Golgi par des vésicules de transport. Dans ce compartiment intracellulaire, les groupements glycosyls des glycoprotéines sont alors modifiés. Finalement, certaines protéines sont transportées à la vacuole ou à la membrane plasmique par une autre série de vésicules de transport. Chez Saccharomyces cerevisiae, la voie de sécrétion des protéines est très semblable à celle des cellules de mammifères dans sa capacité de replier les protéines, de les glycosyler et de les sécréter. Ces propriétés dépendent du bon fonctionnement de la voie de sécrétion. Nos travaux ont consisté à étudier le transport de l'invertase vers l'espace périplasmique chez Saccharomyces cerevisiae W303-lb. Des études antérieures ont démontré que W303-lb manifeste à 37 °C un ralentissement de la sécrétion de l'invertase dans l'espace périplasmique comparativement à SEY6210. Notre hypothèse de travail vise sur l'identification, par complémentation génétique, d'un gène défectueux responsable du phénotype observé chez W303-1 b. De plus, ce défaut de sécrétion est corrigé par la délétion du gène SLA 1 chez W303-1 b. Sial p est une protéine liant l'actine qui semble importante dans le transport de certaines protéines entre le réticulum endoplasmique et l'appareil de Golgi. Nous avons montré qu'un fragment d'ADN génomique du chromosome IX restaure la sécrétion de l'invertase chez W303-1 b. Ce fragment contient trois gènes (ECM37, YILJ 45C et TID3) où seul le gène YILJ 45C possède un cadre de lecture ouverte (ORF) entier. Finalement, plusieurs hypothèses ont été émises sur les effets possibles de ces gènes sur la sécrétion de l'invertase, ce qui permettra éventuellement d'élaborer de nouvelles hypothèses concernant l'organisation du système de sécrétion chez Saccharomyces cerevisiae et les liens moléculaires qui peuvent exister entre le cytosquelette et la machinerie protéique régulant le transport des protéines.
32

Implication du trafic des endosomes de recyclage et de la dynamique de l'actine dans la communication inter-organelle au cours de la mort cellulaire programmée : la protéine E4orf4 de l'adénovirus comme modèle d'étude

Landry, Marie-Claude 17 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2010-2011 / Les mécanismes de mort cellulaire programmée (MCP), dont l'apoptose est le mieux caractérisé, assurent l'élimination des cellules qui sont potentiellement dangereuses pour l'organisme. Or, l'acquisition de lésions génétiques touchant des régulateurs clefs de l'apoptose contribue à la transformation cellulaire et à la résistance face à plusieurs thérapies anticancéreuses. Les travaux présentés dans cette thèse visent une meilleure compréhension des mécanismes alternatifs de MCP qui opèrent sélectivement dans les cellules cancéreuses. La protéine E4orf4 de 1'adenovirus humain active un tel mécanisme de MCP qui est indépendant des caspases et insensible à la surexpression de BCL-2. Au début de mon doctorat, les données indiquaient que l'activité toxique de E4orf4 reposait sur une modulation de l'activité des kinases de la famille Src (Src family kinases, SFKs) menant à des changements de la dynamique de l'actine régulés par les Rho GTPases. Notamment, il était établi que Cdc42 était activé par E4orf4 et stimulait la polymérisation de l'actine au niveau des endosomes de recyclage (ERs). En se basant sur ces données, l'objectif de cette thèse était d'étudier l'impact des changements de l'actine régulés par Cdc42 sur le trafic des ERs et les conséquences sur la dynamique des organelles impliquées dans la signalisation de la MCP. Mes résultats ont mis en évidence une voie de signalisation dépendante des SFKs Src et Yes, de Cdc42 et de Rabl la qui stimule le transport rétrograde des ERs au Golgi et inhibe le recyclage de cargos à la membrane plasmique. Une telle mobilisation des ERs au Golgi est associée à des changements de la dynamique du Golgi, lesquels sont requis pour la progression du signal de mort cellulaire et mènent à une fragmentation du Golgi. Ce processus a également été impliqué dans la mort cellulaire induite par la staurosporine en présence d'inhibiteurs de caspases, suggérant un rôle conservé dans les mécanismes alternatifs de mort cellulaire. Mes travaux ont aussi suggéré que les changements observés dans le transport endosomal et la dynamique du Golgi influence la dynamique des mitochondries en inhibant la fusion mitochondriale, laquelle est normalement requise pour le métabolisme énergétique et la survie cellulaire. En somme, mes travaux ont identifié une nouvelle voie de signalisation qui est activée en réponse au stress et qui est impliquée dans la communication inter-organelle via la mobilisation des ERs vers diverses organelles.
33

