• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 5
  • 2
  • Tagged with
  • 29
  • 29
  • 13
  • 11
  • 9
  • 9
  • 8
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Analysis of the role of arginine methylation in the pathogenesis of Huntington’s disease

Migazzi, Alice 25 October 2019 (has links)
Huntington's disease (HD) is a fatal neurodegenerative disorder characterized by progressive loss of striatal and cortical neurons. HD is caused by an abnormal polyglutamine (polyQ) expansion in Huntingtin protein (HTT). HTT controls vesicular trafficking along axons in neurons through interaction with components of the molecular motor machinery. Arginine methylation is one of the most abundant post-translational modifications (PTMs) and is catalyzed by protein arginine methyltransferases (PRMTs). Recent evidence supports a key role for arginine methylation in neurodegeneration and particularly in polyglutamine diseases. However, whether HTT is methylated at arginine residues has not been investigated yet and the role of arginine methylation in HD pathogenesis remains to be fully elucidated. In this thesis, I show that vesicle-associated HTT is methylated in vivo at two evolutionarily conserved arginine residues, namely R101 and R118. Methylation of HTT at R118 is catalyzed by Protein Arginine Methyltransferase 6 (PRMT6), which localizes on vesicles together with HTT, whereas further analyses are required to identify the enzyme(s) responsible for R101 methylation. Interestingly, loss of PRMT6-mediated R118 methylation reduces the association of HTT with vesicles, impairs anterograde axonal transport and exacerbates polyQ-expanded HTT toxicity. Conversely, PRMT6 overexpression improves the global efficiency of anterograde axonal transport and rescues cell death in neurons expressing polyQ-expanded HTT. These findings establish a crucial role of arginine methylation as a modulator of both normal HTT function and polyQ-expanded HTT toxicity and identify PRMT6 as a novel modifier of HD pathogenesis. Importantly, defects in HTT methylation may contribute to neurodegeneration in HD and promoting arginine methylation of HTT might represent a new therapeutic strategy for HD.
12

Identification and Characterization of an Arginine-methylated Survival of Motor Neuron (SMN) Interactor in Spinal Muscular Atrophy (SMA)

Tadesse, Helina 19 December 2012 (has links)
Spinal Muscular Atrophy (SMA) is a neuronal degenerative disease caused by the mutation or loss of the Survival Motor Neuron (SMN) gene. The cause for the specific motor neuron susceptibility in SMA has not been identified. The high axonal transport/localization demand on motor neurons may be one potentially disrupted function, more specific to these cells. We therefore used a large-scale immunoprecipitation (IP) experiment, to identify potential interactors of SMN involved in neuronal transport and localization of mRNA targets. We identified KH-type splicing regulatory protein (KSRP), a multifunctional RNA-binding protein that has been implicated in transcriptional regulation, neuro-specific alternative splicing, and mRNA decay. KSRP is closely related to chick zipcode-binding protein 2 and rat MARTA1, proteins involved in neuronal transport/localization of beta-actin and microtubule-associated protein 2 mRNAs, respectively. We demonstrated that KSRP is arginine methylated, a novel SMN interactor (specifically with the SMN Tudor domain; and not with SMA causing mutants). We also found this protein to be misregulated in the absence of SMN, resulting in increased mRNA stability of KSRP mRNA target, p21cip/waf1. A role for SMN as an axonal chaperone of methylated RBPs could thus be key in SMA pathophysiology.
13

Identification and Characterization of an Arginine-methylated Survival of Motor Neuron (SMN) Interactor in Spinal Muscular Atrophy (SMA)

Tadesse, Helina 19 December 2012 (has links)
Spinal Muscular Atrophy (SMA) is a neuronal degenerative disease caused by the mutation or loss of the Survival Motor Neuron (SMN) gene. The cause for the specific motor neuron susceptibility in SMA has not been identified. The high axonal transport/localization demand on motor neurons may be one potentially disrupted function, more specific to these cells. We therefore used a large-scale immunoprecipitation (IP) experiment, to identify potential interactors of SMN involved in neuronal transport and localization of mRNA targets. We identified KH-type splicing regulatory protein (KSRP), a multifunctional RNA-binding protein that has been implicated in transcriptional regulation, neuro-specific alternative splicing, and mRNA decay. KSRP is closely related to chick zipcode-binding protein 2 and rat MARTA1, proteins involved in neuronal transport/localization of beta-actin and microtubule-associated protein 2 mRNAs, respectively. We demonstrated that KSRP is arginine methylated, a novel SMN interactor (specifically with the SMN Tudor domain; and not with SMA causing mutants). We also found this protein to be misregulated in the absence of SMN, resulting in increased mRNA stability of KSRP mRNA target, p21cip/waf1. A role for SMN as an axonal chaperone of methylated RBPs could thus be key in SMA pathophysiology.
14

Identification and Characterization of an Arginine-methylated Survival of Motor Neuron (SMN) Interactor in Spinal Muscular Atrophy (SMA)

