• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 6
  • 2
  • Tagged with
  • 14
  • 14
  • 8
  • 7
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Combinatoire algébrique des permutations et de leurs généralisations / Algebraic combinatorics of permutations and their generalisations

Vong, Vincent 08 December 2014 (has links)
Cette thèse se situe au carrefour de la combinatoire et de l'algèbre. Elle se consacre d'une part à traduire des problèmes algébriques en des problèmes combinatoires, et inversement, utilise le formalisme algébrique pour traiter des questions combinatoires. Après un rappel des notions classiques de combinatoire et d'algèbres de Hopfavec quelques applications, nous abordons l'étude de certaines statistiques définies sur les permutations : les pics, les vallées, les doubles montées et les doubles descentes, qui sont à la base de la bijection de Françon-Viennot, elle-même débouchant sur une étude combinatoire des polynômes orthogonaux. Nous montrons qu'à partir de ces statistiques, il est possible de construire diverses sous-algèbres ou algèbres quotients de FQSym, une algèbre dont une base est indexée par les permutations. Puis, nous étudions deux suites classiques de combinatoire par une démarche non commutative : les polynômes de Gandhi, un raffinement polynomial des nombres de Genocchi, et les nombres d'Euler, une suite recelant de nombreuses propriétés combinatoires. Nous nous attachons à montrer que l'approche non commutative permet, dans la majeure partie des cas, d'obtenir de manière directe des interprétations d'identités combinatoires. Enfin, inversement, certaines questions de nature algébrique peuvent être abordées d'un point de vue combinatoire. Ainsi, à travers l'étude des algèbres dendriformes, des algèbres tridendriformes, et des quadrialgèbres, nous prouvons des questions de liberté à propos de ces algèbres grâce à la combinatoire des arbres étiquetés / This thesis is at the crossroads between combinatorics and algebra. It studies some algebraic problems from a combinatorial point of view, and conversely, some combinatorial problems have an algebraic approach which enables us tosolve them. In the first part, some classical statistics on permutations are studied: the peaks, the valleys, the double rises, and the double descents. We show that we can build sub algebras and quotients of FQSym, an algebra which basis is indexed by permutations. Then, we study classical combinatorial sequences such as Gandhi polynomials, refinements of Genocchi numbers, and Euler numbers in a non commutative way. In particular, we see that combinatorial interpretations arise naturally from the non commutative approach. Finally, we solve some freeness problems about dendriform algebras, tridendriform algebras and quadrialgebras thanks to combinatorics of some labelled trees
2

Ramification modérée pour des actions de schémas en groupes affines et pour des champs quotients