Analyse fonctionnelle de la phosphorylation du co-chaperon moléculaire BAG3 et de son action dans la morpho-dynamique des cellules mitotiques

Luthold, Carole 22 June 2021 (has links)
La division cellulaire constitue le principe fondamental de la vie et repose sur des changements architecturaux cellulaires spectaculaires. Plusieurs de ces changements sont dirigés par le remodelage précis de structures mécano-sensibles à base d'actine. De plus en plus d'évidences suggèrent une relation étroite entre le contrôle de qualité des protéines et la régulation spatiotemporelle de la dynamique des structures d'actine entre autres, par l'intermédiaire de mécanismes de séquestration ou de dégradation des protéines. Les petites protéines de choc thermique (HSPB) sont des chaperons moléculaires qui font partie intégrante du réseau de contrôle de qualité des protéines, lesquelles contribuent à l'homéostasie du protéome. Ces chaperons émergent comme des modulateurs des structures à base d'actine en conditions physiologiques et comme des protecteurs de l'intégrité de ces structures en conditions de stress. Selon le modèle prévalent, l'assemblage des HSPB en structures oligomériques dynamiques leur confère leur fonction dans la séquestration de composantes cellulaires pour prévenir une agrégation protéique non-spécifique. Néanmoins, leur mode d'action demeure encore élusif : le fait que certaines HSPB ne formeraient pas d'oligomères suggère un autre mécanisme d'action pour ces HSPB. C'est le cas de HSPB8, qui forme un complexe avec le co-chaperon moléculaire BAG3. Les prémices des travaux de cette thèse ont été la découverte d'un nouveau rôle pour ce complexe au cours de la mitose : BAG3, d'une manière dépendante de son association avec HSPB8, facilite le remodelage drastique du cytosquelette d'actine requis pour le positionnement du fuseau mitotique et la ségrégation adéquate des chromosomes. L'objectif de cette thèse était d'identifier le mode de régulation de la fonction mitotique de BAG3-HSPB8 et de disséquer les mécanismes moléculaires impliqués qui facilitent le remodelage du cytosquelette d'actine mitotique. Les travaux de cette thèse apportent des évidences que la modulation des fonctions mitotiques de BAG3 est dépendante de sa phosphorylation par la kinase mitotique CDK1 sur des résidus spécifiques ; Thr285 et Ser386. Ces phosphorylations lui confèrent une activité différentielle sur l'arrondissement cellulaire versus le positionnement du fuseau mitotique. De plus, BAG3 serait phosphorylée dès la phase G2/M sur le résidu Ser195, ce qui modulerait son enrichissement en périphérie du noyau à la transition G2/M. Nos résultats suggèrent que ces phosphorylations seraient impliquées dans la modulation d'associations protéiques différentielles, selon les phases du cycle cellulaire. En outre, l'entrée des cellules en mitose est marquée par l'association de BAG3 avec des protéines du cytosquelette d'actine, telle que cortactine, ainsi qu'avec des acteurs du contrôle de qualité des protéines, notamment le récepteur autophagique p62/SQSTM1 et la déacétylase HDAC6. De manière cruciale, la phosphorylation et les associations protéiques mitotiques de BAG3 sont dépendantes de sa liaison à HSPB8. Nos résultats suggèrent un model selon lequel le complexe BAG3-HSPB8 régule l'assemblage de p62/SQSTM1 en corps supramoléculaires qui pourraient offrir une plateforme pour isoler et réguler l'assemblage de complexes protéiques impliqués dans le remodelage des structures d'actine mitotiques. Via ce mécanisme d'action, BAG3-HSPB8 limiterait la polymérisation de l'actine branchée dépendante d'Arp2/3, en modulant négativement l'activité déacétylase de HDAC6 sur son substrat cortactine, un processus qui faciliterait l'arrondissement mitotique. Ainsi, nos résultats mettent en avant un rôle central pour la phosphorylation de BAG3 dans la modulation de son action mitotique, en étroite collaboration avec ses partenaires HSPB8 et p62/SQSTM1. L'ensemble de nos données contribue ainsi à une meilleure compréhension des mécanismes moléculaires par lesquels le complexe chaperon BAG3-HSPB8 orchestre le remodelage dynamique des structures cellulaires mitotiques à base d'actine et facilite les changements de forme des cellules requis pour la progression mitotique. Ces travaux ont également permis