• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 4
  • 1
  • Tagged with
  • 16
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Apport de la modélisation et des simulations de dynamique moléculaire à la description de STAT5 comme cible pour moduler la signalisation oncogénique / Contribution of molecular modeling and dynamics simulations to describe STAT5 as a target to modulate oncogenic signaling

Langenfeld, Florent 05 June 2015 (has links)
STAT5 est une protéine de la signalisation cellulaire normale, qui peut jouer un rôle important dans la transformation, la survie et à la résistance aux inhibiteurs de tyrosine kinase des cellules tumorales. Son activation constitutive par phosphorylation est liée à la présence de protéines oncogéniques comme la protéine de fusion BCR/ABL1 (leucémie myéloïde chronique) ou de formes mutées de KIT (mastocytoses), par exemple. L’inhibition pharmacologique de STAT5 constitue donc un enjeu thérapeutique majeur pour plusieurs pathologies malignes. Nous avons réalisé la première modélisation et les simulations de dynamique moléculaire des principales formes de STAT5 : la forme monomérique cytoplasmique phosphorylée ou non, et la forme dimérique phosphorylée et liée à l’ADN. Nous avons caractérisé les propriétés dynamiques et le réseau allostérique intramoléculaire des monomères de STAT5. Les résultats générés montrent des variations structurales et dynamiques liées à la différence de séquence primaire des isoformes de STAT5 et/ou à la présence du groupement phosphate. Deux poches à la surface des protéines ont également été caractérisées. Leur localisation à proximité de voies de communication allostériques suggère que ces poches pourraient constituer des sites de modulation des fonctions de STAT5. Nous avons également caractérisé les liaisons hydrogènes entre les monomères constituant les dimères de STAT5 et leur reconnaissance de l’ADN. En outre, nous avons identifié des résidus clés aux interfaces entre les entités moléculaires, nous permettant de mieux comprendre les effets de mutations de STAT5 observées en clinique dans certaines pathologies malignes. / STAT5 is a protein involved in normal cell signalling that is crucial for transformation, survival and resistance to tyrosine kinase inhibitors of tumour cells. The constitutive phosphorylation activates STAT5 and is related to oncogenic proteins like the hybrid protein BCR/ABL1 (chronic myeloid leukaemia) or mutated KIT receptor (mastocytosis). The pharmacologic inhibition of STAT5 is thus a major therapeutic concern in several malignant pathologies. We performed the first modelling and molecular dynamics simulations of the main cellular species of STAT5: the cytoplasmic phosphorylated or unphosphorylated monomer, and the phosphorylated dimer bound to DNA. We characterized the dynamical properties and the intramolecular allosteric network of the monomers. The generated results show structural and dynamic variations linked to the primary sequence changes between the two STAT5 isoforms and/or to the phosphate group. Two pockets were characterized at the surface of STAT5. Their location at close proximity of allosteric communication pathways suggests new putative inhibition sites to modulate STAT5 functions. We also described the hydrogen bonds network between the monomers of the dimeric species and the recognition of the DNA. We identified key residues at the interfaces, allowing us to better understand the effects of clinically relevant STAT5 mutations observed in malignancies.
