• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 21
  • Tagged with
  • 46
  • 46
  • 21
  • 17
  • 12
  • 12
  • 10
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Ecoulements multiphasiques avec changement de phase et ébullition dans les procédés de trempe / Multiphase flows with phase change and boiling in quenching processes

Khalloufi, Mehdi 11 December 2017 (has links)
Les procédés de trempe sont largement répandus dans l'industrie en particulier dans le domaine de l'automobile, du nucléaire et de l'aérospatiale car ils ont un impact direct sur la microstructure, les propriétés mécaniques et les contraintes résiduelles de pièces critiques. La trempe est un processus fortement non-linéaire à cause des couplages forts entre la mécanique des fluides, les transferts thermiques aux différentes interfaces, les transformations de phase du solide et l'ébullition du milieu de trempe. Malgré les progrès effectués par la simulation numérique, ce procédé reste extrêmement difficile à modéliser.Dans ce travail, nous proposons le développement d'outils numériques permettant la simulation réaliste de ce procédé à l'échelle industrielle. La mécanique des fluides est simulée en utilisant une méthode d'Elements Finis stabilisés permettant de considérer des écoulements à haut nombre de Reynolds. Les transferts thermiques sont calculés directement sans l'utilisation de coefficients de transferts empiriques, en utilisant le couplage fort entre le fluide et le solide. Nous avons développé un modèle de changement de phase pour l'eau permettant de considérer les différents régimes d'ébullition. Une formulation unifiée des équations de Navier-Stokes, considérant une phase compressible et une phase incompressible a été développée afin de prendre en compte plus précisément la dynamique de la vapeur et de l'eau. Une procédure dynamique d'adaptation anisotrope de maillage, permettant une description plus fine des interfaces et une prise en compte plus précise des caractéristiques des écoulements est utilisée.Des exemples numériques exigeants ainsi qu'une validation expérimentale permettent d'évaluer la précision et la robustesse des outils proposés.Les outils développés permettent ainsi l'optimisation du mode opératoire du procédé, des ressources consommées et servent ainsi d'outils prospectifs pour la conception de produits. / Quenching processes of metals are widely adopted procedures in the industry, in particular automotive, nuclear and aerospace industries, since they have direct impacts on changing mechanical properties, controlling microstructure and releasing residual stresses of critical parts. Quenching is a highly nonlinear process because of the strong coupling between the fluid mechanics, heat transfer at the interface solid-fluid, phase transformation in the metal and boiling. In spite of the maturity and the popularity of numerical formulations, several involved mechanisms are still not well resolved.Therefore we propose a Direct Numerical Simulation of quenching processes at the industrial scale dealing with these phenomena. The fluid mechanics is simulated using a Finite Element Method adapted for high convective flows allowing the use of high stirring velocity in the quenching bath. Heat transfers are computed directly without the use of heat transfer coefficients but using the strong coupling between the fluid and the solid. We use a phase change model for the water that models all boiling regimes. A unified formulation of the Navier-Stokes equations, taking into account a compressible gas and an incompressible liquid is developed to model more accurately the vapor-water dynamics. A dynamic mesh adaptation procedure is used, increasing the resolution in the description of the interfaces and capturing more accurately the features of the flows.We assess the behavior and the accuracy of the proposed formulation in the simulation of time-dependent challenging numerical examples and experimental results.These recent developments enable the optimization of the process in terms of operating conditions, resources consumed and products conception.
32

Modélisation des problèmes bi-fluides par la méthode des lignes de niveau et l'adaptation du maillage : Application à l'optimisation des formes / Modeling the problem two-fluid flows by the level set method and mesh adaptation : Application to the shape optimization

