• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 145
  • 92
  • 47
  • Tagged with
  • 274
  • 274
  • 168
  • 167
  • 124
  • 107
  • 81
  • 66
  • 62
  • 60
  • 59
  • 53
  • 53
  • 52
  • 49
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

MODÈLES DE SUBSTITUTION POUR L'OPTIMISATION GLOBALE DE FORME EN AÉRODYNAMIQUE ET MÉTHODE LOCALE SANS PARAMÉTRISATION

Bompard, Manuel 06 December 2011 (has links) (PDF)
L'optimisation aérodynamique de forme est un domaine de recherche très actif ces dernières années, en raison notamment de l'importance de ses applications industrielles. Avec le développement de la méthode adjointe, il est aujourd'hui possible de calculer rapidement, et indépendamment du nombre de paramètres de forme, le gradient des fonctions d'intérêt par rapport à ces paramètres. Cette étude concerne l'utilisation des dérivées ainsi obtenues pour perfectionner les algorithmes d'optimisation locale et globale. Dans une première partie, il s'agit d'utiliser ces gradients pour la construction de modèles de substitution, et de profiter de ces modèles pour réduire le coût des méthodes d'optimisation globale. Plusieurs types de modèles sont présentés et combinés à un algorithme de type " évolution différentielle " en utilisant la méthode EGO (Efficient Global Optimization). Cette procédure est appliquée à l'optimisation de fonctions mathématiques, puis à des cas test d'optimisation aérodynamique autour de profils d'aile. Les résultats sont concluants : l'utilisation d'un modèle de substitution permet de réduire sensiblement le nombre d'évaluations nécessaire du modèle physique, et la prise en compte des gradients accentue ce résultat. Dans la seconde partie de ce travail, la méthode adjointe est utilisée pour calculer le gradient des fonctions d'intérêt par rapport aux coordonnées des noeuds de la surface du profil. Un algorithme d'optimisation locale est alors appliqué en utilisant ces points comme paramètres de l'optimisation et le champ de gradient lissé comme direction de descente. Si l'étude est encore à approfondir, les résultats sont encourageants.
242

Quelques contributions à l'analyse numérique d'équations stochastiques

Kopec, Marie 25 June 2014 (has links) (PDF)
Ce travail présente quelques résultats concernant le comportement en temps fini et en temps long de méthodes numériques pour des équations stochastiques. On s'intéresse d'abord aux équations différentielles stochastiques de Langevin et de Langevin amorti. On montre un résultat concernant l'analyse d'erreur faible rétrograde de ses équations par des schémas numériques implicites. En particulier, on montre que l'erreur entre le générateur associé au schéma numérique et la solution d'une équation de Kolmogorov modifiée est d'ordre élevé par rapport au pas de discrétisation. On montre aussi que la dynamique associée au schéma numérique est exponentiellement mélangeante. Dans un deuxième temps, on étudie le comportement en temps long d'une discrétisation en temps et en espace d'une EDPS semi-linéaire avec un bruit blanc additif, qui possède une unique mesure invariante . On considère une discrétisation en temps par un schéma d'Euler et en espace par une méthode des éléments finis. On montre que la moyenne, par rapport aux lois invariantes (qui n'est pas forcément unique) associées à l'approximation, par des fonctions tests suffisamment régulières est proche de la quantité correspondante pour . Plus précisément, on étudie la vitesse de convergence par rapport aux différents paramètres de discrétisation. Enfin, on s'intéresse à une EDPS semi-linéaire avec un bruit blanc additif dont le terme non-linéaire est un polynôme. On étudie la convergence au sens faible d'une approximation en temps par un schéma de splitting implicite.
243

Résolutions rapides et fiables pour les solveurs d'algèbre linéaire numérique en calcul haute performance.