l'identification de nouvelles cibles moléculaires du complexe chaperon, entre autres impliquées dans la dynamique du cytosquelette d'actine. Ces travaux offrent de nouvelles pistes d'investigations intéressantes concernant le développement de pathologies associées à une dérégulation du complexe BAG3-HSPB8, notamment dans la progression tumorale. / Cell division is the fundamental principle of life and is based on spectacular cellular architectural changes. Many of them are driven by the accurate remodeling of mechanosensitive actin-based structures. Growing evidence suggests a close relationship between protein quality control and the spatiotemporal regulation of actin remodeling, through mechanisms that would promote protein sequestration and/or degradation. Small heat shock proteins (HSPBs) are molecular chaperones that are an integral part of the protein quality control network, which contribute to maintain proteome homeostasis. They emerge as modulators of actin-based structures under physiological conditions and as guardians of the integrity of cytoskeletal structures under stress conditions. According to the prevailing model, the assembly of HSPBs into large oligomers confers them with the ability to sequester cellular components and prevent unspecific aggregation of damaged proteins. Nevertheless, their mode of action remains elusive: the observation that some HSPBs do not form oligomers suggests another mechanism of action for these HSPBs. This is the case for HSPB8, which forms a complex with the molecular co-chaperone BAG3. The working model of this thesis is based on the initial discovery in our laboratory of a new role for this complex during cell division: BAG3 facilitates the drastic remodeling of the actin cytoskeleton required for spindle positioning and proper segregation of chromosomes, in a manner that requires HSPB8. The aim of this thesis was to identify the mechanisms whereby such a function of the BAG3-HSPB8 chaperone complex is regulated, and to investigate how the complex can facilitate mitotic actin cytoskeleton remodeling. The work presented here provides evidence that the modulation of BAG3 mitotic functions depends on its phosphorylation by the mitotic kinase CDK1 at specific residues, Thr285 and Ser386, which confers differential activity on cell rounding versus mitotic spindle positioning. Evidence also suggests that BAG3 would be phosphorylated earlier in the G2/M phase, at Ser195, which would modulate its perinuclear enrichment. Our results suggest that these phosphorylations could be involved in defining specific protein associations, in a cell-cycle dependent manner. In addition, we found that mitotic entry is marked by the stimulation of BAG3'sassociation with proteins that organize the actin cytoskeleton, such as cortactin, as well as with protein quality control actors, notable, the autophagic receptor p62/SQSTM1 and the deacetylase HDAC6. Critically, BAG3 phosphorylation and its associations with mitotic protein partners rely on its binding to HSPB8. The results suggests a model whereby the BAG3-HSPB8 complex would regulate the molecular assembly of p62/SQSTM1 into mitotic bodies that could provide a platform to sequester and facilitate protein complex assembly implicated in mitotic actin cytoskeleton remodeling. Via this mechanism, BAG3-HSPB8 could limit branched actin polymerization that depends on Arp2/3 activity, by down-modulating HDAC6 deacetylase activity towards its substrate cortactin, a process that would facilitate mitotic cell rounding. Thus, our results highlight a central role of BAG3 phosphorylation in the modulation of its mitotic action, in close relationship with its partners HSPB8 and p62. Altogether, our data contribute to a better understanding of the molecular mechanisms by which the BAG3-HSPB8 chaperone complex orchestrates the dynamic remodeling of mitotic cell structures and thereby, facilitates the cell shape changes required for mitotic progression. This study has also identified new molecular targets of the chaperone complex there are, among others, involved in the dynamics of the actin cytoskeleton. Thus, this work offers new avenues of investigation regarding the development of pathologies associated with a deregulation of the BAG3-HSPB8 complex, particularly in tumor progression.
34

