Spelling suggestions: "subject:"adaptive mesh refinement"" "subject:"adaptive mesh definement""
51 |
Simulação computacional adaptativa de escoamentos bifásicos viscoelásticos / Adaptive computational simulation of two-phase viscoelastic flowsCatalina Maria Rua Alvarez 28 May 2013 (has links)
A simulação computacional de escoamentos incompressíveis multifásicos tem avançado continuamente e é uma área extremamente importante em Dinâmica de Fluidos Computacional (DFC) por suas várias aplicações na indústria, em medicina e em biologia, apenas para citar alguns exemplos. Apresentamos modelos matemáticos e métodos numéricos tendo em vista simulações computacionais de fluidos bifásicos newtonianos e viscoelásticos (não newtonianos), em seus regimes transiente e estacionário de escoamento. Os ingredientes principais requeridos são o Modelo de Um Fluido e o Método da Fronteira Imersa em malhas adaptativas, usados em conjunto com os métodos da Projeção de Chorin-Temam e de Uzawa. Tais metodologias são obtidas a partir de equações a derivadas parciais simples as quais, naturalmente, são resolvidas em malhas adaptativas empregando métodos multinível-multigrid. Em certas ocasiões, entretanto, para escoamentos modelados pelas equações de Navier-Stokes (e.g. em problemas onde temos altos saltos de massa específica), tem-se problemas de convergência no escopo destes métodos. Além disso, no caso de escoamentos estacionários, resolver as equações de Stokes em sua forma discreta por tais métodos não é uma tarefa fácil. Verificamos que zeros na diagonal do sistema linear resultante impedem que métodos de relaxação usuais sejam empregados. As dificuldades mencionadas acima motivaram-nos a pesquisar por, a propor e a desenvolver alternativas à metodologia multinível-multigrid. No presente trabalho, propomos métodos para obter explicitamente as matrizes que representam os sistemas lineares oriundos da discretização daquelas equações a derivadas parciais simples que são a base dos métodos de Projeção e de Uzawa. Ter em mãos estas representações matriciais é vantajoso pois com elas podemos caracterizar tais sistemas lineares em termos das propriedades de seus raios espectrais, suas definições e simetria. Muito pouco (ou nada) se sabe efetivamente sobre estes sistemas lineares associados a discretizações em malhas compostas bloco-estruturadas. É importante salientarmos que, além disso, ganhamos acesso ao uso de bibliotecas numéricas externas, como o PETSc, com seus pré-condicionadores e métodos numéricos, seriais e paralelos, para resolver sistemas lineares. Infraestrutura para nossos desenvolvimentos foi propiciada pelo código denominado ``AMR2D\'\', um código doméstico para problemas em DFC que vem sendo cuidado ao longo dos anos pelos grupos de pesquisa em DFC do IME-USP e da FEMEC-UFU. Estendemos este código, adicionando módulos para escoamentos viscoelásticos e para escoamentos estacionários modelados pelas equações de Stokes. Além disso, melhoramos de maneira notável as rotinas de cálculo de valores fantasmas. Tais melhorias permitiram a implementação do Método dos Gradientes Bi-Conjugados, baseada em visitas retalho-a-retalho e varreduras da estrutura hierárquica nível-a-nível, essencial à implementação do Método de Uzawa. / Numerical simulation of incompressible multiphase flows has continuously of advanced and is an extremely important area in Computational Fluid Dynamics (CFD) because its several applications in industry, in medicine, and in biology, just to mention a few of them. We present mathematical models and numerical methods having in sight the computational simulation of two-phase Newtonian and viscoelastic fluids (non-Newtonian fluids), in the transient and stationary flow regimes. The main ingredients required are the One-fluid Model and the Immersed Boundary Method on dynamic, adaptive meshes, in concert with Chorin-Temam Projection and the Uzawa methods. These methodologies are built from simple linear partial differential equations which, most naturally, are solved on adaptive grids employing mutilevel-multigrid methods. On certain occasions, however, for transient flows modeled by the Navier-Stokes equations (e.g. in problems where we have high density jumps), one has convergence problems within the scope of these methods. Also, in the case of stationary flows, solving the discrete Stokes equations by those methods represents no straight forward task. It turns out that zeros in the diagonal of the resulting linear systems coming from the discrete equations prevent the usual relaxation methods from being used. Those difficulties, mentioned above, motivated us to search for, to propose, and to develop alternatives to the multilevel-multigrid methodology. In the present work, we propose methods to explicitly obtain the matrices that represent the linear systems arising from the discretization of those simple linear partial differential equations which form the basis of the Projection and Uzawa methods. Possessing these matrix representations is on our advantage to perform a characterization of those linear systems in terms of their spectral, definition, and symmetry properties. Very little is known about those for adaptive mesh discretizations. We highlight also that we gain access to the use of external numerical libraries, such as PETSc, with their preconditioners and numerical methods, both in serial and parallel versions, to solve linear systems. Infrastructure for our developments was offered by the code named ``AMR2D\'\' - an in-house CFD code, nurtured through the years by IME-USP and FEMEC-UFU CFD research groups. We were able to extend that code by adding a viscoelastic and a stationary Stokes solver modules, and improving remarkably the patchwise-based algorithm for computing ghost values. Those improvements proved to be essential to allow for the implementation of a patchwise Bi-Conjugate Gradient Method which ``powers\'\' Uzawa Method.