Baboulin, Marc 05 December 2012 (has links) (PDF)
Dans cette Habilitation à Diriger des Recherches (HDR), nous présentons notre recherche effectuée au cours de ces dernières années dans le domaine du calcul haute-performance. Notre travail a porté essentiellement sur les algorithmes parallèles pour les solveurs d'algèbre linéaire numérique et leur implémentation parallèle dans les bibliothèques logicielles du domaine public. Nous illustrons dans ce manuscrit comment ces calculs peuvent être accélérées en utilisant des algorithmes innovants et être rendus fiables en utilisant des quantités spécifiques de l'analyse d'erreur. Nous expliquons tout d'abord comment les solveurs d'algèbre linéaire numérique peuvent être conçus de façon à exploiter les capacités des calculateurs hétérogènes actuels comprenant des processeurs multicœurs et des GPUs. Nous considérons des algorithmes de factorisation dense pour lesquels nous décrivons la répartition des tâches entre les différentes unités de calcul et son influence en terme de coût des communications. Ces cal- culs peuvent être également rendus plus performants grâce à des algorithmes en précision mixte qui utilisent une précision moindre pour les tâches les plus coûteuses tout en calculant la solution en précision supérieure. Puis nous décrivons notre travail de recherche dans le développement de solveurs d'algèbre linéaire rapides qui utilisent des algorithmes randomisés. La randomisation représente une approche innovante pour accélérer les calculs d'algèbre linéaire et la classe d'algorithmes que nous proposons a l'avantage de réduire la volume de communications dans les factorisations en supprimant complètement la phase de pivotage dans les systèmes linéaires. Les logiciels correspondants on été développés pour architectures multicœurs éventuellement accélérées par des GPUs. Enfin nous proposons des outils qui nous permettent de garantir la qualité de la solution calculée pour les problèmes de moindres carrés sur-déterminés, incluant les moindres carrés totaux. Notre méthode repose sur la dérivation de formules exactes ou d'estimateurs pour le conditionnement de ces problèmes. Nous décrivons les algorithmes et les logiciels qui permettent de calculer ces quantités avec les bibliothèques logicielles parallèles standards. Des pistes de recherche pour les années à venir sont données dans un chapître de conclusion.
244

Sur le spectre de l'opérateur de Schrödinger magnétique dans un domaine diédral

Popoff, Nicolas 20 November 2012 (has links) (PDF)
Cette thèse analyse le spectre d'opérateurs de Schrödinger avec champ magnétique constant dans des ouverts de type diédraux. Pour comprendre l'influence d'une arête courbe sur la première valeur propre de l'opérateur dans la limite semi-classique, il faut connaître le bas du spectre de l'opérateur de Schrödinger magnétique avec champ constant sur un dièdre infini. Par transformation de Fourier ce problème se ramène à l'étude d'une famille d'opérateurs à paramètre sur un secteur infini. On calcule le spectre essentiel de ces opérateurs sur le secteur et on montre que dans certains cas il y a des valeurs propres discrètes sous le spectre essentiel. Par comparaison avec des opérateurs de Sturm-Liouville singuliers sur le demi-axe on obtient des majorations du bas du spectre de l'opérateur sur le dièdre : pour un angle d'ouverture assez petit et certaines orientations du champ magnétique, celui-ci est strictement inférieur aux quantités spectrales issues du cas régulier. Finalement on applique ces résultats à l'opérateur de Schrödinger avec champ magnétique constant et petit paramètre dans des domaines bornés de l'espace possédant des arêtes courbes. Pour déterminer une asymptotique de la première valeur propre dans la limite semi-classique, on construit des quasi-modes près de l'arête à l'aide des fonctions propres du problème à paramètre sur le secteur. En utilisant une partition du domaine selon que l'on soit près de l'arête ou du bord régulier, on obtient le premier terme de l'asymptotique pour diverses orientations du champ magnétique et on montre dans certains cas que la première valeur propre est inférieure aux valeurs propres associées à des ouverts réguliers.
245

Simulation massivement parallèle des écoulements turbulents à faible nombre de Mach

Malandain, Mathias 15 January 2013 (has links) (PDF)
L'objectif de cette thèse est l'accélération des solveurs utilisés pour la résolution de l'équation de Poisson pour la pression, dans le cas de la simulation d'écoulements à faible nombre de Mach sur des maillages non structurés. Cet objectif est complété par un besoin de stabilité, en particulier sur des géométries complexes. Plusieurs modifications de la méthode des Gradients Conjugués avec déflation ont été considérées à cet effet. Une méthode de redémarrage basée sur une estimation de l'effet des erreurs numériques a été mise en oeuvre et validée. Par la suite, une méthode consistant à calculer des solutions linéaires ou quadratiques par morceaux sur le maillage grossier s'est avérée instable dans le solveur non structuré YALES2. La nouvelle méthode alors développée consiste à transformer la méthode standard de déflation à deux niveaux de maillage en une méthode à trois niveaux. Cependant, le nombre élevé d'itérations sur le troisième niveau de maillage nouvellement créé ralentit le solveur, ce que nous avons rectifié grâce à deux méthodes développées particulièrement pour réduire le nombre d'itérations sur les niveaux grossiers. La première méthode est la création de solutions initiales grâce à une méthode de projection adaptée. La seconde consiste en une adaptation du critère de convergence sur les niveaux grossiers. Les résultats numériques sur des simulations massivement parallèles, avec le solveur à deux niveaux classique, montrent une réduction considérable du temps de calcul du solveur et une amélioration importante de sa scalabilité faible. L'application de ces techniques à la déflation à trois niveaux induit des gains supplémentaires en termes de temps de calcul. Outre le perfectionnement de ce solveur, des recherches supplémentaires doivent être conduites sur l'équilibrage dynamique de charges de calcul, qui pourrait devenir un développement-clé du solveur.
246

