Spelling suggestions: "subject:"alldigital PLL"" "subject:"calleddigital PLL""
1 |
A PERSONAL TELEMETRY STATIONHui, Yang, Shanzhong, Li, Qishan, Zhang 10 1900 (has links)
International Telemetering Conference Proceedings / October 17-20, 1994 / Town & Country Hotel and Conference Center, San Diego, California / In this paper, a PCM telemetry system based on Personal computer is presented and
some important methods that are used to realize the system will be introduced, such as
a new kind of all digital PLL bit synchronizer and a way to solve the problem of high-rate
data storage.
The main idea of ours is to make the basic parts of PCM telemetry system (except
receiver) in the form of PC cards compatible with EISA Bus, which forms a
telemetry station with resource of PC computer.
Finally, a laboratory prototype with rate up to 3.2Mbps is built.
|
2 |
Design of a DCO for an All Digital PLL for the 60 GHz Band : Design of a DCO for an All Digital PLL for the 60 GHz BandBalasubramanian, Manikandan, Vijayanathan, Saravana Prabhu January 2013 (has links)
The work was based on digitally controlled oscillator for an all-digital PLL in 65nm process. Phase locked loop’s were used in most of the application for clock generation and recovery as well. As the technology grows faster in the existinggeneration, there has to be quick development with the technique. In such case ananalog PLL which was used earlier gradually getting converted to digital circuit.All-digital PLL blocks does the same work as an analog PLL blocks, but thecircuits and other control circuitry designed were completely in digital form, becausedigital circuit has many advantages over analog counterpart when they arecompared with each other. Digital circuit could be scaled down or scaled up evenafter the circuits were designed. It could be designed for low power supply voltageand easy to construct in a 65 nm process. The digital circuit was widely chosento make life easier. In most of the application PLL’s were used for clock and data recovery purpose,from that perspective jitter will stand as a huge problem for the designers. Themain aim of this thesis was to design a DCO that should bring down the jitter asdown as possible which was designed as standalone, the designed DCO would belater placed in an all-digital PLL. To understand the concept and problem aboutjitter at the early stage of the project, an analog PLL was designed in block leveland tested for different types of jitter and then design of a DCO was started. This document was about the design of a digitally controlled oscillator whichoperates with the center frequency of 2.145 GHz. In the first stage of the projectthe LC tank with NMOS structure was built and tested. In the latter stage the LCtank was optimized by using PMOS structure as negative resistance and eventuallyended up with NMOS and PMOS cross coupled structure. Tuning banks were oneof the main design in this project which plays a key role in locking the system ifthe DCO is placed in an all-digital PLL system. So, three types of tuning bankswere introduced to make the system lock more precisely. The control circuits andthe varactors built were all digital and hence it is called as digitally controlledoscillator. Digital control circuits, other sub-blocks like differential to single endedand simple buffers were also designed to optimize the signal and the results wereshown.DCO and tuning banks were tested using different types of simulation and were tested for different jitter qualities and analysis. The simulation results are shownin the final chapter simulation and results.
|
3 |
A Bang-Bang All-Digital PLL for Frequency SynthesisJanuary 2012 (has links)
abstract: Phase locked loops are an integral part of any electronic system that requires a clock signal and find use in a broad range of applications such as clock and data recovery circuits for high speed serial I/O and frequency synthesizers for RF transceivers and ADCs. Traditionally, PLLs have been primarily analog in nature and since the development of the charge pump PLL, they have almost exclusively been analog. Recently, however, much research has been focused on ADPLLs because of their scalability, flexibility and higher noise immunity. This research investigates some of the latest all-digital PLL architectures and discusses the qualities and tradeoffs of each. A highly flexible and scalable all-digital PLL based frequency synthesizer is implemented in 180 nm CMOS process. This implementation makes use of a binary phase detector, also commonly called a bang-bang phase detector, which has potential of use in high-speed, sub-micron processes due to the simplicity of the phase detector which can be implemented with a simple D flip flop. Due to the nonlinearity introduced by the phase detector, there are certain performance limitations. This architecture incorporates a separate frequency control loop which can alleviate some of these limitations, such as lock range and acquisition time. / Dissertation/Thesis / M.S. Electrical Engineering 2012
|
4 |
Time to Digital Converter used in ALL digital PLLYao, Chen January 2011 (has links)
This thesis proposes and demonstrates Time to Digital Converters (TDC) with high resolution realized in 65-nm digital CMOS. It is used as a phase detector in all digital PLL working with 5GHz DCO and 20MHz reference input for radio transmitters. Two kinds of high resolution TDC are designed on schematic level including Vernier TDC and parallel TDC. The Sensed Amplifier Flip Flop (SAFF) is implemented with less than 1ps sampling window to avoid metastability. The current starved delay elements are adopted in the TDC and the conversion resolution is equal to the difference of the delay time from these delay elements. Furthermore, the parallel TDC is realized on layout and finally achieves the resolution of 3ps meanwhile it consumes average power 442μW with 1.2V power supply. Measured integral nonlinearity and differential nonlinearity are 0.5LSB and 0.33LSB respectively.