Marques, Sophie 15 July 2013 (has links) (PDF)
L'objet de cette thèse est de comprendre comment se généralise la théorie de la ramification pour des actions par des schémas en groupes affines avec un intérêt particulier pour la notion de modération. Comme contexte général pour ce résumé, considérons une base affine S := Spec(R) où R est un anneau unitaire, commutatif, X := Spec(B) un schéma affine sur S, G := Spec(A) un schéma en groupes affine, plat et de présentation finie sur S et une action de G sur X que nous noterons (X, G). Enfin, nous notons [X/G] le champ quotient associé à cette action et Y := Spec(BA) où BA est l'anneau des invariants pour l'action (X, G). Supposons de plus que le champ d'inertie soit fini.Comme point de référence, nous prenons la théorie classique de la ramification pour des anneaux munis d'une action par un groupe fini abstrait. Afin de comprendre comment généraliser cette théorie pour des actions par des schémas en groupes, nous considérons les actions par des schémas en groupes constants en se rappelant que la donnée de telles actions est équivalente à celle d'un anneau muni d'une action par un groupe fini abstrait nous ramenant au cas classique. Nous obtenons ainsi dans ce nouveau contexte des notions généralisant l'anneau des invariants en tant que quotient, les groupes d'inertie et toutes leurs propriétés. Le cas non ramifié se généralise naturellement avec les actions libres. En ce qui concerne le cas modéré, qui nous intéresse particulièrement pour cette thèse, deux généralisations sont proposées dans la littérature. Celle d'actions modérées par des schémas en groupes affines introduite par Chinburg, Erez, Pappas et Taylor dans l'article [CEPT96] et celle de champ modéré introduite par Abramovich, Olsson et Vistoli dans [AOV08]. Il a été alors naturel d'essayer de comparer ces deux notions et de comprendre comment se généralisent les propriétés classiques d'objets modérés à des actions par des schémas en groupes affines.Tout d'abord, nous avons traduit algébriquement la propriété de modération sur un champ quotient comme l'exactitude du foncteur des invariants. Ce qui nous a permis d'obtenir aisément à l'aide de [CEPT96] qu'une action modérée définit toujours un champ quotient modéré. Quant à la réciproque, nous avons réussi à l'obtenir seulement lorsque nous supposons de plus que G est fini et localement libre sur S et que X est plat sur Y . Nous pouvons voir que la notion de modération pour l'anneau B muni d'une action par un groupe fini abstrait Γ est équivalente au fait que tous les groupes d'inertie aux points topologiques sont linéairement réductifs si l'on considère l'action par le schéma en groupes constant correspondant à Γ sur X. Il a été donc naturel de se demander si cette propriété est encore vraie en général. Effectivement, l'article [AOV08] caractérise le fait que le champ quotient [X/G] est modéré par le fait que les groupes d'inertie aux points géométriques sont linéairement réductifs.À nouveau, si l'on considère le cas des anneaux munis d'une action par un groupe fini abstrait, il est bien connu que l'action peut être totalement reconstruite à partir de l'action d'un groupe inertie. Lorsque l'on considère le cas des actions par les schémas en groupes constants, cela se traduit comme un théorème de slices, c'est-à-dire une description locale de l'action initiale par une action par un groupe d'inertie. Par exemple, lorsque G est fini, localement libre sur S, nous établissons que le fait qu'une action soit libre est une propriété locale pour la topologie fppf, ce qui peut se traduire comme un théorème de slices. Grâce à [AOV08], nous savons déjà qu'un champ quotient modéré [X/G] est localement isomorphe pour la topologie fppf à un champ quotient [X/H] où H est une extension du groupe d'inertie en un point de Y. Lorsque G est fini sur S, il nous a été possible de montrer que H est aussi un sous-groupe de G.
3

Classification des objets galoisiens d'une algèbre de Hopf

Aubriot, Thomas 15 June 2007 (has links) (PDF)
Cette thèse porte sur la classification des objets galoisiens d'une algèbre de Hopf. Le concept d'extension de Hopf-Galois, qui a été beaucoup étudié ces dernières années, est une généralisation du concept d'extension galoisienne de corps, mais aussi un analogue des fibrés principaux dans le cadre de la géométrie non commutative. Si $H$ est une algèbre de Hopf, une algèbre $H$-comodule $(Z,\delta: Z \to Z \otimes H)$ est une $H$-extension de Hopf-Galois d'une sous-algèbre $B\subset Z$ si l'ensemble des éléments co\"\i nvariants de $Z$ co\"\i ncide avec $B$ et si l'application canonique $\beta : Z \otimes _B Z \to Z\otimes H$ définie par <br />$$ \beta (x\otimes y ) = \delta (x) (y\otimes 1)$$ est une bijection. Les objets galoisiens forment une classe importante d'extensions de Hopf-Galois ; ce sont celles dont la sous-algèbre des co\"\i nvariants se réduit à l'anneau de base. Bien qu'une littérature abondante ait été consacrée aux extensions de Hopf-Galois, on a peu de résultats sur leur classification à isomorphisme près. Pour contourner la difficulté de classer les extensions de Hopf-Galois à isomorphisme près, Kassel a introduit et développé avec Schneider une relation d'équivalence sur les extensions de Hopf-Galois qu'il a appelée homotopie. <br /><br />Dans cette thèse nous donnons des résultats de classification à homotopie et à isomorphisme près. Notre approche de la classification des objets galoisiens tourne autour de trois axes. <br />\begin{itemize} <br />\item[a)] La construction explicite de représentants des classes d'homotopie des objets galoisiens de l'algèbre $U_q(\mathfrak{g})$ associée par Drinfeld et Jimbo à une algèbre de Lie $\mathfrak{g}$, explicitant ainsi un théorème de Kassel et Schneider. <br />\item[b)] Une étude des objets galoisiens de l'alg\` ebre quantique $O_q (SL(2))$ des fonctions sur le groupe $SL (2)$, et donc un résultat de classification en dimension infinie; nous donnons la classification à isomorphisme près et des résultats partiels pour la classification à homotopie près. <br />\item[c)] Une étude systématique de la classification à isomorphisme et à homotopie près pour les algèbres de Hopf de dimension $\leq 15$ ; nous synthétisons des résultats éparpillés dans la littérature, portant sur des familles d'algèbres de Hopf pointées ou semisimples et nous complétons ces résultats en donnant la classification des objets galoisiens d'une algèbre de Hopf de dimension $8$ qui n'est ni semisimple ni <br />pointée. <br />\end{itemize}
4

