• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 117
  • 87
  • 11
  • 10
  • 9
  • 6
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 272
  • 272
  • 152
  • 88
  • 83
  • 75
  • 71
  • 55
  • 50
  • 44
  • 43
  • 42
  • 40
  • 39
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Ozonização catalítica do chorume proveniente do antigo aterro controlado da cidade de Guaratinguetá-SP utilizando os íons Fe2+, Fe3+, Zn2+, Mn2+, Ni2+ e Cr3+ / Homogeneous catalytic ozonation of leachate from Guaratinguetá - SP landfill, using the ions Fe2+, Fe3+, Zn2+, Mn2+, Ni2+ e Cr3+

André Luís de Castro Peixoto 14 May 2008 (has links)
Durante anos, o lixo da cidade de Guaratinguetá foi aterrado e o seu produto recalcitrante não passou por nenhum tratamento físico ou mesmo químico, percolando diretamente sob o aterro. Mesmo tendo sido desativado e transformado em Parque Ecológico, o material depositado no local ao longo dos anos, continuará a ser decomposto por microrganismos e continuará a ser produzido o lixiviado como fonte de poluição ambiental. Inicialmente, fez-se a caracterização do chorume \"in natura\", demonstrando-se como fonte de matéria orgânica recalcitrante, com massa molar característica de macromoléculas (5,58 kDa e polidispersidade de 1,16), DBO não determinável pela recalcitrância molecular e/ou pela ação tóxica e DQO característica de lixiviado estabilizado (1.013 mg L-1). A fração inorgânica total, dada pela quantidade de sólidos fixos, foi de 3.670 mg L-1, valor esse 3,6 vezes maior que a fração orgânica. O estudo de tratamento do chorume, por ozonização catalítica homogênea foi desenvolvido, principalmente, pelo uso seqüencial de dois arranjos ortogonais de Taguchi, sendo o primeiro, matriz L16, para estudo exploratório dos fatores mais importantes na redução percentual da DQO. Os fatores estudados foram vazão de ozônio, concentração dos íons Fe2+, Fe3+, Zn2+, Mn2+, Ni2+ e Cr3+, pH do meio reacional e presença/ausência de fonte de radiação UV (254 nm). Dentre os metais de transição, os íons Fe2+ e Fe3+ demonstraram-se como mais viáveis como catalisadores na geração de radicais livres hidroxilas devido à sua significância estatística (p = 0,005), e por terem maior tolerância ao descarte no meio ambiente (menor toxicidade) frente aos demais íons. Com a utilização do arranjo ortogonal L8 de Taguchi, foi possível atingir degradação máxima de DQO da ordem de 50 %. A melhor configuração dos fatores, visando aumentar o percentual de redução da DQO foi: vazão de ozônio igual a 5 L h-1 (589,9 mg h-1 O3), concentração de íon de íon ferroso igual a 10 mg L-1, concentração de íon férrico igual a 5 mg L-1 e pH 5. / During many years, the garbage of Guaratinguetá city was landfilled and its recalcitrant product was not submitted to any physical or chemical treatment, leaching directly through the area. After deactivating and transforming the landfill into an Ecological Park, the material deposited in the place by the past years, will continue being decomposed by microorganisms and will continue producing the leached one as a mean of environment pollution. Initially, the leachate \"in natura\" was characterized, demonstrating itself as a source of recalcitrant organic substance with a higher molecular size characteristic of 5,58 kDa and polidispersity of 1,16 and stabilized effluent (not determinable DBO due to molecular recalcitrance and/or toxicity and DQO of 1,013 mg L-1). The total inorganic fraction, given by the amount of total fixed solids was 3,670 mg L-1, which means 3,6 times bigger than the organic fraction. The study of leachate treatment by homogeneous catalytic ozonation was given, mainly, for the sequential use of two Taguchi\'s orthogonal arrangements, being the first, L16 design, for exploratory studies of the most important factors in the percentual reduction of DQO. The factors studied were the ozone outflow, the Fe2+, Fe3+, Zn2+, Mn2+, Ni2+ and Cr3+ ions concentration, the reaction medium pH and the presence/absence of UV radiation source UV (254 nm). Amongst the transition metals, Fe2+ and Fe3+ ions have demonstrated to be as more viable as free hydroxyl radicals catalyst due to its statistics significance (p = 0,005) and also because they have a greater tolerance to the environment discarding (less toxicity) compared to the other ions. The use of L8 Taguchi\'s orthogonal arrays gives the possibility to reach 50 % maximum COD depletion. The best factors configuration, using COD percentage reduction as experimental design response was: 5 L h-1 (589,9 mg h-1 O3) ozone outflow, 10 mg L-1 ferrous concentration, 5 mg L-1 ferric ion concentration and pH 5.
182