Rôle d'ARF3 dans le cytosquelette d'actine chez Saccharomyces cerevisiae

Perron, Marjorie 11 April 2018 (has links)
Chez la levure S. cerevisiae, plusieurs protéines participent dans l'organisation du cytosquelette d'actine. L'une d'entre elles, la profiline, est impliquée dans la polymérisation des filaments d'actine. Les cellules pfy1? ont un phénotype anormal, dont la dépolarisation des granules corticaux et l'absence de câbles d'actine visibles. L'équipe du Dr Pallotta a identifié plusieurs protéines impliquées dans un sentier de signalisation menant à cette structure. Deux de ces protéines, Gea1/2p, interagissent avec les protéines Arf. Nous avons donc étudié le rôle d'Arf3p et ainsi déterminé son implication dans la polarisation du cytosquelette d'actine. Sa surexpression dans la souche pfy1-111, un mutant thermosensible, corrige son phénotype. Il existe une interaction génétique entre PFY1 et ARF3. La mutagenèse dirigée de la protéine, sa localisation et une comparaison avec Arf6p humaine a complété l'étude. Nous pouvons conclure que Gea1/2p passent par Arf3p, au moins partiellement, afin de rétablir les phénotypes des cellules déficientes en profiline.
35

Effets des LDL natives et oxydées sur l'évolution des propriétés biomécaniques des cellules endothéliales et imagerie des LDL par microscope à force atomique

Chouinard, Julie January 2007 (has links)
Cette étude vise à définir l'effet des lipoprotéines de basses densité natives (LDL) et oxydées (ox-LDL) sur les fonctions des cellules endothéliales en relation avec les processus physiopathologiques de l'athérosclérose. Le microscope à force atomique (AFM) fut utilisé en combinaison avec les méthodes biochimiques traditionnelles afin d'acquérir de l'information sur les propriétés biomécaniques des cellules endothéliales. L'AFM est un outil permettant l'acquisition d'images et de mesures de forces quantitatives concernant les propriétés viscoélastiques des cellules vivantes selon leur exposition aux LDL ou ox-LDL. L'AFM rassemble localement des informations sur la membrane cellulaire et le cytosquelette des cellules et ce, de manière non invasive. Il est ensuite possible de corréler les résultats obtenus avec les marquages immunohistochimiques afin d'évaluer la réponse cellulaire suite à une exposition à des LDL ou ox-LDL. Ces données recueillies, les protocoles étant au point, il ne restera plus qu'à effectuer les tests avec les antioxydants afin de déterminer les agents et les dosages appropriés permettant une protection salutaire de l'endothélium. Ce travail amène donc de nouvelles connaissances sur les mécanismes moléculaires fondamentaux de la dysfonction endothéliale en vue éventuellement de développer de nouvelles thérapies cytoprotectrices efficaces. Une méthode d'imagerie des LDL a également été mise au point en utilisant l'AFM. Il est maintenant possible d'obtenir des images de bonne qualité permettant aussi de mesurer les dimensions de LDL individuelles. Cette technique pourrait entre autre servir à évaluer des pathologies touchant les LDL comme le diabète.
36