|
52 |
Simulação computacional adaptativa de escoamentos bifásicos viscoelásticos / Adaptive computational simulation of two-phase viscoelastic flowsAlvarez, Catalina Maria Rua 28 May 2013 (has links)
A simulação computacional de escoamentos incompressíveis multifásicos tem avançado continuamente e é uma área extremamente importante em Dinâmica de Fluidos Computacional (DFC) por suas várias aplicações na indústria, em medicina e em biologia, apenas para citar alguns exemplos. Apresentamos modelos matemáticos e métodos numéricos tendo em vista simulações computacionais de fluidos bifásicos newtonianos e viscoelásticos (não newtonianos), em seus regimes transiente e estacionário de escoamento. Os ingredientes principais requeridos são o Modelo de Um Fluido e o Método da Fronteira Imersa em malhas adaptativas, usados em conjunto com os métodos da Projeção de Chorin-Temam e de Uzawa. Tais metodologias são obtidas a partir de equações a derivadas parciais simples as quais, naturalmente, são resolvidas em malhas adaptativas empregando métodos multinível-multigrid. Em certas ocasiões, entretanto, para escoamentos modelados pelas equações de Navier-Stokes (e.g. em problemas onde temos altos saltos de massa específica), tem-se problemas de convergência no escopo destes métodos. Além disso, no caso de escoamentos estacionários, resolver as equações de Stokes em sua forma discreta por tais métodos não é uma tarefa fácil. Verificamos que zeros na diagonal do sistema linear resultante impedem que métodos de relaxação usuais sejam empregados. As dificuldades mencionadas acima motivaram-nos a pesquisar por, a propor e a desenvolver alternativas à metodologia multinível-multigrid. No presente trabalho, propomos métodos para obter explicitamente as matrizes que representam os sistemas lineares oriundos da discretização daquelas equações a derivadas parciais simples que são a base dos métodos de Projeção e de Uzawa. Ter em mãos estas representações matriciais é vantajoso pois com elas podemos caracterizar tais sistemas lineares em termos das propriedades de seus raios espectrais, suas definições e simetria. Muito pouco (ou nada) se sabe efetivamente sobre estes sistemas lineares associados a discretizações em malhas compostas bloco-estruturadas. É importante salientarmos que, além disso, ganhamos acesso ao uso de bibliotecas numéricas externas, como o PETSc, com seus pré-condicionadores e métodos numéricos, seriais e paralelos, para resolver sistemas lineares. Infraestrutura para nossos desenvolvimentos foi propiciada pelo código denominado ``AMR2D\'\', um código doméstico para problemas em DFC que vem sendo cuidado ao longo dos anos pelos grupos de pesquisa em DFC do IME-USP e da FEMEC-UFU. Estendemos este código, adicionando módulos para escoamentos viscoelásticos e para escoamentos estacionários modelados pelas equações de Stokes. Além disso, melhoramos de maneira notável as rotinas de cálculo de valores fantasmas. Tais melhorias permitiram a implementação do Método dos Gradientes Bi-Conjugados, baseada em visitas retalho-a-retalho e varreduras da estrutura hierárquica nível-a-nível, essencial à implementação do Método de Uzawa. / Numerical simulation of incompressible multiphase flows has continuously of advanced and is an extremely important area in Computational Fluid Dynamics (CFD) because its several applications in industry, in medicine, and in biology, just to mention a few of them. We present mathematical models and numerical methods having in sight the computational simulation of two-phase Newtonian and viscoelastic fluids (non-Newtonian fluids), in the transient and stationary flow regimes. The main ingredients required are the One-fluid Model and the Immersed Boundary Method on dynamic, adaptive meshes, in concert with Chorin-Temam Projection and the Uzawa methods. These methodologies are built from simple linear partial differential equations which, most naturally, are solved on adaptive grids employing mutilevel-multigrid methods. On certain occasions, however, for transient flows modeled by the Navier-Stokes equations (e.g. in problems where we have high density jumps), one has convergence problems within the scope of these methods. Also, in the case of stationary flows, solving the discrete Stokes equations by those methods represents no straight forward task. It turns out that zeros in the diagonal of the resulting linear systems coming from the discrete equations prevent the usual relaxation methods from being used. Those difficulties, mentioned above, motivated us to search for, to propose, and to develop alternatives to the multilevel-multigrid methodology. In the present work, we propose methods to explicitly obtain the matrices that represent the linear systems arising from the discretization of those simple