Périodes des arrangements d'hyperplans et coproduit motivique. / Periods of hyperplane arrangements and motivic coproduct

Dupont, Clement 26 September 2014 (has links)
Dans cette thèse, on s'intéresse à des questions relatives aux arrangements d'hyperplans du point de vue des périodes motiviques. Suivant un programme initié par Beilinson et al., on étudie une famille de périodes appelée polylogarithmes d'Aomoto et leurs variantes motiviques, vues comme éléments de l'algèbre de Hopf fondamentale de la catégorie des structures de Hodge-Tate mixtes, ou de la catégorie des motifs de Tate mixtes sur un corps de nombres. On commence par calculer le coproduit motivique d'une famille de telles périodes, appelées polylogarithmes de dissection génériques, en montrant qu'il est régi par une formule combinatoire. Ce résultat généralise un théorème de Goncharov sur les intégrales itérées. Puis, on introduit les bi-arrangements d'hyperplans, objets géométriques et combinatoires qui généralisent les arrangements d'hyperplans classiques. Le calcul de groupes de cohomologie relative associés aux bi-arrangements d'hyperplans est une étape cruciale dans la compréhension du coproduit motivique des polylogarithmes d'Aomoto. On définit des outils cohomologiques et combinatoires pour calculer ces groupes de cohomologie, qui éclairent dans un cadre global des objets classiques tels que l'algèbre d'Orlik-Solomon. / In this thesis, we deal with some questions about hyperplane arrangements from the viewpoint of motivic periods. Following a program initiated by Beilinson et al., we study a family of periods called Aomoto polylogarithms and their motivic variants, viewed as elements of the fundamental Hopf algebra of the category of mixed Hodge-Tate structures, or the category of mixed Tate motives over a number field. We start by computing the motivic coproduct of a family of such periods, called generic dissection polylogarithms, showing that it is governed by a combinatorial formula. This result generalizes a theorem of Goncharov on iterated integrals. Then, we introduce bi-arrangements of hyperplanes, which are geometric and combinatorial objects which generalize classical hyperplane arrangements. The computation of relative cohomology groups associated to bi-arrangements of hyperplanes is a crucial step in the understanding of the motivic coproduct of Aomoto polylogarithms. We define cohomological and combinatorial tools to compute these cohomology groups, which recast classical objects such as the Orlik-Solomon algebra in a global setting.
5

Structures Hopf-algébriques et opéradiques sur différentes familles d'arbres / Hopf-algebraics and operadics structures on different families of trees

Mansuy, Anthony 31 May 2013 (has links)
Nous introduisons les notions de forêts préordonnées et préordonnées en tas, généralisant les constructions des forêts ordonnées et ordonnées en tas. On démontre que les algèbres des forêts préordonnées et préordonnées en tas sont des algèbres de Hopf pour le coproduit de coupes et on construit un morphisme d'algèbres de Hopf dans l'algèbre des mots tassés. Ensuite, nous définissons un autre coproduit sur les forêts préordonnées donné par la contraction d'arêtes et nous donnons une description combinatoire de morphismes définis sur des algèbres de Hopf de forêts et à valeurs dans les algèbres de Hopf de battages et de battages contractants. Par ailleurs, nous introduisons la notion d'algèbre bigreffe, généralisant les notions d'algèbres de greffes à gauche et à droite. Nous décrivons l'algèbre bigreffe libre engendrée par un générateur et nous munissons cette algèbre d'une structure d'algèbre de Hopf et d'un couplage. Nous étudions ensuite le dual de Koszul de l'operade bigreffe et nous donnons une description combinatoire de l'algèbre bigreffe dual engendrée par un générateur. A l'aide d'une méthode de réécriture, nous prouvons que l'opérade bigreffe est Koszul. Nous définissons la notion de bialgèbre bigreffe infinitésimale et nous prouvons un analogue des théorèmes de Poincaré-Birkhoff-Witt et de Cartier-Milnor-Moore pour les bialgèbres bigreffe infinitésimales connexes. Pour finir, à partir de deux opérateurs de greffes, nous construisons des algèbres de Hopf d'arbres enracinés et ordonnés $ mathbf{B}^{i} $, $ i in mathbb{N}^{ast} $, $ mathbf{B}^{infty} $ et $ mathbf{B} $ vérifiant les relations d'inclusions $ mathbf{B}^{1} subseteq hdots mathbf{B}^{i} subseteq mathbf{B}^{i+1} subseteq hdots subseteq mathbf{B}^{infty} subseteq mathbf{B} $. On munit $ mathbf{B} $ d'une structure de bialgèbre dupliciale dendriforme et on en déduit que $ mathbf{B} $ est colibre et auto-duale. Nous démontrons que $ mathbf{B} $ est engendrée comme algèbre bigreffe par un générateur. / We introduce the notions of preordered and heap-preordered forests, generalizing the construction of ordered and heap-ordered forests. We prove that the algebras of preordered and heap-preordered forests are Hopf for the cut coproduct, and we construct a Hopf morphism to the Hopf algebra of packed words. In addition, we define another coproduct on the preordered forests given by the contraction of edges, and we give a combinatorial description of morphims defined on Hopf algebras of forests with values in the Hopf algebras of shuffes or quasi-shuffles. Moreover, we introduce the notion of bigraft algebra, generalizing the notions of left and right graft algebras. We describe the free bigraft algebra generated by one generator and we endow this algebra with a Hopf algebra structure, and a pairing. Next, we study the Koszul dual of the bigraft operad and we give a combinatorial description of the free dual bigraft algebra generated by one generator. With the help of a rewriting method, we prove that the bigraft operad is Koszul. We define the notion of infinitesimal bigraft bialgebra and we prove an analogue of Poincaré-Birkhoff-Witt and Cartier-Milnor-Moore theorems for connected infinitesimal bigraft bialgebras. Finally, with two grafting operators, we construct Hopf algebras of rooted and ordered trees $ mathbf{B}^{i} $, $ i in mathbb{N}^{ast} $, $ mathbf{B}^{infty} $ and $ mathbf{B} $ satisfying the inclusion relations $ mathbf{B}^{1} subseteq hdots mathbf{B}^{i} subseteq mathbf{B}^{i+1} subseteq hdots subseteq mathbf{B}^{infty} subseteq mathbf{B} $. We endow $ mathbf{B} $ with a structure of duplicial dendriform bialgebra and we deduce that $ mathbf{B} $ is cofree and self-dual. We prove that $ mathbf{B} $ is generated as bigraft algebra by one generator.
6

Théorie des représentations combinatoire de tours de monoïdes : Application à la catégorification et aux fonctions de parking / Combinatorial representation theory of tower monoids : Application to categorification and to parking functions