Tadesse, Helina January 2012 (has links)
Spinal Muscular Atrophy (SMA) is a neuronal degenerative disease caused by the mutation or loss of the Survival Motor Neuron (SMN) gene. The cause for the specific motor neuron susceptibility in SMA has not been identified. The high axonal transport/localization demand on motor neurons may be one potentially disrupted function, more specific to these cells. We therefore used a large-scale immunoprecipitation (IP) experiment, to identify potential interactors of SMN involved in neuronal transport and localization of mRNA targets. We identified KH-type splicing regulatory protein (KSRP), a multifunctional RNA-binding protein that has been implicated in transcriptional regulation, neuro-specific alternative splicing, and mRNA decay. KSRP is closely related to chick zipcode-binding protein 2 and rat MARTA1, proteins involved in neuronal transport/localization of beta-actin and microtubule-associated protein 2 mRNAs, respectively. We demonstrated that KSRP is arginine methylated, a novel SMN interactor (specifically with the SMN Tudor domain; and not with SMA causing mutants). We also found this protein to be misregulated in the absence of SMN, resulting in increased mRNA stability of KSRP mRNA target, p21cip/waf1. A role for SMN as an axonal chaperone of methylated RBPs could thus be key in SMA pathophysiology.
15

Étude structurale des protéine arginine méthyltransférases : reconnaissance des substrats et conception rationnelle de modulateurs / Structural study of protein arginine methyltransferases : substrate recognition and structure-based design of modulators

Marechal, Nils 14 September 2018 (has links)
Les protéine arginine méthyltransférases (PRMT) sont impliquées dans de nombreux processus cellulaires, incluant la régulation de l’expression des gènes, le contrôle de l’épissage, le maintien de l’intégrité du génome et la transduction du signal. De nombreuses études montrent que la dérégulation de l’activité des PRMT est associée au développement de pathologies, et en particulier de cancers. Les PRMT constituent ainsi une des nouvelles cibles potentielles en chimiothérapie. Les travaux présentés dans ce manuscrit portent sur trois cibles : PRMT2, PRMT3 et PRMT4/CARM1. Combinant des approches biochimiques, biophysiques et structurales (cristallographie et cryo- microscopie électronique), ces travaux comportent deux aspects : (I) comprendre au niveau atomique la régulation de la réaction de méthylation des protéines (reconnaissance protéines-protéines et interactions entre modifications post-traductionnelles) ; (II) découvrir des inhibiteurs spécifiques et puissants de plusieurs PRMT cibles. / Protein arginine methyltransferases (PRMT) are involved in many cellular processes, including gene expression regulation, splicing control, maintenance of genome integrity and signal transduction.Since deregulation of those biological processes appears to be implicated in the pathogenesis of different diseases, PRMTs have emerged as potential new targets for the development of novel therapeutic modulators. Despite the large amount of biological and structural data on PRMTs, two challenges remain to be solved by structural biology ; (I) understanding how PRMTs recognize and bind their full-length substrates ; (II) revealing how PRMTs achieve specific arginine methylation on different target sites. The works presented here focused on 3 targets: PRMT2, PRMT3 and PRMT4/ CARM1. We used biochemical, biophysical and structural methods (bio-crystallography and cryo- electron microscopy) to decipher structural clues that drive PRMT-substrate recognition. We developed new chemical probes that can be used in early drug discovery for the conception of PRMT inhibitors.
16

Arginine methylation by PRMT1 and PRMT5 regulates B cell activation, germinal center expansion and differentiation into plasma cells

Litzler, Ludivine 05 1900 (has links)
No description available.
17

Analise das proteinas Ki-1/57 e PRMT1 : identificação, mapeamento e caracterização funcional da interação com outras proteinas / Analysis of the proteins Ki-1/57 and PRMT1: identification, mapping and characterization of the interaction with other proteins

Passos, Dario Oliveira dos 31 August 2006 (has links)
Orientador: Jorg Kobarg / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-07T08:03:42Z (GMT). No. of bitstreams: 1 Passos_DarioOliveirados_D.pdf: 4831709 bytes, checksum: 0aa3e031d4e82dc447636416b68401e8 (MD5) Previous issue date: 2006 / Resumo: A proteína Ki-1/57 que é encontrada tanto no núcleo quanto no citoplasma está associada com atividade de proteína quinase serina/treonina e é fosforilada nestes resíduos após ativação celular. Neste trabalho verificamos que Ki-1/57 interage com a proteína Chromatin-Helicase-DNA-binding domain 3 (CHD3) e com a proteína adaptadora/sinalizadora RACK1 no núcleo. Pelo sistema do duplo híbrido de levedura (SDHL) a proteína arginina metiltransferase 1 (PRMT1) foi selecionada como outra proteína de interação. A PRMT1 integra uma família representada por nove enzimas humanas que catalisam reações de metilação em resíduos de arginina. Em seguida, usando agora a PRMT1 como isca - no SDHL - identificamos as proteínas Ki-1/57 e hnRNPQ, juntamente com outras 13. A maioria delas contêm motivos ