Spelling suggestions: "subject:"AdS-CFT correspondence"" "subject:"AdS-CFT korrespondence""
61 |
Spectrum and quantum symmetries of the AdS5 × S5 superstringHeinze, Martin 24 June 2015 (has links)
Die AdS/CFT-Dualität zwischen N=4 SYM und dem AdS_5 × S^5 Superstring zeigt Quanten-Integrabilität im planaren Limes und erlaubte die Konstruktion mächtiger Methoden, welche das Spektrale Problem zu lösen scheinen. Unser Verständnis der direkten Quantisierung des AdS_5 × S^5 Superstrings ist jedoch weiterhin unbefriedigend und besonders das Spektrum kurzer Stringzustände war bisher nur in führender Ordnung in starker ''t Hooft-Kopplung bekannt. In dieser Arbeit untersuchen wir verschiedene Methoden der perturbativen Quantisierung kurzer Strings über die führende Ordnung hinaus, wodurch wir uns auch einen besseres Verständnis der vorhandenen Quanten-Symmetrien erhoffen. Wir fokusieren auf die niedrigst angeregten Stringzustände, dual zum Konishi-Supermultiplet, und begutachten kritisch eine angeblichen Berechnung der Konishi anomalen Skalendimension im Pure-Spinor-Superstring-Formalismus. Als nächstes betrachten wir den bosonischen AdS_5 × S^5 String in statischer Eichung und konstruieren eine sog. Einzelmoden-Stringlösung, eine Veralgemeinerung des pulsierenden Strings durch unbeschränkte Nullmoden. Diese ist klassisch integrabel und quanteninvariant unter den Isometrien SO(2,4) × SO(6). Mögliche Korrekturen der vernachlässigten Supersymmetrie werden heuristisch berücksichtigt, wodurch die ersten Quantenkorrekturen der Konishi anomale Skalendimension reproduzieren werden. Wir implementieren statische Eichung für den AdS_5 × S^5 Superstring und finden elegante Ausdrücke für die Lagrangedichte und Superladungen. Unter Beschränkung auf das Superteilchen finden wir auf zwei unterschiedliche Arten kanonische Koordinaten in quadratischer Ordnung in Fermionen. Schließlich betrachten wir eine weitere Quantisierungsmethode: Da der Einzelmoden-String die SO(2,4) × SO(6)-Bahn des pulsierenden Strings ist, wenden wir Bahn-Methoden-Quantisierung auf das Teilchen und Spinning Strings in bosonischem AdS_3 × S^3 an und erhalten konsistente Ergebnisse für die Spektra. / The initial AdS/CFT duality pair, the duality between N=4 SYM and the AdS_5 × S^5 superstring, appears to enjoy quantum integrability in the planar limit, which allowed to devise powerful methods ostensibly solving the spectral problem. However, quantization of the AdS_5 × S^5 superstring from first principles is still an open question and especially the spectrum of short string states has previously been derived only at leading order in large ''t Hooft coupling. In this thesis we investigate possible routes to quantize short string states perturbatively beyond the leading order, where equally our aim is to gain better appreciation of the quantum symmetries at play. A prominent role is played by the lowest excited string states, dual to the Konishi supermultiplet, and we start by reviewing critically an asserted derivation of the Konishi anomalous dimension in the setup of pure spinor string theory. Next, we constrain ourselves to bosonic AdS_5 × S^5 String in static gauge, where we construct a so-called single-mode string solution, a generalization of the pulsating string allowing for unconstrained zero-modes. This solution shows classical integrability and invariance under the isometries SO(2,4) × SO(6) at the quantum level. Arguing heuristically about the effects of supersymmetry, we indeed recover the first non-trivial quantum correction to the Konishi anomalous dimension. We continue by implementing static gauge for the full AdS_5 × S^5 superstring and find elegant expressions for the Lagrangian density and the supercharges. We then constrain our interest to the superparticle and, using two different methods, find canonical coordinates at quadratic order in fermions. We conclude by exploring another quantization scheme: As the single-mode string is nothing but the SO(2,4) × SO(6) orbit of the pulsating string, we apply orbit method quantization to the particle and spinning string solutions in bosonic AdS_3 × S^3 yielding consistent results for the spectra.