linear partial differential equations which form the basis of the Projection and Uzawa methods. Possessing these matrix representations is on our advantage to perform a characterization of those linear systems in terms of their spectral, definition, and symmetry properties. Very little is known about those for adaptive mesh discretizations. We highlight also that we gain access to the use of external numerical libraries, such as PETSc, with their preconditioners and numerical methods, both in serial and parallel versions, to solve linear systems. Infrastructure for our developments was offered by the code named ``AMR2D\'\' - an in-house CFD code, nurtured through the years by IME-USP and FEMEC-UFU CFD research groups. We were able to extend that code by adding a viscoelastic and a stationary Stokes solver modules, and improving remarkably the patchwise-based algorithm for computing ghost values. Those improvements proved to be essential to allow for the implementation of a patchwise Bi-Conjugate Gradient Method which ``powers\'\' Uzawa Method.
|
53 |
\"Simulações de escoamentos tridimensionais bifásicos empregando métodos adaptativos e modelos de campo fase\" / \"Simulations of 3D two-phase flows using adaptive methods and phase field models\"Nós, Rudimar Luiz 20 March 2007 (has links)
Este é o primeiro trabalho que apresenta simulações tridimensionais completamente adaptativas de um modelo de campo de fase para um fluido incompressível com densidade de massa constante e viscosidade variável, conhecido como Modelo H. Solucionando numericamente as equações desse modelo em malhas refinadas localmente com a técnica AMR, simulamos computacionalmente escoamentos bifásicos tridimensionais. Os modelos de campo de fase oferecem uma aproximação física sistemática para investigar fenômenos que envolvem sistemas multifásicos complexos, tais como fluidos com camadas de mistura, a separação de fases sob forças de cisalhamento e a evolução de micro-estruturas durante processos de solidificação. Como as interfaces são substituídas por delgadas regiões de transição (interfaces difusivas), as simulações de campo de fase requerem muita resolução nessas regiões para capturar corretamente a física do problema em estudo. Porém essa não é uma tarefa fácil de ser executada numericamente. As equações que caracterizam o modelo de campo de fase contêm derivadas de ordem elevada e intrincados termos não lineares, o que exige uma estratégia numérica eficiente capaz de fornecer precisão tanto no tempo quanto no espaço, especialmente em três dimensões. Para obter a resolução exigida no tempo, usamos uma discretização semi-implícita de segunda ordem para solucionar as equações acopladas de Cahn-Hilliard e Navier-Stokes (Modelo H). Para resolver adequadamente as escalas físicas relevantes no espaço, utilizamos malhas refinadas localmente que se adaptam dinamicamente para recobrir as regiões de interesse do escoamento, como por exemplo, as vizinhanças das interfaces do fluido. Demonstramos a eficiência e a robustez de nossa metodologia com simulações que incluem a separação dos componentes de uma mistura bifásica, a deformação de gotas sob cisalhamento e as instabilidades de Kelvin-Helmholtz. / This is the first work that introduces 3D fully adaptive simulations for a phase field model of an incompressible fluid with matched densities and variable viscosity, known as Model H. Solving numerically the equations of this model in meshes locally refined with AMR technique, we simulate computationally tridimensional two-phase flows. Phase field models offer a systematic physical approach to investigate complex multiphase systems phenomena such as fluid mixing layers, phase separation under shear and microstructure evolution during solidification processes. As interfaces are replaced by thin transition regions (diffuse interfaces), phase field simulations need great resolution in these regions to capture correctly the physics of the studied problem. However, this is not an easy task to do numerically. Phase field model equations have high order derivatives and intricate nonlinear terms, which require an efficient numerical strategy that can achieve accuracy both in time and in space, especially in three dimensions. To obtain the required resolution in time, we employ a semi-implicit second order discretization scheme to solve the coupled Cahn-Hilliard/Navier-Stokes equations (Model H). To resolve adequatly the relevant physical scales in space, we use locally refined meshes which adapt dynamically to cover special flow regions, e.g., the vicinity of the fluid interfaces. We demonstrate the efficiency and robustness of our methodology with simulations that include spinodal decomposition, the deformation of drops under shear and Kelvin-Helmholtz instabilities.