Régulation et rôle des petites protéines G Rho dans la cellule thyroïdienne

Fortemaison, Nathalie 28 October 2004 (has links)
Les petites protéines G de la famille Rho sont des régulateurs importants de la fonction cellulaire. Elles lient les signaux extracellulaires à l'activation de diverses voies de signalisation telles que celles menant à la phagocytose, la mitogénèse, l'adhésion cellulaire, l'expression génique,... Toutefois leur fonction principale est l'assemblage et l'organisation du cytosquelette d'actine. Ces GTPases fonctionnent comme des interrupteurs moléculaires, actifs lorsque liés au GTP et inactifs sous la forme liée au GDP. Le but de notre thèse est d'investiguer, dans les cellules thyroïdiennes de chien en culture primaire, l'implication des protéines de la famille Rho et de l'organisation du cytosquelette d'actine dans les actions diverses que la TSH exerce, via l'AMPc, sur la morphologie, la prolifération, la différenciation et la fonction des thyrocytes de chien en culture primaire. Trois cascades conduisant à la mitogénèse coexistent dans la cellule thyroïdienne de chien: la voie de l'AMPc stimulée par la TSH ou la forskoline (activateur direct de l'adénylate cyclase), la voie des facteurs de croissance (tels que l'EGF, l'HGF) activant leur récepteur à activité tyrosine kinase et la cascade dépendante de la protéine kinase C activée par les esters de phorbol (TPA). Contrairement aux voies indépendantes de l'AMPc qui répriment l'expression des caractéristiques de différenciation, la cascade de l'AMPc stimule à la fois la prolifération, l'expression des gènes de l'état différencié et la fonction (iodation, formation d'H2O2, sécrétion hormonale). Dans la cellule thyroïdienne de chien, les agents activant les cascades dépendantes et indépendantes de l'AMPc ont des effets différents sur l'organisation du cytosquelette d'actine. La TSH/AMPc et le TPA induisent une destruction des microfilaments d'actine et un "ruffling" membranaire, tandis que les autres agents (insuline, EGF, HGF, sérum) ne modifient pas le réseau de fibres d'actine (fibres de stress) présent dans les cellules quiescentes. Parmi les protéines de la famille Rho, RhoA, Rac1 et Cdc42 sont les premières à avoir été identifiées et sont actuellement les mieux caractérisées. Nous montrons que la TSH, via l'AMPc, induit une diminution de la concentration de la forme active des protéines Rac1, Cdc42 et RhoA. En revanche, les autres agents mitogènes, tels que l'EGF et le TPA, qui activent des voies indépendantes de l'AMPc, n'affectent pas les taux de Rac1 et Cdc42 activés, mais augmentent le taux de RhoA-GTP. L'activation ou l'inactivation des protéines RhoA, Rac1 et Cdc42 est donc un nouvel élément distinguant les voies dépendantes et indépendantes de l'AMPc. Grâce à deux toxines bactériennes, la toxine B qui inactive les protéines Rho et la toxine CNF1 qui au contraire les active, nous montrons que, dans les thyrocytes, celles-ci jouent un rôle critique dans l'organisation du cytosquelette, dans la transition G1-S, dans l'expression des gènes de différenciation Tg, ThOXs, NIS et TPO, mais pas dans la génération d'H2O2. En effet, l'activité d'un ou plusieurs membres de cette famille est nécessaire à l'entrée des thyrocytes en phase S et à la phosphorylation de la protéine pRb, étape pré-requise à la transition G1-S. L'activation de ces protéines n'induit cependant pas, à elle seule, la prolifération. Nous mettons également en évidence l'existence d'un nouveau mécanisme par lequel ces protéines contrôleraient l'activité des complexes cycline D3-CDK4 indépendamment de leur assemblage. Par l'utilisation de la dihydrocytochalasine B, qui comme la toxine B via l'inactivation des Rhos, désorganise le cytosquelette, nous démontrons que l'intégrité de celui-ci n'est pas requise pour la progression des thyrocytes en phases G1 et S. L'inactivation des protéines Rho est par contre nécessaire à l'induction, par l'AMPc, de l'expression des gènes de différenciation incluant Tg, ThOXs, NIS et TPO, puisque ce processus est inhibé par la toxine CNF1. De plus, l'inactivation des Rhos par la toxine B, ainsi que le désassemblage des fibres de stress et du cytosquelette induit par la dihydrocytochalasine B, suffisent à imiter l'induction dépendante de l'AMPc de Tg et ThOXs, mais pas de NIS et TPO. La toxine B et la dihydrocytochalasine B imitent aussi l’effet de la voie TSH/AMPc sur l’accumulation de p27kip1. Enfin, nous montrons que l'augmentation de la production d'H2O2, nécessaire à la synthèse des hormones thyroïdiennes, ne requiert pas l'activité de la protéine Rac (ni des autres protéines de la famille Rho) alors que celle-ci joue un rôle déterminant dans la génération d'H2O2 dans le leucocyte.
37

Etude Biomimétique du cortex cellulaire et ses applications

Pontani, Lea-Laetitia 19 November 2009 (has links) (PDF)
Le cytosquelette des cellules est une structure composite et versatile qui leur confère des propriétés mécaniques extrêmement complexes. En particulier, le cortex d'actine qui s'assemble de manière dynamique sous la membrane cellulaire fournit la force nécessaire aux déformations et au mouvement de la cellule : la polymérisation de l'actine permet aux filaments en formation de pousser la membrane et les moteurs moléculaires génèrent des forces contractiles. L'utilisation de systèmes biomimétiques permet d'isoler des modules particuliers du cytosquelette pour les étudier indépendamment de façon simplifiée. Une expérience de reconstitution du cortex d'actine in vitro a été mise au point dans ce but. Les protéines et métabolites nécessaires pour la polymérisation de l'actine sont ainsi introduits dans un liposome et la réaction est localisée à la membrane, en y greffant l'activateur de la polymérisation de l'actine, sur le modèle du cortex cellulaire. Une fois la polymérisation déclenchée, nous sommes arrivés à reproduire un gel d'actine à la membrane, formant une coque. Les propriétés mécaniques de ce système simplifié sont alors étudiées par des expériences qui caractérisent leur dynamique d'étalement sur des surfaces. Les résultats sont comparés à ceux obtenus sur des cellules, et reproduisent une bonne partie des comportements cellulaires. On utilise également ces liposomes dans une situation physiologique: l'internalisation de la toxine de Shiga dans les cellules et nous montrons que la toxine est internalisée dans un système aussi épuré que des liposomes comportant un cortex reconstitué, prouvant le rôle important de l'actine dans ce processus.
38