Aplicação de catálise heterogênea com TiO2 fotoirradiada por luz solar como pré-tratamento da vinhaça para posterior tratamento biológico / Application of Heterogeneous Catalysts with TiO2 Photoirradiated by Solar Energy as Pre-Treatment of Vinasse for Biological Treatment

Carrocci, Juliana Sanches 16 December 2009 (has links)
A vinhaça é o principal resíduo obtido na produção de álcool, açúcar e aguardente, sendo considerado um efluente de alto poder poluente e fertilizante. Sem o devido tratamento, quando lançada nos rios compromete a sobrevivência de diversos seres aquáticos e quando utilizada como fertilizante, o efluente não tratado pode contaminar lençóis freáticos e afetar os seres terrestres. O objetivo deste trabalho consistiu em avaliar a eficiência e aplicação da fotocatálise heterogênea com TiO2, seguido por um tratamento biológico (lodo ativado) para a redução da carga orgânica do efluente em questão. A caracterização da vinhaça in natura e tratada foi realizada empregando-se métodos estabelecidos e otimizados [DQO, NPOC, DBO5, Análise de Elementos via Absorção Atômica, Fenol, Nitrogênio (orgânico e amoniacal) e Sólidos (ST, STF, STV)]. Por meio de planejamentos fatoriais completos foram determinadas as melhores condições experimentais posterior aos tratamentos fotocatalítico e biológico, tendo como variável resposta a redução de NPOC. Uma caracterização morfológica (DRX, BET e MEV-EDS) da estrutura de TiO2 anatase e rutilo também foi realizada. Após o processo fotocatalítico, a amostra do melhor experimento foi tratada por um processo biológico, a fim de verificar a eficiência de degradação da matéria orgânica do efluente estudado através do sistema híbrido (POA - SLA). Este sistema apresentou maior eficiência tendo como fatores do tratamento fotoquímico 180 minutos de reação, com aeração, pH 9 e efluente in natura; e pH 8 e concentração do lodo de 5 g L-1 no tratamento biológico. A redução de DBO alcançada foi superior a 80 %. / Vinasse is the main residue obtained by the production of alcohol, sugar and blue rum. It is considered a high power pollutant effluent and fertilizer. Untreated vinasse into ponds and rivers make the environment unsafe, especially, to different aquatic species and, when used as a fertilizer, the untreated effluent may contaminate freatic water beds and affect terrestrial species. The aim of this work consists of evaluating the efficiency and application of heterogeneous photocatalysis with TiO2, followed by a biological treatment (activated sludge system) to reduce organic load in the referred effluent. The characterization of vinasse in natura is carried out by the use of established and optimized methods [DQO, NPOC, DBO5, Elemental Analysis by Atomic Absorption, Phenol, Nitrogenium (organic and ammoniacal) and Solids (TS, FTS, VTS)]. Complete factorial designs indicated the best experimental conditions subsequent to photacatalytic and biological treatments providing a reduction of NPOC as a variable response. A morphological evaluation (XRD, B.E.T and SEM-EDS) of anatase and rutile phase of TiO2 structure was also performed. After the photocatalytic process, the sample of the best experiment was treated by a biological process in order to verify the degradation efficiency of the effluent organic matter studied according to the hybrid system (AOP - Activated Sludge System). This system, which presented more efficiency, had a photochemical treatment of 180 minutes carried out in aerated solutions, pH 9 and effluent in natura, while the biological treatment was performed at pH 8 and sludge concentration of 5 g L-1. The reduction of BOD was more than 80%.
183

Avaliação do tratamento de efluente farmacêutico endoparasiticida por processos Fenton e Foto-Fenton / Evaluation of the treatment of endoparasiticide pharmaceutical effluent by Fenton and photo-Fenton processes