Tran, Thi Thanh Mai 07 January 2015 (has links)
La première préoccupation de cette thèse est le problème de deux fluides ou un fluide à deux phases, c’est-à-dire que nous nous sommes intéressés à la simulation d’écoulements impliquant deux ou plusieurs fluides visqueux incompressibles immiscibles de propriétés mécaniques et rhéologiques différentes. Dans ce contexte, nous avons considéré que l’interface mobile entre les deux fluides est représentée par la ligne de niveau zéro d’une fonction ligne de niveau et régie par l’équation d’advection, où le champ advectant est la solution des équations de Navier-Stokes. La plupart des méthodes de capture d’interface utilisent une grille cartésienne fixe au cours de la simulation. Contrairement à ces approches, la nôtre est fortement basée sur l’adaptation de maillage, notamment au voisinage de l’interface. Cette adaptation de maillage permet une représentation précise de l’interface, à l’aide de ses propriétés géométriques, avec un nombre de degrés de liberté minimal.La résolution d'un problème à deux fluides est résumée par les étapes suivantes:- Résoudre les équations de Navier-Stokes par la méthode de Lagrange-Galerkin d’ordre 1;- Traitement géométrique la tension de surface se basant sur la discrétisation explicite de l'interface dans le domaine de calcul;- Résoudre l'équation d’advection par la méthode des caractéristiques;- Les techniques de l'adaptation de maillage.On propose ici un schéma entre l’advection de l’interface, la résolution des équations de Navier-Stokes et l’adaptation de maillage. Certains résultats des exemples classiques pour les deux problèmes de monofluide et bifluide comme la cavité entrainée, la rémontée d’une bulle, la coalescence de deux bulles et les instabilités Rayleigh-Taylor sont étudiés en deux et trois dimensions.La deuxième partie de cette thèse est liée à l'optimisation des formes en mécanique des fluides. Nous construisons un schéma numérique en utilisant la méthode des lignes de niveau et l’adaptation de maillage dans le contexte des systèmes de Stokes. Le calcul de la sensibilité de la fonction objective est liée à la méthode de variation des limites d’Hadamard et les dérivées des formes sont calculées par la méthode de Céa. Un exemple numérique avec la fonction objective de la dissipation d'énergie est présenté pour évaluer l'efficacité et la fiabilité du schéma proposé. / The first concern of this thesis is the problem of two fluids flow or two-phase flow, i.e weare interested in the simulation of the evolution of an interface (or a free surface) between twoimmiscible viscous fluids or two phases of a fluid. We propose a general scheme for solving two fluids flow or two-phase flow which takes advantage of the flexibility of the level set method for capturing evolution of the interfaces, including topological changes. Unlike similar approaches that solve the flow problem and the transport equation related to the evolution of the interface on Cartesian grids, our approach relies on an adaptive unstructured mesh to carry out these computations and enjoys an exact and accurate description of the interface. The explicit representation of the manifold separating the two fluids will be extracted to compute approximately the surface tension as well as some algebraic quantities like the normal vector and the curvature at the interface.In a nutshell, the resolution of a two-fluid problem is summarized by the steps involves thefollowing ingredients:– solving incompressible Navier-Stokes equations by the first order Lagrange-Galerkin method;– geometrical treatment to evaluate the surface tension basing on the explicit discretisation of the interface;– solving the level set advection by method of characteristics; – the techniques of mesh adaptation.It is obvious that no numerical method is completely exact in solving the PDE problemat hand, hence, we need a discretized computational domain. However, the accuracy of numericalsolutions or the mass loss/gain can generally be improved with mesh refinement. The question thatarises is related to where and how to refine the mesh. At each time, our mesh adaptation producesthe adapted mesh based on the geometric properties of the interface and the physical properties ofthe fluid, simply speaking, only one adapted mesh at each time step to assume both the resolutionof Navier-Stokes and the advection equations. It answers to the need for an accurate representationof the interface and an accurate approximation of the velocity of fluids with a minimal number ofelements, then decreasing the amount of computational time. Some results of the classical examples for both problems of monofluid and bifluid flows as : lid-driven cavity, rising bubble, coalescence of two bubbles, and Rayleigh-Taylor instability are investigated in two and three dimensions.The second part of this thesis is related to shape optimization in fluid mechanics. We construct a numerical scheme using level set method and mesh adaptation in the context of Stokes systems. The computation of the sensitivity of objective function is related to the Hadamard’s boundary variation method and the shape derivatives is computed by Céa’s formal method. A numerical example with theobjective function of energy dissipation is presented to assess the efficiency and the reliability of theproposed scheme.
33