Etude d'estimations d'erreur a posteriori et d'adaptivité basée sur des critères d'arrêt et raffinement de maillages pour des problèmes d'écoulements multiphasiques et thermiques. Application aux procédés de récupération assistée d'huile

Yousef, Soleiman 10 December 2013 (has links) (PDF)
L'objectif de cette thèse est l'analyse d'erreur a posteriori et la proposition de stratégies d'adaptivité basées sur des critères d'arrêt et de raffinement local de maillage. Nous traitons une classe d'équations paraboliques dégénér ées multidimensionnelles modélisant des problèmes importants pour l'industrie. Au chapitre 1 nous considérons le problème de Stefan instationaire a deux phases qui modélise un processus de changement de phase régi par la loi de Fourier. Nous régularisons la relation entre l'enthalpie et la température et nous discrétisons le problème par la méthode d'Euler implicite en temps et un schéma numérique conforme en espace tel que les élément finis conformes, ou les volumes finis centrés aux sommets du maillage. Nous démontrons une borne supérieure de la norme duale du résidu, de l'erreur sur l'enthalpie dans L2(0; T;H-1) et de l'erreur sur la température dans L2(0; T;L2), par des estimateurs d'erreur entièrement calculables. Ces estimateurs comprennent : un estimateur associé à l'erreur de régularisation, un estimateur associé à l'erreur d'une méthode de linéarisation (par exemple, la méthode de Newton), un estimateur associé à l'erreur en temps et un estimateur associé à l'erreur du schéma en espace. Par conséquent, ces estimateurs permettent de formuler un algorithme adaptatif de résolution où les erreurs associées peuvent être équilibrées. Nous proposons également une stratégie de raffinement local de maillages. En fin, nous prouvons l'efficacité de nos estimations d'erreur a posteriori. Un test numérique illustre l'efficacité de nos estimateurs et la performance de l'algorithme adaptatif. En particulier, des indices d'efficacité proches de la valeur optimale de 1 sont obtenus. Au chapitre 2 nous développons des estimations d'erreur a posteriori pour l'écoulement de Darcy polyphasique et isothermique, décrit par un système couplé d'équations aux dérivées partielles non linéaires et d'équations algébriques non linéaires. Ce système est discrétisé en espace par une méthode de volume finis centrés par maille et la méthode d'Euler implicite en temps. Nous etablissons une borne supérieure d'une norme duale du résidu augmentée d'un terme qui tiens compte de la non-conformité des volumes finis par des estimateurs d'erreur a posteriori entièrement calculables. Dans ce chapitre, nous nous concentrons sur la formulation d'un critère d'arrêt de l'algorithme de linéarisation du problème discrète (tel que la méthode de Newton) avec un critère d'arrêt du solveur algébrique de résolution du système linéarité (par exemple la méthode GMRes), de sort que les contributions des estimateurs d'erreur correspondant n'affectent plus la somme globale des estimateurs d'erreur de manière significative. Nous appliquons notre analyse sur des exemples réalistes d'ingénierie de réservoir pour confirmer qu'en général notre ajustement des critères d'arrêt apporte une économie significative (jusqu'au un ordre de magnitude en termes du nombre total des itérations du solveur algébrique), déjà sur des maillages fixes, et ceci sans perte notable de précision. Au chapitre 3 nous complétons le modèle décrit au chapitre 2 en considérant une condition non-isothermique pour l'écoulement a fin de traiter le modèle général d'écoulement polyphasique thermique dans les milieux poreux. Pour ce problème, nous développons des estimateurs d'erreur analogues a ceux du chapitre 2 pour lesquels nous établissons une borne supérieure d'erreur entièrement calculable, pour une norme duale du résidu complétée par un terme d'évaluation de la non-conformité. Nous montrons ensuite comment estimer séparément chaque composante d'erreur, ce qui nous permet d'ajuster les critères d'arrêt et d'équilibrer les contributions des différents estimateurs d'erreur : erreur d'approximation en temps, erreur d'approximation en espace, erreur de linéarisation et erreur du solveur algébrique. Ce chapitre se termine par une application des estimateurs au modèle d'huile morte. La preuve de l'efficacité de notre estimation a postiriori est egalement fournie. Finalement, au chapitre 4 nous considérons les procédés de récupération assistée d'huile. Plus précisément, nous étudions une technique de récupération thermique d'huile de type huile morte par injection de vapeur destinée a augmenter la mobilité des hydrocarbures. Dans ce chapitre, nous appliquons l'analyse a posteriori des chapitres 2 et 3, nous proposons une formule de quadrature pour simplifier l'évaluation des estimateurs, nous proposons un algorithme adaptatif de raffinement de maillages en espace et en temps basé sur les estimateurs et nous illustrons pas des essais numériques sur des exemples réalistes la performance de cette stratégie de raffinement. Notamment, des gains significatifs sont réalisés en terme du nombre de mailles nécessaires pour la simulation sur des exemples en dimension trois.
247

Méthode de Galerkin Discontinue et intégrations explicites-implicites en temps basées sur un découplage des degrés de liberté. Applications au système des équations de Navier-Stokes.

Gérald, Sophie 26 November 2013 (has links) (PDF)
En mécanique des fluides numérique, un enjeu est le développement de méthodes d'approximation d'ordre élevé, comme celles de Galerkin Discontinues (GD). Si ces méthodes permettent d'envisager la simulation d'écoulements complexes en alternative aux méthodes usuelles d'ordre deux, elles souffrent cependant d'une forte restriction sur le pas de temps lorsqu'elles sont associées à une discrétisation explicite en temps. Ce travail de thèse consiste à mettre en œuvre une stratégie d'intégration temporelle explicite-implicite efficace, associée à une discrétisation spatiale GD d'ordre élevé, pour les écoulements instationnaires à convection dominante de fluides visqueux compressibles modélisés par le système des équations de Navier-Stokes. La discrétisation spatiale de la méthode GD est associée à des flux numériques de fluides parfaits et visqueux à stencil compact. En présence de frontières matérielles courbes, l'ordre élevé est garanti par la discrétisation du domaine de calcul à l'aide d'une représentation iso-paramétrique. La stratégie d'intégration temporelle repose sur une décomposition d'opérateurs de Strang, où les termes de convection sont résolus explicitement et ceux de diffusion implicitement. Son efficacité résulte d'une simplification du schéma implicite, où le calcul de la matrice implicite est approché avec une méthode sans jacobienne et où les degrés de liberté du schéma sont découplés. De fait, la taille du système linéaire à résoudre et le temps de calcul de la résolution sont significativement réduits. Enfin, la validation et l'évaluation des performances du schéma numérique sont réalisées à travers cinq cas tests bien référencés en deux dimensions d'espace.
248

Quelques modèles mathématiques en chimie quantique et propagation d'incertitudes

Ehrlacher, Virginie, Ehrlacher, Virginie 12 July 2012 (has links) (PDF)
Ce travail comporte deux volets. Le premier concerne l'étude de défauts locaux dans des matériaux cristallins. Le chapitre 1 donne un bref panorama des principaux modèles utilisés en chimie quantique pour le calcul de structures électroniques. Dans le chapitre 2, nous présentons un modèle variationnel exact qui permet de décrire les défauts locaux d'un cristal périodique dans le cadre de la théorie de Thomas-Fermi-von Weiszäcker. Celui-ci est justifié à l'aide d'arguments de limite thermodynamique. On montre en particulier que les défauts modélisés par cette théorie ne peuvent pas être chargés électriquement. Les chapitres 3 et 4 de cette thèse traitent du phénomène de pollution spectrale. En effet, lorsqu'un opérateur est discrétisé, il peut apparaître des valeurs propres parasites, qui n'appartiennent pas au spectre de l'opérateur initial. Dans le chapitre 3, nous montrons que des méthodes d'approximation de Galerkin via une discrétisation en éléments finis pour approcher le spectre d'opérateurs de Schrödinger périodiques perturbés sont sujettes au phénomène de pollution spectrale. Par ailleurs, les vecteurs propres associés aux valeurs propres parasites peuvent être interprétés comme des états de surface. Nous prouvons qu'il est possible d'éviter ce problème en utilisant des espaces d'éléments finis augmentés, construits à partir des fonctions de Wannier associées à l'opérateur de Schrödinger périodique non perturbé. On montre également que la méthode dite de supercellule, qui consiste à imposer des conditions limites périodiques sur un domaine de simulation contenant le défaut, ne produit pas de pollution spectrale. Dans le chapitre 4, nous établissons des estimations d'erreur a priori pour la méthode de supercellule. En particulier, nous montrons que l'erreur effectuée décroît exponentiellement vite en fonction de la taille de la supercellule considérée. Un deuxième volet concerne l'étude d'algorithmes gloutons pour résoudre des problèmes de propagation d'incertitudes en grande dimension. Le chapitre 5 de cette thèse présente une introduction aux méthodes numériques classiques utilisées dans le domaine de la propagation d'incertitudes, ainsi qu'aux algorithmes gloutons. Dans le chapitre 6, nous prouvons que ces algorithmes peuvent être appliqués à la minimisation de fonctionnelles d'énergie fortement convexes non linéaires et que leur vitesse de convergence est exponentielle en dimension finie. Nous illustrons ces résultats par la résolution de problèmes de l'obstacle avec incertitudes via une formulation pénalisée
249

Qualification des simulations numériques par adaptation anisotropique de maillages

Nguyen-Dinh, Maxime 19 March 2014 (has links) (PDF)
La simulation numérique est largement utilisée pour évaluer les performances aérodynamiques des aéronefs ainsi qu'en optimisation de forme. Ainsi l'objectif de ces simulations est souvent le calcul de fonctions aérodynamiques. L'objet de cette thèse est d'étudier des méthodes d'adaptation de maillages basées sur la dérivée totale de ces fonctions par rapport aux coordonnées du maillage (notée dJ/dX). Celle-ci pouvant être calculée par la méthode adjointe discrète. La première partie de cette étude concerne l'application de méthodes d'adaptation de maillages appliquées à des écoulements de fluides parfaits. Le senseur qui détecte les zones de maillage à raffiner s'appuie sur la norme de cette dérivée pour adapter des maillages pour le calcul d'une fonction J. La seconde partie du travail est la construction et l'étude de critères plus fiables basés sur dJ/dX pour d'une part adapter des maillages et d'autre part estimer si un maillage est bien adapté ou non pour le calcul de la fonction J. De plus une méthode de remaillage plus efficace basée sur une EDP elliptique est aussi présentée. Cette nouvelle méthode est appliquée pour des écoulements bidimensionnels de fluides parfaits ainsi que pour un écoulement décrit par les équations RANS. La dernière partie de l'étude est consacrée à l'application de la méthode proposée à des cas tridimensionnels d'écoulement RANS sur des géométries d'intérêt industriel.
250

Approximations polynomiales rigoureuses et applications

Joldes, Mioara Maria 26 September 2011 (has links) (PDF)
Quand on veut évaluer ou manipuler une fonction mathématique f, il est fréquent de la remplacer par une approximation polynomiale p. On le fait, par exemple, pour implanter des fonctions élémentaires en machine, pour la quadrature ou la résolution d'équations différentielles ordinaires (ODE). De nombreuses méthodes numériques existent pour l'ensemble de ces questions et nous nous proposons de les aborder dans le cadre du calcul rigoureux, au sein duquel on exige des garanties sur la précision des résultats, tant pour l'erreur de méthode que l'erreur d'arrondi.Une approximation polynomiale rigoureuse (RPA) pour une fonction f définie sur un intervalle [a,b], est un couple (P, Delta) formé par un polynôme P et un intervalle Delta, tel que f(x)-P(x) appartienne à Delta pour tout x dans [a,b].Dans ce travail, nous analysons et introduisons plusieurs procédés de calcul de RPAs dans le cas de fonctions univariées. Nous analysons et raffinons une approche existante à base de développements de Taylor.Puis nous les remplaçons par des approximants plus fins, tels que les polynômes minimax, les séries tronquées de Chebyshev ou les interpolants de Chebyshev.Nous présentons aussi plusieurs applications: une relative à l'implantation de fonctions standard dans une bibliothèque mathématique (libm), une portant sur le calcul de développements tronqués en séries de Chebyshev de solutions d'ODE linéaires à coefficients polynômiaux et, enfin, un processus automatique d'évaluation de fonction à précision garantie sur une puce reconfigurable.

Page generated in 0.0531 seconds