|
62 |
Dualities, Symmetries and Unbroken Phases in String Theory : Probing the Composite Nature of the String / Dualiteter, Symmetrier och Obrutna Faser i Strängteori : En Utforskning av Strängens Sammansatta NaturEngquist, Johan January 2005 (has links)
The thesis treats aspects of string/M-theory in anti-de Sitter spacetimes and their supersymmetric completions. By applying the AdS/CFT correspondence, as well as models of spin chains and singletons, we try to attain a better understanding of the underlying symmetries and the unbroken phases of string/M-theory. Tensionless string/M-theory in anti-de Sitter spacetime is argued to imply a higher spin gauge symmetry enhancement and to be described by gauged sigma models of multi-singletons as well as by closed singleton strings. Vasiliev's weakly projected equations of symmetric massless higher spin gauge fields in the vector oscillator formulation is shown to follow from a deformation of the singleton model. Various four dimensional minimal as well as non-minimal supersymmetric higher spin gauge theories in the spinor formulation are examined. The minimal higher spin gauge theory based on the symmetry algebra hs(1|4) is elaborated on in an N=1 superspace, illustrating the remarkable fact that the choice of base manifold is not fixed in unfolded dynamics. The importance of the representations saturating the unitarity bounds in anti-de Sitter spacetime is stressed throughout the thesis, with particular emphasis on the singleton and the massless representations. Singletons, and hence massless states, are shown to appear as bound states on the string or p-brane and are localized at cusps. Furthermore, we examine semiclassical string solutions in Type IIB String Theory in AdS(5) x S(5) and their boundary duals in N=4 Super Yang-Mills Theory in d=4 which are constituted out of thermodynamic composite operators. By using integrable spin chain techniques and Bäcklund transformations in the field theory and in the string theory, respectively, the one-loop anomalous dimensions as well as the tower of conserved charges of the composite operators are shown to be in agreement with the energies and the tower of conserved charges associated with the dual string states.
|
63 |
Perturbative and non-perturbative analysis of defect correlators in AdS/CFTBliard, Gabriel James Stockton 21 December 2023 (has links)
In dieser Arbeit betrachten wir zwei Ansätze zur Untersuchung von Korrelationsfunktionen in eindimensionalen konformen Feldtheorien mit Defekten (dCFT1), insbesondere solche, die durch 1/2-BPS-Wilson-Linien-Defekte in den drei- und vierdimensionalen superkonformen Theorien definiert sind, die für die AdS/CFT-Korrespondenz relevant sind.
Zunächst verwenden wir den analytischen konformen Bootstrap, um zwei Beispiele von Defektkorrelatoren auszuwerten. Der Vier-Punkt-Korrelator des Verschiebungs-Supermultipletts, das auf der 1/2-BPS-Wilson-Linie in der ABJM-Theorie eingefügt ist, wird bis zur dritten Ordnung in einer starken Kopplungsexpansion berechnet und reproduziert die expliziten Witten-Diagramm-Berechnungen erster Ordnung. Anschließend wird der Fünf-Punkt-Korrelator von 1/2-BPS-Operatoren, die auf der 1/2-BPS-Wilson-Linie in N=4 Super-Yang-Mills eingefügt sind, untersucht und in einer starken Kopplungsexpansion bis zur ersten Ordnung gebootstrapped. Anschließend werden die CFT1-Daten extrahiert, die bestätigen, dass das Mischen von Operatoren die anomale Dimension erster Ordnung nicht beeinflusst. Der zweite Ansatz betrachtet die allgemeine Struktur von Korrelatoren in effektiven Theorien in AdS2. Es werden alle skalaren n-Punkt-Kontakt-Witten-Diagramme für externe Operatoren mit ganzzahligem konformem Gewicht berechnet. Effektive Theorien in AdS2, die durch eine Wechselwirkungslagrange mit einer beliebigen Anzahl von Ableitungen definiert sind, werden dann betrachtet und mit Hilfe eines neuen Formalismus der Mellin-Amplituden für 1d-CFTs bis zur ersten Ordnung gelöst. Schließlich wird die diskretisierte Wirkung der Cusped-Wilson-Linie als alternative Möglichkeit zur Gewinnung nicht-perturbativer Daten vorgestellt: durch die Gitterfeldtheorie. / In this thesis, we consider two approaches to the study of correlation functions in one-dimensional defect Conformal Field Theories (dCFT1), in particular those defined by 1/2-BPS Wilson line defects in the three- and four-dimensional superconformal theories relevant in the AdS/CFT correspondence. In the first approach, we use the analytic conformal bootstrap to evaluate two examples of defect correlators. The four-point correlator of the displacement supermultiplet inserted on the 1/2-BPS Wilson line in ABJM theory is computed to the third order in a strong-coupling expansion and reproduces the explicit first-order Witten diagram calculations. The CFT1 data are then extracted from this correlator, and the operator mixing is solved at first order. Consequently, all-order results are derived for the part of the correlator with the highest logarithm power, uniquely determining the double-scaling limit. Then, the five-point correlator of 1/2-BPS operators inserted on the 1/2-BPS Wilson line in =4 super Yang-Mills are studied. The superblocks are derived for all channels of the OPE, and the five-point correlator is bootstrapped to first order in a strong coupling expansion. The CFT1 data are then extracted, confirming that operator mixing does not affect the first-order anomalous dimension. The second approach considers the general structure of correlators in effective theories in AdS2. All scalar n-point contact Witten diagrams for external operators of integer conformal weight are computed. Effective theories in AdS2 defined by an interaction Lagrangian with an arbitrary number of derivatives are then considered and solved to first order using a new formalism of Mellin amplitudes for 1d CFTs. Finally, the cusped Wilson line discretised action is presented as an alternative way to obtain non-perturbative data: through Lattice Field Theory.