12

Processus d'apprentissage, savoirs complexes et traitement de l'information : un modèle théorique à l'usage des praticiens, entre sciences cognitives, didactique et philosophie des sciences. / Learning processes, complex knowledge and information processing : a theoretical model for practitioners, between cognitive science, didactics and philosophy of science

Eastes, Richard-Emmanuel 11 June 2013 (has links)
Cherchant à établir un pont théorique et pratique entre les sciences de l'éducation, les sciences cognitives et la philosophie des sciences, la thèse développe un modèle didactique à l'interface entre ces disciplines : le modèle allostérique de l'apprendre initié et développé par Giordan (1988) et al. (1992), qui s'inscrit dans le paradigme des théories du changement conceptuel. Nourri par les travaux récents des psychologues cognitifs sur les processus d'apprentissage tels que les théories du recyclage neuronal (Dehaene, 2007) ou de l'inhibition cérébrale (Houdé & Tzourio-Mazoyer, 2003), ainsi que sur diverses théories relatives à l'élaboration de la pensée telles que l'économie comportementale (Tversky & Kahnernan, 1982) ou le modèle-cadre SRK (Rasmussen, 1990), ce modèle développe et précise le concept d’allostérie à travers la description et la formalisation des processus de déconstruction-reconstruction des conceptions, qui ont lieu lors des apprentissages complexes. De la phase de théorisation du modèle, effectuée par un recours aux formalismes de la réactivité chimique en accord avec la métaphore initiale de l'allostérie, il est possible de déduire divers environnements didactiques opératoires et féconds pour le praticien de l'enseignement et de la médiation scientifiques. Ces prévisions théoriques sont alors mises à l'épreuve de l'expérimentation didactique à travers une recherche de terrain centrée sur la notion d'expérience contre-intuitive (Eastes & Pellaud, 2004) menée auprès de différents types de publics. / Aiming at bridging education sciences, cognitive sciences and philosophy of science both theoretically and practically, this thesis develops a didactical model at the interface between these fields: the allosteric learning model developed by Giordan (1988) et al. (1992), understood in the context conceptual change theories paradigm. Fueled by the recent works of cognitive psychologists on learning processes such as neuronal recycling (Dehaene, 2007) or cerebral inhibition (Houdé & Tzourio-Mazoyer, 2003), as well as on various theories related to the thought processes such as behavioral economies (Tversky & Kahneman, 1982) or the Skills-Rules-Knowledge framework model (Rasmussen, 1990), this model develops and refines the concept of allostery through the description and formalization of specific processes that take place in complex learning situations : the deconstruction-reconstruction of conceptions. Based on the theorization of the model, done through the use chemical reactivity formalisms in line with the initial metaphor of allostery, it is possible to deduce various operational and fruitful didactical environments for teaching practitioners or science communication professionals. These theoretical projections are then put to the test through didactic experimentation taking the shape of field research on the notion of counter-intuitive experiment (Eastes & Pellaud, 2004) conducted with different types of target groups.
13

Dynamique structurale et allostérie des récepteurs NMDA / Structural dynamics and allostery of NMDA receptors

Esmenjaud, Jean-Baptiste 16 July 2018 (has links)
Les récepteurs ionotropiques du glutamate sont responsables de la vaste majorité de la neurotransmission excitatrice rapide dans le système nerveux central. Parmi eux, les récepteurs NMDA (rNMDA) sont les médiateurs de la plasticité synaptique, fondement cellulaire des processus d’apprentissage et de mémoire. Leurs dysfonctionnements sont impliqués dans de nombreuses pathologies neurologiques et psychiatriques comme les maladies d’Alzheimer et de Parkinson, l’épilepsie et la schizophrénie. Les rNMDA forment des complexes hétérotétramériques massifs (>500 kDa) dotés de propriétés allostériques uniques grâce à un ensemble de 8 domaines extracellulaires bilobés organisé en deux strates superposées : la couche de domaines N-terminaux (NTD) et la couche de domaines de liaison de l’agoniste (ABD). Malgré un nombre croissant de structures complètes de rNMDA, le mécanisme de transduction permettant aux interactions entre ces domaines de contrôler l’activité du récepteur restait inconnu. En combinant analyse expérimentale et computationnelle, nous montrons qu’un mouvement de roulis à l’interface entre les deux dimères de la couche d’ABD est un déterminant clé du processus d’activation et de modulation des rNMDA. Cette rotation des deux dimères d’ABD constitue un commutateur conformationnel qui règle l’ouverture du canal en fonction de la conformation des NTD situés à l’opposé. Ce travail révèle comment des changements conformationnels concertés entre couches de domaines gouvernent l’activité des rNMDA. Il illumine notre compréhension d’un récepteur synaptique majeur du système nerveux central et ouvre la voie à la conception de nouveaux agents pharmacologiques ciblant le mécanisme allostérique élucidé. / Ionotropic glutamate receptors are responsible for the vast majority of fast excitatory neurotransmission in the central nervous system. Among them, NMDA receptors (NMDARs) are key mediators of synaptic plasticity, which is considered as the cellular basis of learning and memory. NMDAR dysfunction is implicated in numerous neurological and psychiatric brain disorders such as Alzheimer and Parkinson’s disease, epilepsy and schizophrenia. NMDAR form massive hetero tetrameric complexes (>500 kDa) endowed with unique allosteric capacity provided by a cluster of eight extracellular clamshell-like domains arranged as two superimposed layers: the Nterminal domain (NTD) layer and the agonist binding domain (ABD) layer. Despite an increasing number of full-length NMDAR structures, the transduction mechanism by which these domains interact in an intact receptor to control its activity remained poorly understood. Combining experimental and in silico analysis, we identify a rolling motion at an interface between the two constitute dimers in the ABD layer as a key determinant in NMDAR activation and modulation pathways. This rotation of the two ABD dimers acts as a conformational switch that tunes channel opening depending on the conformation of the membrane-distal NTD layer. This work unveils how NMDAR domains move and operate in a concerted manner to transduce conformational changes between layers and command receptor activity. It illuminates our understanding of a major synaptic receptor of the central nervous system and paves the way for the development of new pharmacological tools targeting the elucidated allosteric mechanism.
14

Exploiter la coopérativité d'assemblages supramoléculaires d'ADN pour contrôler la plage dynamique d'interrupteurs moléculaires

Lauzon, Dominic 04 1900 (has links)
L’autoassemblage de diverses biomolécules pour former des complexes moléculaires est à la base de la machinerie cellulaire et des processus biologiques qui s’y rattachent. Il est typiquement considéré qu’un assemblage de plusieurs protéines offre des avantages régulatifs comparativement à une structure protéique similaire construite avec une ou un nombre inférieur de composantes. Ces assemblages offrent, par exemple, la possibilité de contrôler l’activité d’un complexe grâce à la dépendance directe de l’assemblage sur la concentration de ces composantes. De plus, la coopérativité d’interaction entre ces diverses composantes ouvre la voie vers l’obtention de nouveaux mécanismes de régulation. Toutefois, les avantages et les inconvénients directement reliés au nombre de composantes impliquées dans un assemblage ne sont pas totalement bien compris puisque les protéines ont évolué et ont divergé suivant des millions d’années d’évolution. L’objectif principal de cette thèse est d’abord de créer un modèle moléculaire simplifié permettant de mieux comprendre les avantages coopératifs des autoassemblages biologiques pour ensuite s’en inspirer afin de mettre au point de nouveaux mécanismes moléculaires permettant d’optimiser la plage dynamique d’interrupteurs moléculaires autoassemblés. En même temps, il sera possible de mettre en lumière certains avantages évolutifs qui ont poussé les protéines à acquérir plus de composantes moléculaires. Tout d’abord, la création d’assemblages moléculaires fut effectuée en fragmentant une structure unimoléculaire en plusieurs fragments qui pourront, grâce à leurs interactions, reformer la structure originale. Grâce à une nanostructure simple d’ADN, c.-à-d. une jonction à trois branches, il fut possible d’étudier directement l’impact du nombre de composantes sur la fonctionnalité et la régulation d’assemblages multimériques. Il fut observé, malgré l’association plus lente d’un assemblage de trois composantes, que ce même assemblage s’associe de manière plus coopérative tout en permettant la création de nouveaux mécanismes de régulation (p. ex. plage dynamique étendue, auto-inhibition et minuterie moléculaire). Ce système simplifié d’ADN a donc permis de conclure que la fragmentation d’une nanostructure en plusieurs composantes est une méthode simple permettant d’optimiser un nanosystème artificiel ou naturel. Ensuite, une autre méthode de création d’assemblages moléculaires fut étudiée. Celle-ci consiste à fusionner des domaines interagissant par le biais d’un espaceur. Dans une telle stratégie, l’espaceur est appelé à jouer un rôle important dans les propriétés de l’assemblage. Ainsi, en utilisant le même modèle d’ADN à trois composantes, il fut en effet observé que les propriétés de l’espaceur (p. ex. sa longueur, sa composition ou sa nature chimique) affectent grandement les propriétés d’assemblage d’un système à trois composantes (p. ex. sa stabilité, son niveau de coopérativité ou sa plage dynamique d’assemblage). En effectuant une étude thermodynamique approfondie sur divers assemblages trimériques d’ADN, il fut découvert qu’un espaceur optimal stabilise l’association des diverses composantes en créant une structure plus compacte où les espaceurs se cachent au coeur de la jonction. Il fut aussi démontré qu’en optimisant l’espaceur, il est possible de programmer précisément la plage dynamique d’un assemblage moléculaire à trois composantes. Finalement, ces découvertes sur les avantages d’un assemblage à trois composantes ont permis la création d’une nouvelle stratégie afin d’optimiser la plage dynamique d’interrupteurs moléculaires. À l’inverse des activateurs allostériques classiques qui altèrent la force d’interaction d’un ligand, c.-à-d. le KD, en modifiant la conformation de l’interrupteur, un activateur multivalent permet de programmer précisément la plage dynamique de l’interrupteur en exploitant une nouvelle surface d’interaction grâce à la formation d’un assemblage à trois composantes. Cette nouvelle stratégie d’optimisation des interrupteurs moléculaires fut validée grâce à une tige-boucle d’ADN servant comme balise moléculaire. Cette preuve de concept permet de démontrer la viabilité des assemblages moléculaires pour conceptualiser de nouvelles nanotechnologies avec une plage dynamique optimisée. Il est donc possible d’imaginer que les assemblages moléculaires auront un impact immédiat dans divers domaines de la nanotechnologie comme en diagnostic médical, en délivrance contrôlée de médicaments ou en imagerie moléculaire. / The self-assembly of various biomolecules to form molecular complexes is at the basis of the cellular machinery and their related biological processes. It is typically thought that an assembly of several proteins provides regulatory advantages compared to a similar protein built with one or fewer molecular components. These molecular assemblies offer, for example, the possibility to control their activity through the direct dependency of the assembly on the concentration of its components. Moreover, the cooperativity of interaction between their multiple components opens the door to acquiring novel regulation mechanisms. However, the advantages and disadvantages directly related to the number of components involved in an assembly are not totally understood since proteins have evolved and diverged over millions of years of evolution. The main objective of this thesis is to first create a simplified molecular model that will enable to better understand the cooperative advantages of biological self-assemblies. Then, inspired by these new understandings, novel molecular mechanisms will be developed to enable the optimization of the dynamic range of self-assembled molecular switches. Meanwhile, it will be possible to highlight some advantages that have pushed proteins to acquire more molecular components. The creation of molecular assemblies was demonstrated by fragmenting a nanostructure into multiple fragments which, through their intermolecular interactions, reassemble into the original structure. Using a simple DNA-based nanostructure, i.e., a three-way junction, it was possible to directly study the impact of the number of components on the functionality and regulation of multimeric assemblies. It was found that despite the slower assembly rate of a three-component assembly, this same assembly undergoes a more cooperative assembly enabling the creation of new regulatory mechanisms (e.g., extended dynamic range, self-inhibition and molecular timers). This simplified DNA-based system has therefore made it possible to conclude that fragmenting a nanostructure into multiple components is a simple method to optimize an artificial or a natural nanosystem. Next, another method to create molecular assemblies was studied. This method consists in fusing interacting domains through a linker. In this strategy, the linker will play an important role in dictating the properties of the assembly. Therefore, by using the same three-component DNA-based model, it has been observed that the chemical properties of the linker (e.g., its length, its composition, or its chemical nature) considerably affect the assembly properties of a three-component system (e.g., its stability, its level of cooperativity, or its dynamic range). Through an exhaustive thermodynamic study on various trimeric DNA-based assemblies, it was determined that the optimal linker stabilizes the association of all components by creating a more compact assembly where the linkers are buried within the core of the junction. It was also demonstrated that the optimization of the linkers allows to precisely program the dynamic range of the assembly. Finally, these discoveries on the advantages of a three-component assembly have enabled the creation of a new design strategy to optimize the dynamic range of molecular switches. In contrast to the classic allosteric activator which alters the affinity of a ligand (i.e., the KD) by changing the conformation of the switch, a multivalent activator enables to precisely program the dynamic range of a switch by exploiting a new interacting interface through the formation of a three-component assembly. This new strategy to optimize molecular switches was validated using a DNA-based molecular beacon. This proof of concept demonstrates the viability of molecular assemblies to design novel nanotechnologies with optimized dynamic range. It is possible to imagine that these molecular assemblies could have a direct impact on multiple fields of nanotechnology including medical diagnostics, controlled drug delivery and molecular imaging.
15

Étude de la pharmacologie de ligands du récepteur EP4 de prostaglandine E2

Leduc, Martin 11 1900 (has links)
La prostaglandine E2 est une hormone lipidique produite abondamment dans le corps, incluant dans le rein où elle agit localement pour réguler les fonctions rénales. Un couplage à la protéine Gαs menant à une production d’AMPc a classiquement été attribué au récepteur EP4 de PGE2. La signalisation d’EP4 s’est cependant avérée plus complexe et implique aussi un couplage aux protéines sensibles à la PTX Gαi et des effets reliés aux β-arrestines. Il y a maintenant plusieurs exemples de l’activation sélective de voies de signalisation indépendantes par des ligands des récepteurs couplés aux protéines G (RCPG), et ce concept désigné sélectivité fonctionnelle pourrait être exploité dans le développement de nouveaux médicaments plus spécifiques et efficaces. Dans une première étude, la puissance et l’activité intrinsèque d’une série de ligands d’EP4 pour l’activation de Gαs, Gαi et de la ß-arrestine ont été systématiquement déterminées relativement au ligand endogène PGE2. Dans ce but, trois essais de transfert d’énergie de résonance de bioluminescence (BRET) ont été adaptés pour évaluer les différentes voies dans des cellules vivantes. Nos résultats montrent une sélectivité fonctionnelle importante parmi les agonistes évalués et ont une implication pour l’utilisation d’analogues de la PGE2 dans un contexte expérimental et possiblement clinique, puisque leur spectre d’activité diffère de l’agoniste naturel. La méthodologie basée sur le BRET utilisée lors de cette première évaluation systématique d’une série d’agonistes d’EP4 devrait être applicable à l’étude d’autres RCPG. Dans une deuxième étude, des peptides reproduisant des régions juxtamembranaires extracellulaires du récepteur EP4 ont été conçus selon le raisonnement que des peptides ciblant des régions éloignées du site de liaison du ligand naturel ont le potentiel de ne moduler qu’une partie des activités du récepteur. L’insuffisance rénale aiguë est une complication médicale grave caractérisée par un déclin brusque et soutenu de la fonction rénale et pour laquelle il n’y a pas de traitement efficace à l’heure actuelle. Nos résultats montrent que le peptidomimétique dérivé d’EP4 optimisé (THG213.29) améliore significativement les fonctions rénales et les changements histologiques dans une insuffisance rénale aiguë induite par cisplatine ou par occlusion des artères rénales dans des rats Sprague-Dawley. Le THG213.29 ne compétitionnait pas la liaison de la PGE2 à EP4, mais modulait la cinétique de dissociation de la PGE2, suggérant une liaison à un site allostérique d’EP4. Le THG213.29 démontrait une sélectivité fonctionnelle, puisqu’il inhibait partiellement la production d’AMPc induite par EP4 mais n’affectait pas l’activation de Gαi ou le recrutement de la ß-arrestine. Nos résultats indiquent que le THG213.29 représente une nouvelle classe d’agent diurétique possédant les propriétés d’un modulateur allostérique non-compétitif des fonctions du récepteur EP4 pour l’amélioration des fonctions rénales suite à une insuffisance rénale aiguë. / Prostaglandin E2 (PGE2) is a lipid hormone mediator widely produced in the body, including in the kidney where it acts locally to regulate renal function. Classically, the PGE2 receptor EP4 has been classified as coupling to the Gαs subunit, leading to intracellular cAMP increases. However EP4 signaling has been revealed to be more complex and also involves coupling to PTX-sensitive Gαi proteins and ß-arrestin mediated effects. There are now many examples of selective activation of independent pathways by G-protein coupled receptor (GPCR) ligands, a concept referred to as functional selectivity that could be exploited for the development of more specific and efficacious drugs. In a first study, the potencies and