Carvalho, Gracielle Mayra Rodrigues 04 November 2013 (has links)
A ocorrência de fármacos no meio ambiente tem se tornado um assunto de interesse nos últimos anos. A preocupação com a presença de produtos farmacêuticos decorre de sua persistência química, resistência microbiana, e efeitos sinérgicos, que levam às implicações toxicológicas. O objetivo deste trabalho foi avaliar o tratamento do efluente farmacêutico endoparasiticida. Para isso, os processos Fenton e Foto-Fenton foram usados para se obter a redução da carga orgânica do efluente em questão. Para a caracterização analítica do efluente farmacêutico in natura e tratado foram empregados métodos estabelecidos e otimizados, tais como DQO, COT, DBO5, Ferro, Sólidos (ST, STF, STV), fenol e análise de elementos via absorção atômica. Por meio de dois arranjos ortogonais - Taguchi L9 e Taguchi L16 - os parâmetros de melhor eficiência para o tratamento por Fenton e Foto-Fenton foram determinados. A matriz L9 foi utilizada para estudo exploratório dos fatores mais importantes na redução percentual da DQO. Este estudo mostrou que a condição experimental na qual se observou a maior porcentagem de redução de DQO (da ordem de 86,2 %) no efluente farmacêutico foi o experimento com reagente Fenton igual a 31,7g H2O2 e 2,2 g Fe2+, sem radiação ultravioleta, pH igual a 3,0 e temperatura de 30 °C. Já com a matriz L16 foram determinados os melhores experimentos, tendo como fatores resposta o percentual de redução do COT e percentual de degradação dos princípios ativos Fenbendazol e Triclabendazol. Portanto, a melhor configuração dos fatores foi Temperatura de 20°C, massa de H2O2 igual a 30 g, massa de Fe2+ igual a 2,5 g, pH igual a 3,0 e potência de radiação ultravioleta de 28 W, ou seja, a configuração que apresentou as maiores porcentagens de redução do COT (da ordem de 73,6%), degradação do Fenbendazol (da ordem de 77,8 %) e degradação do Triclabendazol (da ordem de 91,5 %). / The occurence of the drugs in the environment has become a subject of interest in the latest years. The concern with the presence of pharmaceutical products comes from its chemical persistence, microbial resistence and synergistic effects which lead to toxicological implications. The objective of this work was to evaluate of the treatment of endoparasiticide pharmaceutical effluent. For that, the photo-Fenton and Fenton were used for achieving the reduction of the organic load of the effluent in question. For the analytical characterization of pharmaceutical effluent in natura and treated were employed methods established and optimized such as DQO, COT, TOC, DBO5, Iron, Solid ( ST, STV, STF), phenol and element analysis via atomic absorption. By means of two orthogonal arrangements - Taguchi L9 and L16 - parameters of better efficiency in the treatment by Photo-Fenton and Fenton were determined. The L9 matrix was used for exploratory study of the most important factors in reducing the percentage of DQO. This study showed that the experimental condition, in which it was observed the highest percentage reduction of DQO (approximately 86.2%) in the pharmacist effluent, was the experiment with Fenton\'s reagent equal to 31,7g H2O2 e 2,2 g Fe2+, without ultraviolet radiation, pH equal to 3.0 and a temperature of 30 ° C. With the L16 matrix were determined as the best experiment with response factors the percentage reduction of COT and percentage of degradation of the active Fenbendazole and Triclabendazole. Therefore, the best configuration of the factors was 20 º C, H2O2 mass equal to 30g, Fe2 + mass of 2.5 g, and pH equal to 3.0 and power of 28W ultraviolet radiation, in other words the configuration that had the greatest percentage reduction of COT ( the order of 73.6%), Fenbendazole degradation (the order of 77.8%) and degradation Triclabendazole (the order of 91.5%).
184

Tratamento de efluentes do branqueamento da polpa celulósica por processos oxidativos avançados baseados em ozônio / Treatment of pulp and paper bleaching effluents by means of ozone advanced oxidation processes