|
64 |
Spacetime Symmetries from Quantum ErgodicityShoy Ouseph (18086125) 16 April 2024 (has links)
<p dir="ltr">In holographic quantum field theories, a bulk geometric semiclassical spacetime emerges from strongly coupled interacting conformal field theories in one less spatial dimension. This is the celebrated AdS/CFT correspondence. The entanglement entropy of a boundary spatial subregion can be calculated as the area of a codimension two bulk surface homologous to the boundary subregion known as the RT surface. The bulk region contained within the RT surface is known as the entanglement wedge and bulk reconstruction tells us that any operator in the entanglement wedge can be reconstructed as a non-local operator on the corresponding boundary subregion. This notion that entanglement creates geometry is dubbed "ER=EPR'' and has been the driving force behind recent progress in quantum gravity research. In this thesis, we put together two results that use Tomita-Takesaki modular theory and quantum ergodic theory to make progress on contemporary problems in quantum gravity.</p><p dir="ltr">A version of the black hole information loss paradox is the inconsistency between the decay of two-point functions of probe operators in large AdS black holes and the dual boundary CFT calculation where it is an almost periodic function of time. We show that any von Neumann algebra in a faithful normal state that is quantum strong mixing (two-point functions decay) with respect to its modular flow is a type III<sub>1</sub> factor and the state has a trivial centralizer. In particular, for Generalized Free Fields (GFF) in a thermofield double (KMS) state, we show that if the two-point functions are strong mixing, then the entire algebra is strong mixing and a type III<sub>1</sub> factor settling a recent conjecture of Liu and Leutheusser.</p><p dir="ltr">The semiclassical bulk geometry that emerges in the holographic description is a pseudo-Riemannian manifold and we expect a local approximate Poincaré algebra. Near a bifurcate Killing horizon, such a local two-dimensional Poincaré algebra is generated by the Killing flow and the outward null translations along the horizon. We show the emergence of such a Poincaré algebra in any quantum system with modular future and past subalgebras in a limit analogous to the near-horizon limit. These are known as quantum K-systems and they saturate the modular chaos bound. We also prove that the existence of (modular) future/past von Neumann subalgebras also implies a second law of (modular) thermodynamics.</p>
|
65 |
Entanglement Entropy in Cosmology and Emergent GravityAkhil Jaisingh Sheoran (15348844) 25 April 2023 (has links)
<p>Entanglement entropy (EE) is a quantum information theoretic measure that quantifies the correlations between a region and its surroundings. We study this quantity in the following two setups : </p>
<ul>
<li>We look at the dynamics of a free minimally coupled, massless scalar field in a deSitter expansion, where the expansion stops after some time (i.e. we quench the expansion) and transitions to flat spacetime. We study the evolution of entanglement entropy (EE) and the Rényi entropy of a spatial region during the expansion and, more interestingly, after the expansion stops, calculating its time evolution numerically. The EE increases during the expansion but the growth is much more rapid after the expansion ends, finally saturating at late times, with saturation values obeying a volume law. The final state of the subregion is a partially thermalized state, reminiscent of a Gibbs ensemble. We comment on application of our results to the question of when and how cosmological perturbations decohere.</li>
<li>We study the EE in a theory that is holographically dual to a BTZ black hole geometry in the presence of a scalar field, using the Ryu-Takayangi (RT) formula. Gaberdiel and Gopakumar had conjectured that the theory of N free fermions in 1+1 dimensions, for large N, is dual to a higher spin gravity theory with two scalar fields in 2+1 dimensions. So, we choose our boundary theory to be the theory of N free Dirac fermions with a uniformly winding mass, m e<sup>iqx</sup>, in two spacetime dimensions (which describes for instance a superconducting current in an N-channel wire). However, to O(m<sup>2</sup>), thermodynamic quantities can be computed using Einstein gravity. We aim to check if the same holds true for entanglement entropy (EE). Doing calculations on both sides of the duality, we find that general relativity does indeed correctly account for EE of single intervals to O(m<sup>2</sup>).</li>
</ul>
|
Page generated in 0.0771 seconds