Time-accurate anisotropic mesh adaptation for three-dimensional moving mesh problems / Adaptation de maillage anisotrope dépendant du temps pour des problèmes tridimensionnels en maillage mobile

Barral, Nicolas 27 November 2015 (has links)
Les simulations dépendant du temps sont toujours un challenge dans l'industrie, notamment à cause des problèmes posés par les géométries mobiles en termes de CPU et de précision. Cette thèse présente des contributions à certains aspects des simulations en géométrie mobile. Un algorithme de bouger de maillage fondé sur une déformation de maillage sur un grand pas de temps et des changements de connectivité (swaps) est étudié. Une méthode d'élasticité et une méthode d'interpolation directe sont comparées en 3D, démontrant l'efficacité de l'algorithme. Cet algorithme est couplé à un solver ALE, dont les schémas et l'implémentation en 3D sont décrits en détail. Une interpolation linéaire est utilisée pou traiter les swaps. Des cas de validation montrent que les swaps n'influent pas notablement sur la précision de la solution. Plusieurs examples complexes en 3D démontrent la puissance de cette approche, pour des mouvement imposés ou pour des problèmes d'Interaction Fluide-Structure. L'adaptation de maillage anisotrope a démontré son efficacité pour améliorer la précision des calculs stationnaires pour un coût raisonnable. On considère l'extension de ces méthodes aux problèmes instationnaires, en mettant à jour l'algorithme de point fixe précédent grâce à une ananlyse de l'erreur espace-temps fondée sur le modèle de maillage continu. Une parallélisation efficace permet de réaliser des simulations adaptatives instationnaires avec une précision inégalée. Cet algorithme est étendu au cas des géométries mobiles en corrigeant la métrique optimale instationnaire. Finalement, plusieurs exemples 3D de simulations adaptatives en géométries mobiles démontrent l'efficacité de l'approche. / Time dependent simulations are still a challenge for industry, notably due to problems raised by moving boundaries, both in terms of CPU cost and accuracy. This thesis presents contributions to several aspects of simulations with moving meshes. A moving-mesh algorithm based on a large deformation time step and connectivity changes (swaps) is studied. An elasticity method and an Inverse Distance Weighted interpolation method are compared on many 3D examples, demonstrating the efficiency of the algorithm in handling large geometry displacement without remeshing. This algorithm is coupled with an Arbitrary-Lagrangian-Eulerian (ALE) solver, whose schemes and implementation in 3D are described in details. A linear interpolation scheme is used to handle swaps. Validation test cases showed that the use of swaps does not impact notably the accuracy of the solution, while several other complex 3D examples demonstrate the capabilities of the approach both with imposed motion and Fluid-Structure Interaction problems. Metric-based mesh adaptation has proved its efficiency in improving the accuracy of steady simulation at a reasonable cost. We consider the extension of these methods to unsteady problems, updating the previous fixed-point algorithm thanks to a new space-time error analysis based on the continuous mesh model. An efficient p-thread parallelization enables running 3D unsteady adaptative simulations with a new level of accuracy. This algorithm is extended to moving mesh problems, notably by correcting the optimal unsteady metric. Finally several 3D examples of adaptative moving mesh simulations are exhibited, that prove our concept by improving notably the accuracy of the solution for a reasonable time cost.
34

Etudes mathématiques de fluides à frontières libres en dynamique incompressible / Mathematical study of free surface flows in incompressible dynamics