Medeiros, Daniel Reis 08 August 2008 (has links)
O impacto da oxidação com ozônio na transformação de compostos orgânicos de elevada massa molar (HMW) para o aumento da biodegradabilidade dos efluentes da indústria de celulose e papel foi investigado sob diferentes doses de ozônio. Os experimentos foram realizados utilizando-se os efluentes primário e de extração alcalina de duas indústrias de celulose sob dois valores iniciais de pH (12 e 7). Utilizou-se um reator em escala de laboratório equipado com um difusor de bolhas finas para a aplicação do ozônio. Os resultados revelaram o potencial da aplicação de ozônio como uma etapa de tratamento anterior ao processo biológico convencional. Para o efluente primário, a aplicação de 0,70 mg\'O IND.3\'/mL efluente elevou a razão DBO5/DQO de 0,18 para 0,35 e foi alcançada uma remoção de cor na ordem de 87%. Para o efluente de extração alcalina da indústria Howe Sound, a razão DBO5/DQO foi elevada de 0,07 para 0,15 (pH inicial 12) e para 0,20 (pH inicial 7) e obteve-se uma remoção de cor por volta de 44% com a aplicação de 0,80 mg\'O IND.3\'/mL efluente. Para o efluente de extração alcalina da indústria Catalyst Paper, obteve-se uma remoção de cor por volta de 78% e a razão DBO5/DQO foi elevada de 0,07 para 0,16 após a aplicação de uma dose de ozônio de 0,80 mg\'O IND.3\'/mL efluente. Essas modificações foram alcançadas por uma redução nas frações de elevada massa molar durante a aplicação de ozônio. Para o efluente primário, observou-se uma elevada redução da faixa de maior massa molecular ( > 2kDa) após a aplicação de 0,72 mg\'O IND.3\'/mL efluente. Alcançaram-se 85% e 61% de remoção da faixa superior a 5 kDa para os efluentes de extração alcalina da indústria Howe Sound sob pH inicial 7 e 12, respectivamente, com a aplicação de cerca de 0,72 mg\'O IND.3\'/mL efluente. A faixa de maior massa molar ( > 10 kDa) dos efluentes de extração alcalina da indústria Catalyst Paper foi removida com a aplicação de aproximadamente 0,80 mg \'O IND.3\'/mL efluente. O papel do ozônio molecular disponível sob pH neutro parece ser de fundamental importância quando o objetivo é a redução dos compostos de elevada massa molecular. / The impact of ozone oxidation in transforming high molecular weight (HMW) organic compounds in order to improve the biodegradability of pulp and paper effluents was investigated under different ozone doses. The experiments were conducted uppon a primary treated effluent and an alkaline bleach plant effluent taken from two pulp mills. The effluents were investigated under different initial pH (7 and 12). Ozone was applied using a semi-batch reactor equipped with fine bubble diffuser. The results showed the potential for using ozone as a pre-treatment to the conventional biological process. Applying 0.70 mg\'O IND.3\'/mLww to the primary treated effluent enhanced the ratio of BOD5/COD was from 0.18 to 0.35 and decreased the colour by 87%. The ratio of BOD5/COD was increased from 0.07 to 0.15 (initial pH 12) and to 0.20 (initial pH 7) and colour was reduced by 44% after applying 0.80 mg\'O IND.3\'/mLww to the alkaline bleach effluent from Howe Sound\'s mill. A similar behavior was observed after 0.80 mg\'O IND.3\'/mLww was applied to the alkaline bleach effluent from Catalyst\'s mill. The ratio of BOD5/COD was increased from 0.07 to 0.16 and the effluent colour decreased by 78%. These changes were primarily driven by reductions of the HMW fractions of the effluent during ozonation. Organics with molecular range higher than 2 kDa were completely removed from the primary treated effluent. Aproximately 85% and 61% of the organics higher than 5 kDa were removed from the Howe Sound\'s alkaline bleach effluent under initial pH 7 and 12, respectively, after applying 0.72 mg\'O IND.3\'/mLww. Organic compounds with molecular weight higher than 10 kDa were completely removed from the Catalyst\'s alkaline bleach effluent after applying 0.80 mg\'O IND.3\'/mLww. Molecular ozone available under neutral conditions seems to play an important role when the removal of the high molecular weight organic compounds is the main objective.
185

FUNCTIONALIZATION OF IRON OXIDE NANOPARTICLES AND THE IMPACT ON SURFACE REACTIVE OXYGEN SPECIES GENERATION FOR POTENTIAL BIOMEDICAL AND ENVIRONMENTAL APPLICATIONS