efficacies of a panel of EP4 ligands were systematically determined for the activation of Gαs, Gαi and ß-arrestin relative to the endogenous ligand PGE2. For this purpose, three bioluminescence resonance energy transfer (BRET) assays were adapted to evaluate the respective pathways in living cells. Our results suggest considerable functional selectivity among the tested, structurally related agonists and have implications for the use of PGE2 analogues in experimental and possibly clinical settings, as their activity spectra on EP4 differ from that of the native agonist. The BRET-based methodology used for this first systematic assessment of a set of EP4 agonists should be applicable for the study of other GPCRs. In a second study, peptides were derived from extracellular juxtamembranous regions of the EP4 receptor following the rationale that peptides that target regions of the receptor remote of the ligand-binding site might modulate a subset of the EP4-mediated activities. Acute renal failure is a serious medical complication characterized by an abrupt and sustained decline in renal function and for which there is currently no effective treatment. Our results show that the optimized EP4-derived peptidomimetic THG213.29 significantly improved renal functions and histological changes in acute renal failure induced by either cisplatin or renal artery occlusion in Sprague-Dawley rats. THG213.29 did not displace PGE2 binding to EP4, but modulated PGE2 binding dissociation kinetics, indicative of an allosteric binding mode. THG213.29 exhibited functional selectivity, as it partially inhibited EP4-mediated cAMP production but did not affect Gαi activation or ß-arrestin recruitment. Our results demonstrate that THG213.29 represents a novel class of diuretic agent with noncompetitive allosteric modulator effects on EP4 receptor function for improving renal function following acute renal failure.
16

Étude de la pharmacologie de ligands du récepteur EP4 de prostaglandine E2

Leduc, Martin 11 1900 (has links)
La prostaglandine E2 est une hormone lipidique produite abondamment dans le corps, incluant dans le rein où elle agit localement pour réguler les fonctions rénales. Un couplage à la protéine Gαs menant à une production d’AMPc a classiquement été attribué au récepteur EP4 de PGE2. La signalisation d’EP4 s’est cependant avérée plus complexe et implique aussi un couplage aux protéines sensibles à la PTX Gαi et des effets reliés aux β-arrestines. Il y a maintenant plusieurs exemples de l’activation sélective de voies de signalisation indépendantes par des ligands des récepteurs couplés aux protéines G (RCPG), et ce concept désigné sélectivité fonctionnelle pourrait être exploité dans le développement de nouveaux médicaments plus spécifiques et efficaces. Dans une première étude, la puissance et l’activité intrinsèque d’une série de ligands d’EP4 pour l’activation de Gαs, Gαi et de la ß-arrestine ont été systématiquement déterminées relativement au ligand endogène PGE2. Dans ce but, trois essais de transfert d’énergie de résonance de bioluminescence (BRET) ont été adaptés pour évaluer les différentes voies dans des cellules vivantes. Nos résultats montrent une sélectivité fonctionnelle importante parmi les agonistes évalués et ont une implication pour l’utilisation d’analogues de la PGE2 dans un contexte expérimental et possiblement clinique, puisque leur spectre d’activité diffère de l’agoniste naturel. La méthodologie basée sur le BRET utilisée lors de cette première évaluation systématique d’une série d’agonistes d’EP4 devrait être applicable à l’étude d’autres RCPG. Dans une deuxième étude, des peptides reproduisant des régions juxtamembranaires extracellulaires du récepteur EP4 ont été conçus selon le raisonnement que des peptides ciblant des régions éloignées du site de liaison du ligand naturel ont le potentiel