Kazerani, Dena 29 November 2016 (has links)
Cette thèse est consacrée à l’étude théorique ainsi qu’au traitement numérique de fluides incompressibles à surface libre. La première partie concerne un système d’équations appelé le système de Green–Naghdi. Comme le système de Saint-Venant, il s’agit d’une approximation d’eaux peu-profondes du problème de Zakharov. La différence est que le système de Green–Naghdi est d’un degré plus élevé en ordre d’approximation. C’est pourquoi il contient tous les termes du système de Saint-Venant plus de termes d’ordre trois non-linéairement dispersives. Autrement dit, le système de Green–Naghdi peut être vu comme une perturbation dispersive du système de Saint-Venant. Ce dernier système étant hyperbolique, il entre dans le cadre classique développé pour des systèmes hyperboliques. En particulier, il est entropique (au sense de Lax) et symétrique. On peut donc lui appliquer les résultats d’existence et d’unicité bien connus pour des systèmes hyperboliques. Dans la première partie de ce travail, on généralise la notion de symétrie à une classe plus générale de systèmes contenant le système de Green–Naghdi. Ceci nous permet de symétriser les équations de Green–Naghdi et d’utiliser la symétrie obtenue pour déduire un résultat d’existence globale après avoir ajouté un terme dissipative d’ordre 2 au système. Ceci est fait en adaptant l’approche utilisée dans la littérature pour des systèmes hyperboliques. La deuxième partie de ce travail concerne le traitement numérique des équations de Navier–Stokes à surface libre avec un terme de tension de surface. Ici, la surface libre est modélisée en utilisant la formulation des lignes de niveaux. C’est pourquoi la condition cinématique (condition de l’évolution de surface libre) s’écrit sous la forme d’une équation d’advection satisfaite par la fonction de ligne de niveaux. Cette équation est résolue sur une domaine de calcul contenant strictement le domaine de fluide, sur de petits sous-intervalles du temps. Chaque itération de l’algorithme global correspond donc à l’advection du domaine du fluide sur le sous-intervalle du temps associé et ensuite de résoudre le système de Navier–Stokes discrétisé en temps sur le domaine du fluide. Cette discrétisation en temps est faite par la méthode des caractéristiques. L’outil clé qui nous permet de résoudre ce système uniquement sur le domaine du fluide est l’adaptation de maillage anisotrope. Plus précisément, à chaque itération le maillage est adapté au domaine du fluide tel que l’erreur d’approximation et l’erreur géométrique soient raisonnablement petites au voisinage du domaine du fluide. La résolution du problème discrétisé en temps sur le domaine du fluide est faite par l’algorithme d’Uzawa utilisé dans la cadre de la méthode des éléments finis. Par ailleurs, la condition de glissement de Navier est traité ici en ajoutant un terme de pénalisation à la formulation variationnelle associée. / This thesis is about theoretical study and numerical treatment of some problems raised in incompressible free-surface fluid dynamics. The first part concerns a model called the Green–Naghdi (GN) equations. Similarly to the non linear shallow water system (called also Saint-Venant system), the Green–Naghdi equations is a shallow water approximation of water waves problem. Indeed, GN equation is one order higher in approximation compared to Saint-Venant system. For this reason, it contains all the terms of Saint-Venant system in addition to some non linear third order dispersive terms. In other words, the GN equations is a dispersive perturbation of the Saint-Venant system. The latter system is hyperbolic and fits the general framework developed in the literature for hyperbolic systems. Particularly, it is entropic (in the sense of Lax) and symmertizable. Therefore, we can apply the well-posedness results known for symmetric hyperbolic system. During the first part of this work, we generalize the notion of symmetry to a more general type of equations including the GN system. This lets us to symmetrize the GN equation. Then, we use the suggested symmetric structure to obtain a global existence result for the system with a second order dissipative term by adapting the approach classically used for hyperbolic systems. The second part of this thesis concerns the numerical treatment of the free surface incompressible Navier–Stokes equation with surface tension. We use the level set formulation to represent the fluid free-surface. Thanks to this formulation, the kinematic boundary condition is treated by solving an advection equation satisfied by the level set function. This equation is solved on a computational domain containing the fluid domain over small time subintervals. Each iteration of the algorithm corresponds to the adevction of the fluid domain on a small time subinterval and to solve the time-discretized Navier–Stokes equations only on the fluid domain. The time discretization of the Navier–Stokes equation is done by the characteristic method. Then, the key tool which lets us solve this equation on the fluid domain is the anisotropic mesh adaptation. Indeed, at each iteration the mesh is adapted to the fluid domain such that we get convenient approximation and geometric errors in the vicinity of the fluid domain. This resolution is done using the Uzawa algorithm for a convenient finite element method. The slip boundary conditions are considered by adding a penalization term to the variational formulation associated to the problem.
35

Embedded and high-order meshes : two alternatives to linear body-fitted meshes / Maillages immergés et d'ordre élevé : deux alternatives à la représentation linéaire des maillages en géométrie inscrite

Feuillet, Rémi 10 December 2019 (has links)
La simulation numérique de phénomènes physiques complexes requiert généralement l’utilisation d’un maillage. En mécanique des fluides numérique, cela consisteà représenter un objet dans un gros volume de contrôle. Cet objet étant celui dont l’on souhaite simuler le comportement. Usuellement, l’objet et la boîte englobante sont représentés par des maillage de surface linéaires et la zone intermédiaire est remplie par un maillage volumique. L’objectif de cette thèse est de s’intéresser à deux manières différentes de représenter cet objet. La première approche dite immergée consiste à mailler intégralement le volume de contrôle et ensuite à simuler le comportement autour de l’objet sans avoir à mailler explicitement dans le volume ladite géometrie. L’objet étant implicitement pris en compte par le schéma numérique. Le couplage de cette méthode avec de l’adaptation de maillage linéaire est notamment étudié. La deuxième approche dite d’ordre élevé consiste quant à elle consiste à augmenter le degré polynomial du maillage de surface de l’objet. La première étape consiste donc à générer le maillage de surface de degré élevé et ensuite àpropager l’information de degré élevé dans les éléments volumiques environnants si nécessaire. Dans ce cadre-là, il s’agit de s’assurer de la validité de telles modifications et à considérer l’extension des méthodes classiques de modification de maillages linéaires. / The numerical simulation of complex physical phenomenons usually requires a mesh. In Computational Fluid Dynamics, it consists in representing an object inside a huge control volume. This object is then the subject of some physical study. In general, this object and its bounding box are represented by linear surface meshes and the intermediary zone is filled by a volume mesh. The aim of this thesis is to have a look on two different approaches for representing the object. The first approach called embedded method consist in integrally meshing the bounding box volume without explicitly meshing the object in it. In this case, the presence of the object is implicitly simulated by the CFD solver. The coupling of this method with linear mesh adaptation is in particular discussed.The second approach called high-order method consist on the contrary by increasing the polynomial order of the surface mesh of the object. The first step is therefore to generate a suitable high-order mesh and then to propagate the high-order information in the neighboring volume if necessary. In this context, it is mandatory to make sure that such modifications are valid and then the extension of classic mesh modification techniques has to be considered.
36

Contribution à la modélisation des écoulements en eaux peu profondes, avec transport de polluant. (Application à la baie de Tanger)

Elmiloud, Chaabelasri 26 February 2011 (has links) (PDF)
Cette thèse est une contribution à la résolution numérique d'une loi de conservation hyperbolique résultante d'un couplage entre les équations de Saint-Venant, associée à la modélisation des écoulements en eaux peu profondes, et l'équation de transport-diffusion d'un polluant non actif. Le modèle mathématique utilisé est bi-dimensionnel, intégrant des termes de friction, de diffusion, des tensions de surface et un terme tenant compte la variation de la bathymétrie. Nous présentons un modèle numérique basé sur un schéma volumes finis bidimensionnel d'ordres deux, conservatif et consistant, sur un maillage non structuré adaptatif. Ce modèle préserve la positivité de la hauteur d'eau et l'état stationnaire associé au lac au repos, il permet de capturer avec précision les ondes de chocs. Dans le temps une extension à l'ordre deux est garantie en utilisant un schéma de Runge-Kutta ce qui permettra de prendre en compte les différentes vitesses de propagation de l'information présentes dans les différents problèmes traités. Nous appliquons le modèle numérique développé sur plusieurs problèmes. Entre autre, la simulation d'une propagation d'une onde de crue, écoulement autour d'une singularité géométrique, écoulement sur des fonds variables et présentant des fronts raides. Et en fin, L'étude numérique s'achève par une application du modèle pour la simulation du transport de polluant dans une géométrie réelle avec une bathymétrie fortement variable telle que présente la baie de Tanger.
37

Génération et adaptation de maillage volume-couche limite dynamique pour les écoulements turbulents autour de géométries complexes / Boundary-volume mesh generation and adaptation for turbulent flows around complex geometries