Mai, Trang 01 January 2019 (has links)
Iron oxide nanoparticles (IONPs) have been widely studied for a variety of applications, from biomedical applications (e.g., cell separation, drug delivery, contrast agent for magnetic resonance imaging and magnetically mediated energy delivery for cancer treatment) to environmental remediations (e.g., heavy metal removal and organic pollutants degradation). It has been demonstrated that IONPs can induce the production of reactive oxygen species (ROS) via Fenton/Haber-Weiss reactions which has been shown to be one of the key underlying mechanisms of nanoparticles toxicity. This inherent toxicity of nanoparticles has been shown to enhance the efficacy of traditional cancer therapies such as chemotherapy and radiation. In addition, the generation of ROS induced by IONPs has been also studied as advanced oxidation processes (AOP) for wastewater treatment. Recent research has also shown that exposure to an alternating magnetic field can significantly enhance the generation of ROS induced by IONPs. Moreover, the coatings of IONPs play an important role on the surface reactivity of nanoparticles since it can prevent the generation of ROS via Fenton chemistries at the surface of the nanoparticles. In this work, co-precipitated IONPs were functionalized with small molecules including citric acid, sodium phosphate, amino silane and dopamine. The impact of coating on surface reactivity of the as-synthesized particles was studied using methylene blue dye degradation assay under AMF exposure. With the coatings of these small molecules, the IONPs induced ROS generation was significantly decreased because of the dense surface coverage. To study the effect of polymeric coatings, a degradable poly (beta amino ester) (PBAE) polymer coating was synthesized with dopamine as an anchor to bind to nanoparticles. The surface reactivity of the particles was expected to be recovered once the polymer coating was degraded. Furthermore, the impact of non-degradable PEG-based polymer coating on surface reactivity via ROS generation was also investigated using methylene blue decolorization assay with the presence of AMF. The retention of surface reactivity of PEG-based polymer coated IONPs shows promise for cancer treatment. The application of IONPs as heterogeneous catalyst for organic contaminant degradation was investigated. Bisphenol A (BPA) was used as a model compound, and Fenton reactions were induced by IONPs with the presence of hydrogen peroxide and hydroxylamine as well as alternating magnetic field exposure. The kinetics of BPA degradation under water bath and AMF exposure at 37oC was also studied, and the results showed potential applications of IONPs for organic pollutants remediation.
186

Mejoras en el tratamiento de lixiviados de vertedero de RSU mediante procesos de oxidación avanzada.

Primo Martínez, Oscar 21 November 2008 (has links)
Esta tesis doctoral está dirigida a la investigación y desarrollo de Procesos de Oxidación Avanzada (POAs), los cuales basan su capacidad en la generación in-situ de radicales hidroxilo (OH·), especie capaz de oxidar muchos compuestos orgánicos. Esta propiedad es aprovechada para conseguir la completa mineralización de los contaminantes o su degradación en sustancias más fácilmente biodegradables.Se plantean dos grandes objetivos:1) Contribuir al conocimiento científico a través del análisis y modelado del proceso UV/H2O2 aplicado a la degradación y mineralización de fenol. Para ello, se ha realizado una planificación experimental dirigida a estudiar la influencia de las variables de operación sobre parámetros globales del proceso, como el contenido total de materia orgánica o la toxicidad.2) Desarrollar una alternativa eficaz para la eliminación de materia orgánica de corrientes residuales de escasa biodegradabilidad mediante la aplicación de POAs. Se ha seleccionado el tratamiento de lixiviados de vertedero de residuos sólidos urbanos (RSU) como caso de estudio y se ha realizado un análisis comparativo de los procesos Fenton y foto-Fenton. Los experimentos se han realizado tanto a escala de laboratorio como a escala de planta piloto. / The aim of this thesis is the research and development of Advanced Oxidation Processes (AOPs). AOPs are based on the in-situ generation of hydroxyl radicals (OH·). These radicals are able to oxidize many organic compounds with high oxidation rates but in a non-selective way. This is useful to achieve the complete mineralization of the pollutants or its degradation into more easily biodegradable compounds.Two main objectives have been pursued in this thesis:1) To contribute to the scientific knowledge of the UV/H2O2 process through its analysis and modelling. Phenol degradation has been selected as a case of study. An experimental planning was established to study the influence of process variables on parameters such as total organic matter concentration and ecotoxicity.2) Research on new alternative treatments for suitable organic matter removal from recalcitrant waste effluents by AOPs. As study case, the leachate remediation from a municipal solid wastes landfill was selected. Fenton and photo-Fenton processes were compared and the operational conditions to achieve the maximum organic matter reduction and colour removal have been determined. Both laboratory scale and pilot plant experiments were carried out.
187