Virmaux, Aladin 13 June 2016 (has links)
Cette thèse se situe en combinatoire algébrique, et plus particulièrement en théorie combinatoire des représentations linéaires des monoïdes finis.Rappelons qu'un monoïde est un ensemble fini M muni d'une multiplication et d'un élément neutre, et qu'une représentation de M est un morphisme de M dans le monoïde des matrices $M_n(ck)$ où $ck$ est un corps, typiquement $ck =CC$. Les résultats des dernières décennies donnent un contrôle assez fin sur les représentations des monoïdes, permettant souvent de se ramener à de la théorie des représentations des groupes et de la combinatoire sur des préordres.En 1996, Krob et Thibon ont montré que l'induction et la restriction des représentations irréductibles et projectives de la tour des $0$-algèbres de Hecke $H_n(0)$ permet de munir l'ensemble des caractères d'une structure d'algèbre de Hopf, qui est isomorphe a l'algèbre de Hopf $ncsf$ des fonctions symétriques non commutatives. Cela donne une emph{catégorification} de$ncsf$, c'est-à-dire une interprétation de celle-ci en terme de théorie des représentations. Ils prolongent ainsi un résultat dû à Frobenius établissant un lien entre l'anneau des caractères de la tour des groupes symétriques et lesfonctions symétriques. Un problème naturel depuis lors est d'essayer de catégorifier d'autres algèbres de Hopf -- par exemple l'algèbre $pbt$ desarbres binaires de Loday et Ronco -- par des tours d'algèbres.Deviner une telle tour d'algèbres est difficile en général. Dans le cadre de cemanuscrit on restreint le champ de recherche aux tours de monoïdes, afin de mieux contrôler leurs représentations. C'est naturel car ce cadre couvre enfait les deux exemples fondamentaux ci-dessus, tandis qu'il est impossible decatégorifier $ncsf$ avec seulement une tour de groupes.Nous commençons par donner quelques résultats sur les représentations des toursde monoïdes. Ensuite, nous nous intéressons à la catégorification par destours de semi-treillis, et en particulier de quotients du permutoèdre. Avecceux-ci, nous catégorifions la structure de cogèbre de $fqsym$ sur la base$gbasis$ et celle d'algèbre de $fqsym$ sur la base $fbasis$. Cela ne permetcependant pas de catégorifier simultanément toute la structure de Hopf de ces algèbres. Dans un second temps, nous menons une recherche exhaustive des catégorifications de $pbt$. Nous montrons que, sous des hypothèses naturelles,il n'existe pas de catégorification de $pbt$ par une tour de monoïdesapériodiques. Enfin, nous démontrons que, dans un certain sens, la tour des monoïdes $0$-Hecke est la tour de monoïdes la plus simple catégorifiant $ncsf$.La seconde partie porte sur les fonctions de parking, par application des résultats de la première partie. D'une part, nous étudions la théorie des représentations de la tour des fonctions de parking croissantes. D'autre part,dans un travail commun avec Jean-Baptiste Priez nous reprenons une généralisation des fonctions de parking due à Stanley et Pitman. Afin d'obtenir des formules d'énumérations, nous utilisons une variante -- plus efficace dansle cas présent -- de la théorie des espèces. Nous donnons une action de$H_n(0)$ (et non du groupe symétrique) sur les fonctions de parking généralisées, et utilisons le théorème de catégorification de Krob et Thibon,pour relever dans les fonctions symétriques non commutatives le caractère de cette action. / This thesis is focused on combinatorical representation theory of finitemonoids within the field of algebraic combinatorics.A monoid $M$ is a finite set endowed with a multiplication and a neutralelement. A representation of $M$ is a morphism from $M$ into the monoid ofmatrices $M_n(ck)$ where $ck$ is a field; in this work it will typically bereferred to as $ck = CC$.The results obtained in the last decades allows us to use representation theoryof groups, and combinatorics on preorders in order to explore representationtheory of finite monoides.In 1996, Krob and Thibon proved that the induction and restriction rules ofirreducible and projective representations of the tower of $0$-Hecke monoidsendows its ring of caracters with a Hopf algebra structure, isomorph to thenon-commutative symmetric functions Hopf algebra $ncsf$. This gives acategorification of $ncsf$, which is an interpretation of the non-commutativesymmetruc functions in the language of representation theory. This extends atheorem of Frobenius endowing the character ring of symmetric groups to theHopf algebra of symmetric functions. Since then a natural problem is tocategorify other Hopf algebras -- for instance the Planar Binary Tree algebraof Loday and Ronco -- by a tower of algebras.Guessing such a tower of algebra is a difficult problem in general.In this thesis we restrict ourselves to towers of monoids in order to have abetter control on its representations. This is quite natural as on one hand,this setup covers both previous fundamental examples, whereas $ncsf$cannot be categorified in the restricted set of tower of group algebras.In the first part of this work, we start with some results about representationtheory of towers of monoids. We then focus on categorification with towers ofsemilatices, for example the tower of permutohedrons. We categorify thealgebra, and cogebra structure of $fqsym$, but not the full Hopf algebrastructure with its dual. We then make a comprehensive search in order tocategorify $pbt$ with a tower of monoids. We show that under naturalhypothesis, there exists no tower of monoids satisfying the categorificationaxioms. Finally we show that in some sense, the tower of $0$-Hecke monoids isthe simplest tower categorifying $ncsf$.The second part of this work deals with parking functions, applying resultsfrom the first part. We first study the representation theory of non decreasingparking functions. We then present a joint work with Jean-Baptiste Priez on ageneralization of parking functions from Pitman and Stanley. To obtainenumeration formulas, we use a variant of the species theory which was moreefficient in our case.We used an action of $H_n(0)$ instead of the symmetric group and use theKrob-Thibon theorem to lift the character of this action into the Hopf algebraof non-commutative symmetric functions.
7

Invariants topologiques quantiques non semi-simples.