Billon, Laure 09 December 2016 (has links)
La simulation numérique des écoulements turbulents en aérodynamique est très complexe. Elle consiste en l'étude de l'interaction entre un fluide et un profilimmergé. On observe à la surface du profil une zone de vitesse ralentie, nommée couche limite. L'étude fine de la couche limite est primordiale pour la résolution précise de l'écoulement. Elle nécessite de ce fait un maillage particulièrement fin et structuré. Nous proposons une procédure automatique permettant de générer un maillage adapté pour la résolution précise de la couche limite en accord avec la théorie et les caractéristiques physiques de l'écoulement. De plus, afin de décrire l'écoulement turbulent dans toute sa complexité à moindres coûts, nous proposons de combiner le maillage couche limite à une méthode d’adaptation de maillage dynamique.A cet effet, nous avons utilisé une version avancée de l'adaptation de maillagesur l'erreur a posteriori basée sur les arêtes et développé une méthode permettant à la fois de conserver la structure et le raffinement dans la couche limite mais également de décrire précisément les recirculations et le sillage. La nouvelle méthode d'adaptation volume-couche limite a été validée sur des cas2D et 3D à géométries complexes. Les résultats mettent en relief le potentiel decette approche et ouvre des perspectives intéressantes pour l'adaptation de maillage en mécanique des fluides. / Numerical simulation of turbulent aerodynamics flows remains challenging. Such fluid-structure interaction problem involves generally a thin layer close to the wall where the fluid is slow down, called boundary layer. This latter requires a carefull study of the boundary layer since it is crucial regarding the accuracyof the complete flow computation. Therefore, a fine and structured mesh is needed close to the wall. In this work, we propose a novel automatic procedure to build a correct boundary layer mesh according to the theory and the flow parameters. Moreover, in order to describe exactly the behaviour of the flow on the whole domain, the boundary layer mesh is combined with a dynamic mesh adaptation method.It follows an advanced version of the edge based mesh adaptation method. Combined together, they ensure a fine and structured mesh in the boundarylayer while all the flow vortices are accurately resolved. This new method, called boundary-volume mesh adaptation, has been validated on several 2D and 3Dtest cases with complex geometries. Results emphasises the capacity ofthe approach and offer opportunities of improvement for numerical fluid mechanics mesh adaptation.
38

Adaptation anisotrope précise en espace et temps et méthodes d’éléments finis stabilisées pour la résolution de problèmes de mécanique des fluides instationnaires / Space-Time accurate anisotropic adaptation and stabilized finite element methods for the resolution of unsteady CFD problems