|
5 |
Frequency Synthesis in Wireless and Wireline SystemsTurker, Didem 1981- 14 March 2013 (has links)
First, a frequency synthesizer for IEEE 802.15.4 / ZigBee transceiver applications that employs dynamic True Single Phase Clocking (TSPC) circuits in its frequency dividers is presented and through the analysis and measurement results of this synthesizer, the need for low power circuit techniques in frequency dividers is discussed.
Next, Differential Cascode Voltage-Switch-Logic (DCVSL) based delay cells are explored for implementing radio-frequency (RF) frequency dividers of low power frequency
synthesizers. DCVSL ip- ops offer small input and clock capacitance which makes the power consumption of these circuits and their driving stages, very low. We perform a delay analysis of DCVSL circuits and propose a closed-form delay model that predicts the speed of DCVSL circuits with 8 percent worst case accuracy. The proposed
delay model also demonstrates that DCVSL circuits suffer from a large low-to-high propagation delay ( PLH) which limits their speed and results in asymmetrical output
waveforms. Our proposed enhanced DCVSL, which we call DCVSL-R, solves this delay bottleneck, reducing PLH and achieving faster operation.
We implement two ring-oscillator-based voltage controlled oscillators (VCOs) in 0.13 mu m technology with DCVSL and DCVSL-R delay cells. In measurements, for the same oscillation frequency (2.4GHz) and same phase noise (-113dBc/Hz at 10MHz), DCVSL-R VCO consumes 30 percent less power than the DCVSL VCO. We also use the
proposed DCVSL-R circuit to implement the 2.4GHz dual-modulus prescaler of a low power frequency synthesizer in 0.18 mu m technology. In measurements, the synthesizer exhibits -135dBc/Hz phase noise at 10MHz offset and 58 mu m settling time with 8.3mW power consumption, only 1.07mWof which is consumed by the dual modulus prescaler and the buffer that drives it. When compared to other dual modulus prescalers with similar division ratios and operating frequencies in literature, DCVSL-R dual modulus prescaler demonstrates the lowest power consumption.
An all digital phase locked loop (ADPLL) that operates for a wide range of frequencies to serve as a multi-protocol compatible PLL for microprocessor and serial
link applications, is presented. The proposed ADPLL is truly digital and is implemented in a standard complementary metal-oxide-semiconductor (CMOS) technology
without any analog/RF or non-scalable components. It addresses the challenges that come along with continuous wide range of operation such as stability and phase frequency detection for a large frequency error range. A proposed multi-bit bidirectional smart shifter serves as the digitally controlled oscillator (DCO) control and tunes the DCO frequency by turning on/off inverter units in a large row/column matrix that constitute the ring oscillator. The smart shifter block is completely digital, consisting of standard cell logic gates, and is capable of tracking the row/column unit availability
of the DCO and shifting multiple bits per single update cycle. This enables fast frequency acquisition times without necessitating dual loop fi lter or gear shifting
mechanisms.
The proposed ADPLL loop architecture does not employ costly, cumbersome DACs or binary to thermometer converters and minimizes loop filter and DCO control
complexity. The wide range ADPLL is implemented in 90nm digital CMOS technology and has a 9-bit TDC, the output of which is processed by a 10-bit digital loop filter
and a 5-bit smart shifter. In measurements, the synthesizer achieves 2.5GHz-7.3GHz operation while consuming 10mW/GHz power, with an active area of 0.23 mm2.
|
Page generated in 0.0336 seconds