|
54 |
Adaptive Mesh Refinement Solution Techniques for the Multigroup SN Transport Equation Using a Higher-Order Discontinuous Finite Element MethodWang, Yaqi 16 January 2010 (has links)
In this dissertation, we develop Adaptive Mesh Refinement (AMR) techniques
for the steady-state multigroup SN neutron transport equation using a higher-order
Discontinuous Galerkin Finite Element Method (DGFEM). We propose two error estimations,
a projection-based estimator and a jump-based indicator, both of which
are shown to reliably drive the spatial discretization error down using h-type AMR.
Algorithms to treat the mesh irregularity resulting from the local refinement are
implemented in a matrix-free fashion. The DGFEM spatial discretization scheme
employed in this research allows the easy use of adapted meshes and can, therefore,
follow the physics tightly by generating group-dependent adapted meshes. Indeed,
the spatial discretization error is controlled with AMR for the entire multigroup SNtransport
simulation, resulting in group-dependent AMR meshes. The computing
efforts, both in memory and CPU-time, are significantly reduced. While the convergence
rates obtained using uniform mesh refinement are limited by the singularity
index of transport solution (3/2 when the solution is continuous, 1/2 when it is discontinuous),
the convergence rates achieved with mesh adaptivity are superior. The
accuracy in the AMR solution reaches a level where the solution angular error (or ray
effects) are highlighted by the mesh adaptivity process. The superiority of higherorder
calculations based on a matrix-free scheme is verified on modern computing architectures.
A stable symmetric positive definite Diffusion Synthetic Acceleration (DSA)
scheme is devised for the DGFEM-discretized transport equation using a variational
argument. The Modified Interior Penalty (MIP) diffusion form used to accelerate the
SN transport solves has been obtained directly from the DGFEM variational form of
the SN equations. This MIP form is stable and compatible with AMR meshes. Because
this MIP form is based on a DGFEM formulation as well, it avoids the costly
continuity requirements of continuous finite elements. It has been used as a preconditioner
for both the standard source iteration and the GMRes solution technique
employed when solving the transport equation. The variational argument used in
devising transport acceleration schemes is a powerful tool for obtaining transportconforming
diffusion schemes.
xuthus, a 2-D AMR transport code implementing these findings, has been developed
for unstructured triangular meshes.
|
55 |
Adaptive Netzverfeinerung in der Formoptimierung mit der Methode der Diskreten AdjungiertenGünnel, Andreas 15 April 2010 (has links) (PDF)
Formoptimierung bezeichnet die Bestimmung der Geometrischen Gestalt eines Gebietes auf dem eine partielle Differentialgleichung (PDE) wirkt, sodass bestimmte gegebene Zielgrößen, welche von der Lösung der PDE abhängen, Extrema annehmen. Bei der Diskret Adjungierten Methode wird der Gradient einer Zielgröße bezüglich einer beliebigen Anzahl von Formparametern mit Hilfe der Lösung einer adjungierten Gleichung der diskretisierten PDE effizient ermittelt. Dieser Gradient wird dann in Verfahren der numerischen Optimierung verwendet um eine optimale Lösung zu suchen.
Da sowohl die Zielgröße als auch der Gradient für die diskretisierte PDE ermittelt werden, sind beide zunächst vom verwendeten Netz abhängig. Bei groben Netzen sind sogar Unstetigkeiten der diskreten Zielfunktion zu erwarten, wenn bei Änderungen der Formparameter sich das Netz unstetig ändert (z.B. Änderung Anzahl Knoten, Umschalten der Konnektivität). Mit zunehmender Feinheit der Netze verschwinden jedoch diese Unstetigkeiten aufgrund der Konvergenz der Diskretisierung.