Catalytic Ozonation Of Dye Solutions In A Semi-batch Reactor

Pirgalioglu, Saltuk 01 December 2008 (has links) (PDF)
Treatment of textile wastewaters containing dye materials using the conventional methods based on biological treatment is not possible. In order to overcome this problem, ozonation based on the oxidation of organic pollutants with ozone gas dissolved in aqueous phase have been studied widely. Catalytic ozonation and advanced oxidation processes (AOP) are also used in order to increase the efficiency of sole ozonation In this work, catalytic ozonation processes in the presence of Copper Sulfide (CuS) powder and a synthesized catalyst by the impregnation of iron on alumina (Fe/Al2O3) were studied separately in the treatment of dye solutions, namely Remazol Brilliant Blue-R (RBBR) and Reactive Black-5 (RB-5). Besides catalytic ozonation runs, ozonation parameters and ozonation mechanism were also studied and a model was developed for the semi-batch ozonation. Both catalysts increased the oxidation of side products measured by the decrease in the amount of total organic carbon (TOC) in the treated dye solutions. Dye removal rates were also enhanced in the treatment of RB-5 dye solutions while no significant effect was observed on dye removal rates of RBBR solutions. TOC removals above 90% were observed in the catalytic ozonation using CuS for both of the dye solutions at pH =10 having initial dye concentration of 100 mg/L. The most significant effect of the catalyst addition was observed at pH = 3 where the TOC removals of non-catalytic ozonation were the lowest. CuS addition increased percent TOC removal at the end of the reaction period of 80 min by 123% in the treatment of 100 mg/L RBBR solution, and by 65% in the treatment of 100 mg/L RB-5 solution at pH = 3. On the other hand, addition of Fe/Al2O3 catalyst increased TOC removal of 100 mg/L RB-5 solution by 52 % at pH = 3. In addition, volumetric mass transfer coefficients (kLa) of ozone in the absence and in the presence of a chemical reaction between dye and ozone were estimated from modeling. A correlation for the enhancement factor of ozone absorbed into dye solutions in terms of initial dye concentration was obtained and reported.
188

Development of aqueous phase hydroxyl radical reaction rate constants predictors for advanced oxidation processes

Minakata, Daisuke 22 November 2010 (has links)
Emerging contaminants are defined as synthetic or naturally occurring chemicals or microorganisms that are not currently regulated but have the potential to enter the environment and cause adverse ecological and/or human health effects. With recent development in analytical techniques, emerging contaminants have been detected in wastewater, source water, and finished drinking water. These environmental occurrence data have raised public concern about the fate and ecological impacts of such compounds. Concerns regarding emerging contaminants and the many chemicals that are in use or production necessitate a task to assess their potential health effects and removal efficiency during water treatment. Advanced oxidation processes (AOPs) are attractive and promising technologies for emerging contaminant control due to its capability of mineralizing organic compound via reactions with highly active hydroxyl radicals. However, the nonselective reactivity of hydroxyl radicals and the radical chain reactions make AOPs mechanistically complex processes. In addition, the diversity and complexity of the structure of a large number of emerging contaminants make it difficult and expensive to study the degradation pathways of each contaminant and the fate of the intermediates and byproducts. The intermediates and byproducts that are produced may pose potential effects to human and aquatic ecosystems. Consequently, there is a need to develop first-principle based mechanistic models that can enumerate reaction pathway, calculate concentrations of the byproducts, and estimate their human effects for both water treatment and reuse practices. This dissertation develops methods to predict reaction rate constants for elementary reactions that are identified by a previously developed computer-based reaction pathway generator. Many intermediates and byproducts that are experimentally identified for HO* induced reactions with emerging contaminants include common lower molecular weight organic compounds on the basis of several carbons. These lower carbon intermediates and byproducts also react with HO* at relatively smaller reaction rate constants (i.e., k < 109 M-1s-1) and may significantly affect overall performance of AOPs. In addition, the structures of emerging contaminants with various functional groups are too complicated to model. As a consequence, the rate constant predictors are established based on the conventional organic compounds as an initial approch. A group contribution method (GCM) predicts the aqueous phase hydroxyl radical reaction rate constants for compounds with a wide range of functional groups. The GCM is a first comprehensive tool to predict aqueous phase hydroxyl radical reaction rate constants for reactions that include hydrogen-atom abstraction from a C-H bond and/or a O-H bond by hydroxyl radical, hydroxyl radical addition to a C=C unsaturated bond in alkenes and aromatic compounds, and hydroxyl radical interaction with sulfur-, nitrogen-, or phosphorus-atom-containing compounds. The GCM shows predictability; factor of difference of 2 from literature-reported experimental values. The GCM successfully predicts the hydroxyl radical reaction rate constants for a limited number of emerging contaminants. Linear free energy relationships (LFERs) bridge a kinetic property with a thermochemical property. The LFERs is a new proof-of-concept approach for Ab initio reaction rate constants predictors. The kinetic property represents literature-reported and our experimentally obtained hydroxyl radical reaction rate constants for neutral and ionized compounds. The thermochemical property represents quantum mechanically calculated aqueous phase free energy of activation. Various Ab initio quantum mechanical methods and solvation models are explored to calculate the aqueous phase free energy of activation of reactantas and transition states. The quantum mechanically calculcated aqueous phase free energies of activation are within the acceptable range when compared to those that are obtained from the experiments. These approaches may be applied to other reaction mechanisms to establish a library of rate constant predictions for the mechanistic modeling of AOPs. The predicted kinetic information enables one to identify important pathways of AOP mechanisms that are initiated by hydroxyl radical, and can be used to calculate concentration profiles of parent compounds, intermediates and byproducts. The mechanistic model guides the design of experiments that are used to examine the reaction mechanisms of important intermediates and byproducts and the application of AOPs to real fields.
189