Patureau-Mirand, Bertrand 07 December 2012 (has links) (PDF)
Invariants topologiques quantiques non semi-simples. La théorie des nœuds (courbes simples plongées dans R³, à déformation continue près) se développe au début du XXième siècle avec notamment les travaux d'Alexander et de Reidemeister. Elle a connu un tournant avec la topologie quantique née en 1984 par la découverte par Vaughan Jones d'une manière d'associer à chaque nœuds un polynôme. Vladimir Turaev et Nicolai Reshetikhin interprètent et généralisent ce procédé en terme de représentations des groupes quantiques. Aujourd'hui encore, la compréhension géométrique de ces invariants est ténue. Toujours dans les années 80, Edward Witten donne une interprètation physique du polynôme de Jones et suggère une généralisation aux variétés de dimension trois. Vladimir Turaev avec Nicolai Reshetikhin puis avec Oleg Viro réalise rigoureusement ces invariants nouveaux pour les variétés de dimension trois. Dans de nombreux cas, ces constructions s'avèrent triviales. Ceci est lié à la présence de représentations des groupes quantiques qui ne sont pas semi-simples. Mes travaux, en collaboration avec Nathan Geer, Vladimir Turaev, Francesco Costantino et Alexis Virelizier ont consisté, pour une grande part, à modifier les constructions précédentes pour définir des invariants non triviaux dans ce cadre non semi-simple. Ces travaux m'ont amené a développer, avec Nathan Geer et Jonathan Kujawa, des techniques algébriques qui présentent un intérêt propre en théorie des représentations. Relier les constructions de la topologie quantique et les invariants d'origine plus géométriques constitue un vrai challenge des mathématiques modernes pour lequel les invariants non semi-simples que j'ai définis offrent un point de vue prometteur.
8

Etude et Classification des algèbres Hom-associatives / Study and Classification of Hom-associative algebras

Abdou Damdji, Ahmed Zahari 24 May 2017 (has links)
La thèse comporte six chapitres. Dans le premier chapitre, on rappelle les bases de la théorie et on étudie la structure des algèbres Hom-associatives ainsi que les différentes constructions comme la composition avec des endomorphismes qui nous permet de construire de nouveaux objets et d’établir certaines nouvelles propriétés. Parmi les résultats originaux, on peut signaler l’étude des algèbres Hom-associatives simples ainsi que leurs constructions. On a montré que toutes les algèbres Hom-associatives multiplicatives simples s’obtiennent par composition d’algèbres simples et d’automorphismes. Dans le deuxième chapitre, on commence par étudier les propriétés des changements de base dans ces structures algébriques. On a calculé la base de Gröbner de l’idéal engendrant la variété algébrique des algèbres Hom-associatives de dimension 2 où la multiplication µ et l’application linéaire α sont identifiées à leurs constantes de structure relativement à une base donnée. La classification, à isomorphisme près, des algèbres Hom-associatives unitaires et non unitaires est établie en dimension 2 et 3. On a aussi décrit les algèbres de type associatif en se basant sur le théorème de twist de Yau. Dans le troisième chapitre, on étudie certaines propriétés et invariants comme les dérivations, αk-dérivations où k est un entier positif. Dans le quatrième chapitre, on établit la cohomologie de ces algèbres. On a pu lister les algèbres rigides grâce à leur classe de cohomologie puis on s'est 'intéressé aux déformations infinitésimales et dégénérations. D’une part, la cohomologie et déformation de ces algèbres nous a permis d’identifier les algèbres rigides dont le deuxième groupe de cohomologie est nulle, et d’autre part de caractérisation de composante irréductible. Dans le cinquième chapitre, on s’intéresse aux structures Rota-Baxter de poids λ ϵK de ces algèbres. Enfin, dans le dernier chapitre, on a travaillé sur les structures Hom-bialgèbres et leurs invariants. / The purpose of this thesis is to study the structure of Hom-associative algebras and provide classifications. Among the results obtained in this thesis, we provide 2-dimensional and 3-dimensional Hom-associative algebras and give a characterization of multiplicative simple Hom-associative algebras. Moreover we compute some invariants and discuss irreducible components of the corresponding algebraic varieties. The thesis is organized as follows. In the first chapter we give the basics about Hom-associative algebras and provide some new properties. Moreover, we discuss unital Hom-associative algebras. Chapter 2 deals with simple multiplicative Hom-associative algebras. We present one of the main results of this paper, that is a characterization of simple multiplicative Hom-associative algebras. Indeed, we show that they are all obtained by twistings of simple associative algebras. Chapter 3 is dedicated to describe algebraic varieties of Hom-associative algebras and provide classifications, up to isomorphism, of 2-dimensional and 3-dimensional Hom-associative algebras. In chapter 4, we compute their derivations and twisted derivations, whereas in chapter 5, we compute their Hom-Type Hochschild cohomology. In the last section of this chapter, we consider the geometric classification problem using one-parameter formel deformations, and describe the irreducible components. In chapter 6, we compute Rota-Baxter structures of weight k of Hom-associative algebras appearing in our classification. In chapter 7, We work out Hom-bialgebras structures as well as their invariants. Properties and classifications, as well as the calculation of certain invariants such as the first and second cohomology groups, were studied.
9