El Jannoun, Ghina 22 September 2014 (has links)
Aujourd'hui, avec l'amélioration des puissances de calcul informatique, la simulation numérique est devenue un outil essentiel pour la prédiction des phénomènes physiques et l'optimisation des procédés industriels. La modélisation de ces phénomènes pose des difficultés scientifiques car leur résolution implique des temps de calcul très longs malgré l'utilisation d'importantes ressources informatiques.Dans cette thèse, on s'intéresse à la résolution de problèmes complexes couplant écoulements et transferts thermiques. Les problèmes physiques étant fortement anisotropes, il est nécessaire d'avoir un maillage avec une résolution très élevée pour obtenir un bon niveau de précision. Cela implique de longs temps de calcul. Ainsi il faut trouver un compromis entre précision et efficacité. Le développement de méthodes d'adaptation en temps et en espace est motivé par la volonté de faire des applications réelles et de limiter les inconvénients inhérents aux méthodes de résolution non adaptatives en terme de précision et d'efficacité. La résolution de problèmes multi-échelles instationnaires sur un maillage uniforme avec un nombre de degrés de liberté limité est souvent incapable de capturer les petites échelles, nécessite des temps de calcul longs et peut aboutir à des résultats incorrects. Ces difficultés ont motivé le développement de méthodes de raffinement local avec une meilleure précision aux endroits adéquats. L'adaptation en temps et en espace peut donc être considérée comme une composante essentielle de ces méthodes.L'approche choisie dans cette thèse consiste en l'utilisation de méthodes éléments finis stabilisées et le développement d'outils d'adaptation espace-temps pour améliorer la précision et l'efficacité des simulations numériques.Le développement de la méthode adaptative est basé sur un estimateur d'erreur sur les arrêtes du maillage afin de localiser les régions du domaine de calcul présentant de forts gradients ainsi que les couches limites. Ensuite une métrique décrivant la taille de maille en chaque noeud dans les différentes directions est calculée. Afin d'améliorer l'efficacité des calculs la construction de cette métrique prend en compte un nombre fixe de noeuds et aboutit à une répartition et une orientation optimale des éléments du maillage. Cette approche est étendue à une formulation espace-temps où les maillages et les pas de temps optimaux sont prédits sur des intervalles de temps en vue de contrôler l'erreur d'interpolation sur la domaine de calcul. / Nowadays, with the increase in computational power, numerical modeling has become an intrinsic tool for predicting physical phenomena and developing engineering designs. The modeling of these phenomena poses scientific complexities the resolution of which requires considerable computational resources and long lasting calculations.In this thesis, we are interested in the resolution of complex long time and large scale heat transfer and fluid flow problems. When the physical phenomena exhibit sharp anisotropic features, a good level of accuracy requires a high mesh resolution, hence hindering the efficiency of the simulation. Therefore a compromise between accuracy and efficiency shall be adopted. The development of space and time adaptive adaptation techniques was motivated by the desire to devise realistic configurations and to limit the shortcomings of the traditional non-adaptive resolutions in terms of lack of solution's accuracy and computational efficiency. Indeed, the resolution of unsteady problems with multi-scale features on a prescribed uniform mesh with a limited number of degrees of freedom often fails to capture the fine scale physical features, have excessive computational cost and might produce incorrect results. These difficulties brought forth investigations towards generating meshes with local refinements where higher resolution was needed. Space and time adaptations can thus be regarded as essential ingredients in this recipe.The approach followed in this work consists in applying stabilized finite element methods and the development of space and time adaptive tools to enhance the accuracy and efficiency of the numerical simulations.The derivation process starts with an edge-based error estimation for locating the regions, in the computational domain, presenting sharp gradients, inner and boundary layers. This is followed by the construction of nodal metric tensors that prescribe, at each node in the spatial mesh, mesh sizes and the directions along which these sizes are to be imposed. In order to improve the efficiency of computations, this construction takes into account a fixed number of nodes and generates an optimal distribution and orientation of the mesh elements. The approach is extended to a space-time adaptation framework, whereby optimal meshes and time-step sizes for slabs of time are constructed in the view of controlling the global interpolation error over the computation domain.
39

Contribution à une méthode de raffinement de maillage basée sur le vecteur adjoint pour le calcul de fonctions aérodynamiques / Contribution to a mesh refinement method based on the adjoint vector for the computation of aerodynamic outputs

Bourasseau, Sébastien 14 December 2015 (has links)
L’adaptation de maillage est un outil puissant pour l’obtention de simulations aérodynamiques précises à coût limité. Dans le cas particulier des simulations visant au calcul de fonctions aérodynamiques (efforts, moments, rendements...), plusieurs méthodes dites de raffinement ciblé (ou, en anglais, « goal-oriented ») basées sur le vecteur adjoint de la fonction d’intérêt ont été proposées. L’objectif de la thèse est l’extension d’une méthode de ce type basée sur la dérivée totale dJ/dX de la grandeur aérodynamique d’intérêt, J, par rapport aux coordonnées du maillage volumique, X. Les trois méthodes usuelles de calcul de gradient discret – la méthode de différentiation directe, la méthode adjointe-"paramètres" et la méthode adjointe-"maillage" évaluant dJ/dX – ont tout d’abord été étudiées et codées dans le logiciel elsA de l’ONERA pour des maillages non-structurés, pour des écoulements compressibles de fluide parfait et des écoulements laminaires. La seconde étape du travail a consisté à créer un senseur local θ basé sur dJ/dX qui identifie les zones du maillage volumique où la position des nœuds a une forte incidence sur l’évaluation de la fonction J. Ce senseur sert d’indicateur pour l’adaptation de différents maillages, pour différents régimes d’écoulement (subsonique, transsonique, supersonique), pour des configurations d’aérodynamique interne (aube et tuyère) et externe (profil d’aile). La méthode proposée est comparée à une méthode de raffinement ciblée très populaire (Venditti et Darmofal, 2001) et à une méthode de raffinement basée sur les caractéristiques de l’écoulement (ou, en anglais, « feature-based ») ; elle conduit à des résultats très satisfaisants. / Mesh adaptation is a powerful tool to obtain accurate aerodynamic simulations with limited cost. In the specific case of computation of aerodynamic functions (forces, moments, efficiency ...), goal-oriented methods based on the adjoint vector have been proposed. The aim of the thesis is the extension of a method of this type based on the total derivative dJ/dX of the aerodynamic output of interest, J, with respect to the volume mesh coordinates, X. The three common methods for calculating discrete gradient – the direct differentiation method, the parameter-adjoint method and mesh-adjoint method evaluating dJ/dX – have been studied first and coded in the elsA ONERA software for unstructured grids, for compressible inviscid and laminar flows. The second part of this work was has been to define a local sensor θ based on dJ/dX in order to identify zones where the volume mesh nodes position has a strong impact on the evaluation of the function J. This sensor is the selected indicator for different mesh adaptations for different flow regimes (subsonic, transonic, supersonic) for internal (blade and nozzle) and external (wing profile) aerodynamic configurations. The proposed method is compared to a well-known goal-oriented method (Darmofal and Venditti, 2001) and to a feature-based method ; it leads to very consistent results. very consistent results.
40