Caractérisation de l'effet fibroprolifératif induit par la libération paracrine de peptides issus de l'apoptose endothéliale

Laplante, Patrick January 2004 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
39

Mécanismes de formation et de fermeture des phagosomes dans les macrophages / Mechanisms of formation and closure of phagosomes in macrophages

Marie-Anaïs, Florence 27 September 2016 (has links)
La phagocytose est un mécanisme cellulaire essentiel de l’organisme. Elle joue un rôle à la fois dans le maintien de l’homéostasie tissulaire mais également dans le système immunitaire. Ce processus, réalisé par des cellules phagocytaires, telles que les cellules dendritiques, les polymorphonucléaires neutrophiles ou les macrophages, permet l’ingestion et l’élimination quotidienne de particules de grandes tailles (>0,5 µm) : bactéries, champignons ou débris cellulaires. Il est induit par de nombreux récepteurs phagocytaires tels que les récepteurs aux fragments cristallisables des immunoglobulines (FcR) et les récepteurs au complément (CR3). Ceux-ci induisent des cascades de signalisation différentes mais aboutissant, toutes deux, à un remodelage du cytosquelette d’actine et de la membrane plasmique. Il y alors formation d’une coupe phagocytaire entourant et enfermant la particule à internaliser dans un compartiment clos appelé phagosome. Alors que de nombreuses études ont permis de disséquer l’organisation des coupes phagocytaires induites par les FcR, le mécanisme de fermeture des phagosomes n’était pas élucidé. Par ailleurs, les mécanismes moléculaires impliqués dans la formation des phagosomes suite à l’engagement des CR3 sont moins bien décrits. Au cours de ce travail, nous avons analysé le rôle de la dynamine 2, une GTPase impliquée dans les mécanismes de fission des vésicules d’endocytose, au cours de la formation et de la fermeture des phagosomes. Nous avons utilisé un système expérimental original utilisant la microscopie à ondes évanescentes pour montrer, que la dynamine 2 est recrutée avec l’actine dans les coupes phagocytaires en formation et qu’elle s’accumule au site de fermeture des phagosomes dans des macrophages vivants. L’inhibition de son activité GTPase induit une inhibition de l’efficacité de phagocytose et un défaut de la dynamique de l’actine lors de l’extension des coupes phagocytaires. De façon surprenante, la dépolymérisation de l’actine conduit à un défaut de recrutement de la dynamine 2 au site de la phagocytose mettant en évidence une régulation croisée entre la dynamine 2 et l’actine. Enfin cette étude a montré que la dynamine 2 joue un rôle critique dans la scission du phagosome. Dans un second temps, nous avons initié l’étude des mécanismes impliqués dans la régulation de l’activité du récepteur au complément CR3. L’activation de ce récepteur phagocytaire, qui fait partie de la famille des intégrines, requiert un ancrage à l’actine nécessaire à la signalisation vers la polymérisation d’actine et à la formation des coupes phagocytaires. L’ensemble de ces résultats contribue à une meilleure connaissance des mécanismes moléculaires fins impliqués dans la phagocytose. / Phagocytosis is an important cellular mechanism. It plays a role in both the maintenance of tissue homeostasis and in the immune system. This process, performed by phagocytic cells, including dendritic cells, polymorphonuclear neutrophils or macrophages, enables daily ingestion and elimination of large particles (> 0.5 microns) e.g. bacteria, fungi or cellular debris. It is induced by many phagocytic receptors such as the receptors for crystallizable fragments of immunoglobulins (FcR) and complement receptor (CR3). These receptors induce different signaling cascades but ultimately lead to a remodelling of the actin cytoskeleton and the plasma membrane. Next there is the formation of a phagocytic cup which surrounds and encloses the ingested particle in a closed compartment called the phagosome. While many studies have dissected the phagocytic cup organization induced by the FcR, the mechanism of phagosome closure was not understood. Furthermore, the molecular mechanisms involved in phagosome formation following CR3 engagement are less well described. In this work, we analyzed the role of dynamin 2, a GTPase involved in fission mechanisms of endocytosis vesicles, and in the formation and closure of phagosomes. We used an original experimental system using the total internal reflection fluorescence microscopy (TIRFM) to show that dynamin 2 is recruited with actin during phagocytic cup formation and accumulates at the site of phagosome closure in living macrophages. The inhibition of its GTPase activity induced an inhibition of phagocytosis and a defect in actin dynamics during pseudopod extension. Surprisingly, the depolymerization of actin lead to a defective recruitment of dynamin 2 at the phagocytic site showing there is a cross-regulation between dynamin 2 and actin. Finally, this study showed that dynamin 2 plays a critical role in the scission of the phagosome. Secondly, we initiated the study of the mechanisms involved in regulating the activity of the complement receptor CR3. Enabling this phagocytic receptor, part of the integrin family, requires anchoring actin which is necessary for signaling to the actin polymerization and the formation of phagocytic cups. All these results contribute to a better understanding of the molecular mechanisms involved in phagocytosis purposes.
40