Da im Zuge der Formoptimierung Zielgröße und Gradient für eine Vielzahl von Iterierten der Lösung bestimmt werden müssen, ist man bestrebt die Kosten einer einzelnen Auswertung möglichst gering zu halten, z.B. indem man mit nur moderat feinen oder adaptiv verfeinerten Netzen arbeitet.
Aufgabe dieser Diplomarbeit ist es zu untersuchen, ob mit gängigen Methoden adaptiv verfeinerte Netze hinreichende Genauigkeit der Auswertung von Zielgröße und Gradient erlauben und ob eventuell Anpassungen der Optimierungsstrategie an die adaptive Vernetzung notwendig sind. Für die Untersuchungen sind geeignete Modellprobleme aus der Festigkeitslehre zu wählen und zu untersuchen. / Shape optimization describes the determination of the geometric shape of a domain with a partial differential equation (PDE) with the purpose that a specific given performance function is minimized, its values depending on the solution of the PDE. The Discrete Adjoint Method can be used to evaluate the gradient of a performance function with respect to an arbitrary number of shape parameters by solving an adjoint equation of the discretized PDE. This gradient is used in the numerical optimization algorithm to search for the optimal solution.
As both function value and gradient are computed for the discretized PDE, they both fundamentally depend on the discretization. In using the coarse meshes, discontinuities in the discretized objective function can be expected if the changes in the shape parameters cause discontinuous changes in the mesh (e.g. change in the number of nodes, switching of connectivity). Due to the convergence of the discretization these discontinuities vanish with increasing fineness of the mesh.
In the course of shape optimization, function value and gradient require evaluation for a large number of iterations of the solution, therefore minimizing the costs of a single computation is desirable (e.g. using moderately or adaptively refined meshes).
Overall, the task of the diploma thesis is to investigate if adaptively refined meshes with established methods offer sufficient accuracy of the objective value and gradient, and if the optimization strategy requires readjustment to the adaptive mesh design. For the investigation, applicable model problems from the science of the strength of materials will be chosen and studied.
|
56 |
A comparison of two multilevel Schur preconditioners for adaptive FEMKarlsson, Christian January 2014 (has links)
There are several algorithms for solving the linear system of equations that arise from the finite element method with linear or near-linear computational complexity. One way is to find an approximation of the stiffness matrix that is such that it can be used in a preconditioned conjugate residual method, that is, a preconditioner to the stiffness matrix. We have studied two preconditioners for the conjugate residual method, both based on writing the stiffness matrix in block form, factorising it and then approximating the Schur complement block to get a preconditioner. We have studied the stationary reaction-diffusion-advection equation in two dimensions. The mesh is refined adaptively, giving a hierarchy of meshes. In the first method the Schur complement is approximated by the stiffness matrix at one coarser level of the mesh, in the second method it is approximated as the assembly of local Schur complements corresponding to macro triangles. For two levels the theoretical bound of the condition number is 1/(1-C²) for either method, where C is the Cauchy-Bunyakovsky-Schwarz constant. For multiple levels there is less theory. For the first method it is known that the condition number of the preconditioned stiffness matrix is O(l²), where l is the number of levels of the preconditioner, or, equivalently, the number mesh refinements. For the second method the asymptotic behaviour is not known theoretically. In neither case is the dependency of the condition number of C known. We have tested both methods on several problems and found the first method to always give a better condition number, except for very few levels. For all tested problems, using the first method it seems that the condition number is O(l), in fact it is typically not larger than Cl. For the second method the growth seems to be superlinear.