Contributions en traitements basés points pour le rendu et la simulation en mécanique des fluides / Contributions in point based processing for rendering and fluid simulation

Bouchiba, Hassan 05 July 2018 (has links)
Le nuage de points 3D est la donnée obtenue par la majorité des méthodes de numérisation surfacique actuelles. Nous nous intéressons ainsi dans cette thèse à l'utilisation de nuages de points comme unique représentation explicite de surface. Cette thèse présente deux contributions en traitements basés points. La première contribution proposée est une nouvelle méthode de rendu de nuages de points bruts et massifs par opérateurs pyramidaux en espace image. Cette nouvelle méthode s'applique aussi bien à des nuages de points d'objets scannés, que de scènes complexes. La succession d'opérateurs en espace image permet alors de reconstruire en temps réel une surface et d'en estimer des normales, ce qui permet par la suite d'en obtenir un rendu par ombrage. De plus, l'utilisation d'opérateurs pyramidaux en espace image permet d'atteindre des fréquences d'affichage plus élevées d'un ordre de grandeur que l'état de l'art .La deuxième contribution présentée est une nouvelle méthode de simulation numérique en mécanique des fluides en volumes immergés par reconstruction implicite étendue. La méthode proposée se base sur une nouvelle définition de surface implicite par moindres carrés glissants étendue à partir d'un nuage de points. Cette surface est alors utilisée pour définir les conditions aux limites d'un solveur Navier-Stokes par éléments finis en volumes immergés, qui est utilisé pour simuler un écoulement fluide autour de l'objet représenté par le nuage de points. Le solveur est interfacé à un mailleur adaptatif anisotrope qui permet de capturer simultanément la géométrie du nuage de points et l'écoulement à chaque pas de temps de la simulation. / Most surface 3D scanning techniques produce 3D point clouds. This thesis tackles the problem of using points as only explicit surface representation. It presents two contributions in point-based processing. The first contribution is a new raw and massive point cloud screen-space rendering algorithm. This new method can be applied to a wide variety of data from small objects to complex scenes. A sequence of screen-space pyramidal operators is used to reconstruct in real-time a surface and estimate its normals, which are later used to perform deferred shading. In addition, the use of pyramidal operators allows to achieve framerate one order of magnitude higher than state of the art methods. The second proposed contribution is a new immersed boundary computational fluid dynamics method by extended implicit surface reconstruction. The proposed method is based on a new implicit surface definition from a point cloud by extended moving least squares. This surface is then used to define the boundary conditions of a finite-elements immersed boundary transient Navier-Stokes solver, which is used to compute flows around the object sampled by the point cloud. The solver is interfaced with an anisotropic and adaptive meshing algorithm which refines the computational grid around both the geometry defined by point cloud and the flow at each timestep of the simulation.

Page generated in 0.0997 seconds