Renormalisation de la théorie quantique des champs en espace-temps courbes: une approche causale.

Viet Dang, Nguyen 12 December 2013 (has links) (PDF)
Le sujet de la thèse est la construction d'une théorie perturbative des champs quantiques en interaction sur un espace-temps courbe, suivant un point de vue conçu par Stueckelberg et Bogoliubov et developpé par Epstein-Glaser sur l'espace de Minkowski plat. En 2000, un progrès important fut réalisé par Brunetti et Fredenhagen qui réussirent à étendre la théorie d'Epstein-Glaser en exploitant le point de vue développé par Radzikowski pour définir les états quantiques sur un espace-temps courbe en terme d'ensembles de front d'onde. Ces résultats furent ultérieurement généralisés par Fredenhagen, Brunetti, Hollands, Wald, Rejzner, etc. aux théories de Yang-Mills et de la gravitation. Cependant, même pour des théories sans invariance de jauge, de nombreux détails mathématiques sont restés inexplorés et parfois sans vérification. Nous construisons d'une façon totalement rigoureuse cette théorie dans le cas des champs sans invariance de jauge. Dans notre travail, nous revisitons complètement cette théorie, résolvant au passage plusieurs questions laissées en suspens, incorporant de nombreux résultats nouveaux autour de ce programme et, le cas échéant, apportant des détails beaucoup plus précis sur les contre-termes dans le processus de renormalisation, une compréhension plus approfondie des ambiguïtés et une description géométrique des ensembles de front d'onde.
10

From resurgent functions to real resummation through combinatorial Hopf algebras / Des fonctions résurgentes à la resommation réelle en passant par les algèbres de Hopf combinatoires

Vieillard-Baron, Emmanuel 31 March 2014 (has links)
Le problème de la resommation réelle consiste à associer à une série divergente réelle unefonction analytique qui lui est asymptotique sur un secteur du plan complexe bissecté par unedes deux demi-directions réelles. Jean Ecalle a esquissé, pour le résoudre, les grandes lignesd’une théorie dite des bonnes moyennes uniformisantes. Celle-ci est basée sur plusieurs de sesdécouvertes : le calcul moulien simple et arborifié, les opérateurs étrangers et les fonctionsrésurgentes.Nous nous proposons dans cette thèse de détailler complètement la théorie des moyennesd’Ecalle. Il s’agit de l’appliquer à la resommation de la conjuguante formelle des champsanalytiques réels de type noeud-col et des difféomorphismes analytiques tangents à l’identitédans leur classe formelle la plus simple. Une partie conséquente de la thèse est consacrée àla théorie de l’arborification. C’est l’un des ingrédients majeurs de la théorie des moyennesmais pour laquelle Ecalle n’avait délivré que peu de détails.Un chapitre de la thèse traite de géométrie o-minimale. Il s’agit de démontrer l’existenced’un « isomorphisme formel »entre les familles de germes d’ensembles semi-analytiques issusde deux classes quasi-analytiques isomorphes. Bien que ce chapitre soit disjoint de la théoriedes moyennes, il est probable que cette dernière permette à l’avenir d’obtenir de nouvellesclasses quasi-analytiques.Enfin, nous proposons de faire le lien entre un procédé de resommation réelle de la conjuguanteformelle du noeud-col réel élaboré par R. Schäfke et les moyennes d’Ecalle. / Pas de résumé en anglais.

Page generated in 0.0495 seconds