|
57 |
Iterative and Adaptive PDE Solvers for Shared Memory Architectures / Iterativa och adaptiva PDE-lösare för parallelldatorer med gemensam minnesorganisationLöf, Henrik January 2006 (has links)
Scientific computing is used frequently in an increasing number of disciplines to accelerate scientific discovery. Many such computing problems involve the numerical solution of partial differential equations (PDE). In this thesis we explore and develop methodology for high-performance implementations of PDE solvers for shared-memory multiprocessor architectures. We consider three realistic PDE settings: solution of the Maxwell equations in 3D using an unstructured grid and the method of conjugate gradients, solution of the Poisson equation in 3D using a geometric multigrid method, and solution of an advection equation in 2D using structured adaptive mesh refinement. We apply software optimization techniques to increase both parallel efficiency and the degree of data locality. In our evaluation we use several different shared-memory architectures ranging from symmetric multiprocessors and distributed shared-memory architectures to chip-multiprocessors. For distributed shared-memory systems we explore methods of data distribution to increase the amount of geographical locality. We evaluate automatic and transparent page migration based on runtime sampling, user-initiated page migration using a directive with an affinity-on-next-touch semantic, and algorithmic optimizations for page-placement policies. Our results show that page migration increases the amount of geographical locality and that the parallel overhead related to page migration can be amortized over the iterations needed to reach convergence. This is especially true for the affinity-on-next-touch methodology whereby page migration can be initiated at an early stage in the algorithms. We also develop and explore methodology for other forms of data locality and conclude that the effect on performance is significant and that this effect will increase for future shared-memory architectures. Our overall conclusion is that, if the involved locality issues are addressed, the shared-memory programming model provides an efficient and productive environment for solving many important PDE problems.
|
58 |
Finite element limit analysis of offshore foundations on clayDunne, Helen P. January 2017 (has links)
Capacity analysis is a common preliminary step in the design of offshore foundations. Inaccuracies in traditional capacity analysis methods, and the advancement of numerical modelling capabilities, have increasingly led designers to optimise foundations using more complex methods. In this thesis, the ultimate limit state capacity of a range of foundation types is investigated using finite element limit analysis. Novel three-dimensional finite element limit analysis software is benchmarked against analytical solutions and conventional displacement finite element analysis. It is then used to find lower and upper bounds of foundation capacity, with adaptive mesh refinement used to reduce the bound gap over successive iterations of the solution. Rigid foundations subjected to short term loading on clay soil are analysed. The undrained soil is modelled as a rigid--plastic von Mises material, and attention is given to modelling any normal and/or shear stress limits at the foundation/soil interface. Shallow foundations, suction anchor foundations, and hybrid mudmat/pile foundations are considered. Realistic six degree-of-freedom load combinations are applied and results are reported in the form of normalised design charts, and tables, that are suitable for use in preliminary design. Relationships between loading combinations and failure mechanisms are also explored. A number of case studies based on authentic foundation designs are analysed. The results suggest that finite element limit analysis could provide an attractive alternative to displacement finite element analysis for preliminary foundation design calculations.
|
59 |
Propagation d'une onde de choc en présence d'une barrière de protection / Propagation of blast wave in presence of the protection barrierEveillard, Sébastien 12 September 2013 (has links)
Les travaux de thèse présentés dans ce mémoire s’inscrivent dans le cadre du projet ANR BARPPRO. Ce programme de recherche vise à étudier l’influence d’une barrière de protection face à une explosion en régime de détonation. L’objectif est d’établir des méthodes de calcul rapides de classement des zones d’effets pour aider les industriels au dimensionnement des barrières de protection. L’une à partir d’abaques, valable pour des configurations en géométrie 2D, sur des plages spécifiées de paramètres importants retenus, avec une précision de +/- 5%. L’autre à partir d’une méthode d’estimation rapide basée notamment sur les chemins déployés, valable en géométrie 2D et en géométrie 3D, mais dont la précision estimée est de +/- 30%. Afin d’y parvenir, l’étude s’appuie sur trois volets : expérimental, simulation numérique et analytique. La partie expérimentale étudie plusieurs géométries de barrière de protection à petites échelles pour la détonation d’une charge gazeuse (propane-oxygène à la stoechiométrie). Les configurations expérimentées servent à la validation de l’outil de simulation numérique constitué du solveur HERA et de la plateforme de calcul TERA 100. Des abaques d’aide au dimensionnement ont pu être réalisés à partir de résultats fournis par l’outil de simulation (3125 configurations de barrière de protection, TNT). L’étude des différents phénomènes physiques présents a également permis de mettre en place une méthode d’estimation rapide basée sur des relations géométriques, analytiques et empiriques. L’analyse de ces résultats a permis d’établir quelques recommandations dans le dimensionnement d’une barrière de protection. Les abaques et le programme d’estimation rapide permettent à un ingénieur de dimensionner rapidement une barrière de protection en fonction de la configuration du terrain et de la position de la zone à protéger en aval du merlon. / This thesis is a part of the ANR BARPPRO project. This research program studies this influence of the protection barrier during an explosion detonation. The goal of this project is to establish fast-computation methods of area classification effects to help the industrial to design the protection barrier on the SEVESO sites. One from abacus, for configurations in 2D geometry on specified parameters used, with an accuracy of +/- 5%. The other from a fast-running method based on broken lines for configurations in 2D and 3D geometries, but the accuracy is +/- 30%. This study includes three approaches: experimental, numerical simulation and analytical approaches. The experimental part studies several geometries of the protection barrier for a gaseous explosion (stoichiometric propane-oxygen mixture) at small scales. The experimental configurations used to validate the numerical simulation tool constituted of the HERA software and the TERA 100 supercomputer. The overpressure charts were able to generate from the numerical results (3125 configurations of the barrier for a TNT charge). The analysis of these results allows to establish different recommendations in the design of the protection barrier. The study of the different physical phenomena present has also helped to set up a fast-running method based on the geometrical, empirical and analytical relations. All these tools will enable an engineer to analyze and estimate the evolution of overpressure around the barrier as a function of the site’s dimensions.