Relier la dynamique de la force de tension cellulaire avec l'architecture de l'actine / Linking cellular tensional force dynamics with actin architecture

Andersen, Tomas 22 October 2018 (has links)
La stabilité structurale et l'intégrité mécanique sont des éléments clés pour le bon fonctionnement et la préservation des systèmes vivants complexes. Étant en interaction constante avec leur environnement et en ce qui concerne les intrants externes, de tels systèmes doivent pouvoir faire face aux changements afin de prospérer. Ces entrées peuvent affecter le système dans son ensemble. Toute perturbation qui ne peut pas être supportée mécaniquement par le système vivant entraînera un dysfonctionnement crucial ou, en fin de compte, sa mort. Le mécanisme responsable du maintien des conditions physiologiques du système à l'état correct, malgré les variations environnementales, est identifié comme étant l'homéostasie. Plus précisément, le processus connu en mécanobiologie pour préserver l'équilibre mécanique approprié d'un système vivant est appelé homéostasie tensionnelle.Il est important de noter que tout ce qui précède est vrai à la fois à l'échelle du comportement collectif des organismes complexes et jusqu'au niveau de la cellule unique. En fait, c'est en fait cette dernière petite échelle qui nous intéresse. Les cellules font face à des perturbations mécaniques constantes de leur environnement et sont capables de répondre au maintien d'un état mécanique interne relativement stable. L'existence de cet équilibre tensionnel interne est liée à un processus très dynamique avec des boucles de rétroaction constantes entre les machines contractiles biochimiques internes et les forces actives externes générées.Notre intérêt est de comprendre ce mécanisme dynamique en perturbant dynamiquement le système homéostatique tensionnel en étudiant son retour à l'équilibre. / The structural stability and mechanical integrity are key elements for the proper functioning and preservation of complex living systems. Being in constant interaction with their surroundings and subjected to external inputs, such systems need to be able to face changes in order to thrive. These inputs can affect the system both in a localized way or disturb it as a whole. Any perturbations that cannot be mechanically withstand by the living system will result in a crucial malfunctioning or, ultimately, in its death. The mechanism responsible for maintaining the system’s physiological conditions at the proper state, despite environmental variations, is identified as homeostasis. More specifically, the process known in mechanobiology to preserve the appropriate mechanical equilibrium of a living system is called tensional homeostasis.It is important to note that all of the above stated holds true both at the scale of collective behaviour of complex organisms, and all the way down to the single cell level. In fact, it is actually this last small scale which draws our interest. Cells face constant mechanical perturbations from their surrounding and are able to respond accordingly maintaining a relatively stable internal mechanical state. The existence of this internal tensional equilibrium relies on a very dynamic process with constant feedback loops between the internal biochemical contractile machinery and the external active generated forces.Our interest is to understand better this active mechanism by dynamically perturbing the tensional homeostatic system while studying its return to equilibrium.

Page generated in 0.0535 seconds