Oxidation Of Acid Red 151 Solutions By Peroxone (o3/h2o2) Process

Acar, Ebru 01 September 2004 (has links) (PDF)
Wastewaters from textile industry contain organic dyes, which cannot be easily treated by biological methods. Therefore, pretreatment by an advanced oxidation process (AOP) is needed in order to produce more readily biodegradable compounds and to remove color and chemical oxygen demand (COD) simultaneously. In this research, ozone (O3) is combined with hydrogen peroxide (H2O2) for the advanced oxidation of an azo dye solution, namely aqueous solution of Acid Red 151, which is called as &ldquo / Peroxone process&rdquo / . The aim of the study is to enhance the ozonation efficiency in treating the waste dye solution. The effects of pH, initial dye and initial ozone concentrations and the concentration ratio of initial H2O2 to initial O3 on color and COD removals were investigated. Also, the kinetics of O3-dye reaction in the presence of H2O2 was approximately determined. As a result of the experimental study, it was seen that an increase in the initial dye concentration at a constant pH and initial ozone concentration did not change the COD % removal significantly, from a statistical analysis of the data. The results obtained at pH values of 2.5 and 7 gave higher oxidation efficiencies in terms of color and COD removals compared to those at pH of 10. The best initial molar ratio of H2O2 to O3 was found to be 0.5, which yielded highest treatment efficiency for each pH value studied. The results of the excess dye experiments suggest that the ozonation of Acid Red 151 follows an average first order reaction with respect to ozone at pH=2.5 and pH=7 whereas it is around 0.56 at pH=10. By Initial Rate Method, the orders with respect to individual reactants of O3 and dye were determined as one, the total order of the reaction being two for all the studied pH. As a conclusion, a further study of the peroxone process at a pH of 10 can be recommended to determine the reaction kinetics and mechanism at this pH, where radicals play an important role.
190

FRUTOSE-1,6-BISFOSFATO E N-ACETILCISTEÍNA ATENUAM A FORMAÇÃO DE PRODUTOS PROTEICOS DE OXIDAÇÃO AVANÇADA, UMA NOVA CLASSE DE MEDIADORES INFLAMATÓRIOS, IN VITRO / FRUCTOSE-1,6-BISPHOSPHATE AND N-ACETYLCYSTEINE ATTENUATE THE FORMATION OF ADVANCED OXIDATION PROTEIN PRODUCTS A NEW CLASS OF INFLAMMATORY MEDIATORS, IN VITRO