|
60 |
\"Simulações de escoamentos tridimensionais bifásicos empregando métodos adaptativos e modelos de campo fase\" / \"Simulations of 3D two-phase flows using adaptive methods and phase field models\"Rudimar Luiz Nós 20 March 2007 (has links)
Este é o primeiro trabalho que apresenta simulações tridimensionais completamente adaptativas de um modelo de campo de fase para um fluido incompressível com densidade de massa constante e viscosidade variável, conhecido como Modelo H. Solucionando numericamente as equações desse modelo em malhas refinadas localmente com a técnica AMR, simulamos computacionalmente escoamentos bifásicos tridimensionais. Os modelos de campo de fase oferecem uma aproximação física sistemática para investigar fenômenos que envolvem sistemas multifásicos complexos, tais como fluidos com camadas de mistura, a separação de fases sob forças de cisalhamento e a evolução de micro-estruturas durante processos de solidificação. Como as interfaces são substituídas por delgadas regiões de transição (interfaces difusivas), as simulações de campo de fase requerem muita resolução nessas regiões para capturar corretamente a física do problema em estudo. Porém essa não é uma tarefa fácil de ser executada numericamente. As equações que caracterizam o modelo de campo de fase contêm derivadas de ordem elevada e intrincados termos não lineares, o que exige uma estratégia numérica eficiente capaz de fornecer precisão tanto no tempo quanto no espaço, especialmente em três dimensões. Para obter a resolução exigida no tempo, usamos uma discretização semi-implícita de segunda ordem para solucionar as equações acopladas de Cahn-Hilliard e Navier-Stokes (Modelo H). Para resolver adequadamente as escalas físicas relevantes no espaço, utilizamos malhas refinadas localmente que se adaptam dinamicamente para recobrir as regiões de interesse do escoamento, como por exemplo, as vizinhanças das interfaces do fluido. Demonstramos a eficiência e a robustez de nossa metodologia com simulações que incluem a separação dos componentes de uma mistura bifásica, a deformação de gotas sob cisalhamento e as instabilidades de Kelvin-Helmholtz. / This is the first work that introduces 3D fully adaptive simulations for a phase field model of an incompressible fluid with matched densities and variable viscosity, known as Model H. Solving numerically the equations of this model in meshes locally refined with AMR technique, we simulate computationally tridimensional two-phase flows. Phase field models offer a systematic physical approach to investigate complex multiphase systems phenomena such as fluid mixing layers, phase separation under shear and microstructure evolution during solidification processes. As interfaces are replaced by thin transition regions (diffuse interfaces), phase field simulations need great resolution in these regions to capture correctly the physics of the studied problem. However, this is not an easy task to do numerically. Phase field model equations have high order derivatives and intricate nonlinear terms, which require an efficient numerical strategy that can achieve accuracy both in time and in space, especially in three dimensions. To obtain the required resolution in time, we employ a semi-implicit second order discretization scheme to solve the coupled Cahn-Hilliard/Navier-Stokes equations (Model H). To resolve adequatly the relevant physical scales in space, we use locally refined meshes which adapt dynamically to cover special flow regions, e.g., the vicinity of the fluid interfaces. We demonstrate the efficiency and robustness of our methodology with simulations that include spinodal decomposition, the deformation of drops under shear and Kelvin-Helmholtz instabilities.
|
Page generated in 0.111 seconds