de ne moduler qu’une partie des activités du récepteur. L’insuffisance rénale aiguë est une complication médicale grave caractérisée par un déclin brusque et soutenu de la fonction rénale et pour laquelle il n’y a pas de traitement efficace à l’heure actuelle. Nos résultats montrent que le peptidomimétique dérivé d’EP4 optimisé (THG213.29) améliore significativement les fonctions rénales et les changements histologiques dans une insuffisance rénale aiguë induite par cisplatine ou par occlusion des artères rénales dans des rats Sprague-Dawley. Le THG213.29 ne compétitionnait pas la liaison de la PGE2 à EP4, mais modulait la cinétique de dissociation de la PGE2, suggérant une liaison à un site allostérique d’EP4. Le THG213.29 démontrait une sélectivité fonctionnelle, puisqu’il inhibait partiellement la production d’AMPc induite par EP4 mais n’affectait pas l’activation de Gαi ou le recrutement de la ß-arrestine. Nos résultats indiquent que le THG213.29 représente une nouvelle classe d’agent diurétique possédant les propriétés d’un modulateur allostérique non-compétitif des fonctions du récepteur EP4 pour l’amélioration des fonctions rénales suite à une insuffisance rénale aiguë. / Prostaglandin E2 (PGE2) is a lipid hormone mediator widely produced in the body, including in the kidney where it acts locally to regulate renal function. Classically, the PGE2 receptor EP4 has been classified as coupling to the Gαs subunit, leading to intracellular cAMP increases. However EP4 signaling has been revealed to be more complex and also involves coupling to PTX-sensitive Gαi proteins and ß-arrestin mediated effects. There are now many examples of selective activation of independent pathways by G-protein coupled receptor (GPCR) ligands, a concept referred to as functional selectivity that could be exploited for the development of more specific and efficacious drugs. In a first study, the potencies and efficacies of a panel of EP4 ligands were systematically determined for the activation of Gαs, Gαi and ß-arrestin relative to the endogenous ligand PGE2. For this purpose, three bioluminescence resonance energy transfer (BRET) assays were adapted to evaluate the respective pathways in living cells. Our results suggest considerable functional selectivity among the tested, structurally related agonists and have implications for the use of PGE2 analogues in experimental and possibly clinical settings, as their activity spectra on EP4 differ from that of the native agonist. The BRET-based methodology used for this first systematic assessment of a set of EP4 agonists should be applicable for the study of other GPCRs. In a second study, peptides were derived from extracellular juxtamembranous regions of the EP4 receptor following the rationale that peptides that target regions of the receptor remote of the ligand-binding site might modulate a subset of the EP4-mediated activities. Acute renal failure is a serious medical complication characterized by an abrupt and sustained decline in renal function and for which there is currently no effective treatment. Our results show that the optimized EP4-derived peptidomimetic THG213.29 significantly improved renal functions and histological changes in acute renal failure induced by either cisplatin or renal artery occlusion in Sprague-Dawley rats. THG213.29 did not displace PGE2 binding to EP4, but modulated PGE2 binding dissociation kinetics, indicative of an allosteric binding mode. THG213.29 exhibited functional selectivity, as it partially inhibited EP4-mediated cAMP production but did not affect Gαi activation or ß-arrestin recruitment. Our results demonstrate that THG213.29 represents a novel class of diuretic agent with noncompetitive allosteric modulator effects on EP4 receptor function for improving renal function following acute renal failure.

Page generated in 0.0576 seconds