Bochi, Guilherme Vargas 19 September 2012 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The assessment of biomarkers of reactions involving reactive oxygen species have the potential not only to determine the extent of oxidative damage, but also to predict the effectiveness of therapeutic strategies aimed at reducing or preventing the damage promoted by oxidative stress. Recently, it has been described and characterized a new class of compounds formed in consequence of oxidative stress, designated as advanced oxidation protein products (AOPP). The accumulation of AOPP was first described in patients with chronic renal failure undergoing hemodialysis and was subsequently found in diabetes, atherosclerosis, obesity and acute renal failure. Previous studies have identified AOPP as a new marker of oxidative damage to proteins and a new class of inflammatory mediators, providing arange of effects at both the cellular and systemic levels. Although the mechanism of action by which AOPP act is not fully understood, it is known that these products activate respiratory burst in phagocytes, including neutrophils and monocytes, through the activation of enzymes present in these cells. Furthermore, it has been demonstrated that AOPP may promot these effects (pro-oxidants and pro-inflammatory) at several cell types such as endothelial and kidney cells via activation of a signaling cascade, and in some aspects of this cascade AOPP effects is very similar to effects caused by advanced glycation end products (AGEs). In this context, the evaluation of the antioxidant activity of compounds in vitro models involving the formation of AOPP may present special interest. Among these compounds, N-acetylcysteine (NAC) and Fructose-1 ,6-bisphosphate (FBP) may be promising substances for this purpose. The NAC is a sulfhydryl donor group very similar to the amino acid cysteine and FBP is a highly energetic intermediate metabolite of glycolysis. Thus, the aim of this study was to determine the effects of FBP and NAC, as well as the synergistic effect of both treatments on the formation of AOPP in vitro. For this purpose, purified human albumin was incubated with various concentrations of hypochlorous acid (HOCl) (1, 2 and 4 mM) to produce AOPP in vitro, which was named albumin-advanced oxidation protein products (albumin-AOPP). In this context, both FBP as NAC were able to inhibit the formation of AOPP concentration-dependent manner, with FBP 20mg/mL and NAC 1mg/mL were responsible for the inhibition of 64% and 85% respectively. Furthermore, the synergistic effect promoted by the association of both compounds was more effective ininhibiting the formation of AOPP. Therefore, FBP and NAC may be promising candidates to mitigate or neutralize the pro-inflammatory and pro-oxidant triggered by AOPP. / A avaliação de biomarcadores das reações que envolvem as espécies reativas de oxigênio têm potencial não apenas de determinar a extensão do dano oxidativo, mas também de predizer a eficiência das estratégias terapêuticas destinadas a reduzir ou prevenir os danos promovidos pelo estresse oxidativo. Recentemente, foi descrita e caracterizada uma nova classe de compostos formados em consequência do estresse oxidativo, designada como produtos proteicos de oxidação avançada (AOPP). O acúmulo de AOPP foi primeiramente descrito em pacientes com insuficiência renal crônica submetidos à hemodiálise e, posteriormente, verificou-se que este marcador está envolvido em várias condições patológicas, incluindo diabetes, aterosclerose, obesidade e insuficiência renal aguda. Estudos prévios têm identificado AOPP como um novo marcador de dano oxidativo a proteínas e uma nova classe de mediadores inflamatórios, promovendo uma série de efeitos tanto a nível celular quanto a nível sistêmico. Embora o mecanismo de ação pelo qual os AOPP agem não está totalmente esclarecido, sabe-se que estes produtos ativam o burst respiratório em fagócitos, incluindo neutrófilos e monócitos, através da ativação de complexos enzimáticos presentes nestas células. Além disso, tem sido demonstrado que os AOPP também podem promover efeitos deletéreis (pró-oxidantes e pró-inflamatórios) a vários tipos celulares, como células renais e endoteliais, através da ativação de uma cascata de sinalização, sendo em alguns aspectos desta cascata muito semelhante aos efeitos promovidos pelos produtos finais de glicação avançada (AGEs). Neste contexto, a avaliação da atividade antioxidante e antiinflamaória de compostos em modelos in vitro envolvendo a formação de AOPP pode apresentar especial interesse. Dentre esses compostos, a N-acetilcisteína (NAC) e a Frutose- 1,6-bisfosfato (FBP) podem ser substâncias promissoras para esta finalidade. A NAC é um doador de grupo sulfidrila muito semelhante ao aminoácido cisteína e a FBP é um açúcar bifosforilado e um metabólito intermediário altamente energético da glicólise. Assim, o principal objetivo deste estudo foi determinar o efeito da FBP e da NAC, bem como o efeito sinérgico de ambas, sobre a formação de AOPP in vitro. Para isso, a albumina purificada humana foi incubada com várias concentrações de ácido hipocloroso (HOCl) (1, 2 e 4 mM) para produzir AOPP in vitro, a qual foi denominada de albumina-produtos proteicos de oxidação avançada (albumina-AOPP). Neste contexto, tanto FBP quanto NAC foram capazes de inibir a formação de AOPP de maneira concentração-dependente, sendo que FBP 20 mg/mL e NAC 1mg/mL foram responsáveis pela inibição de 64% e 85% respectivamente. Além disso, o efeito sinérgico promovido pela associação de ambos os compostos foi maisefetivo em inibir a formação de AOPP quando comparado com o efetio promovido pelos compostos isoladamente. Portanto, FBP e NAC podem ser candidatos promissores para amenizar ou neutralizar os efeitos pró-inflamatórios e pró-oxidantes desencadeados pelos AOPP.

Page generated in 0.1042 seconds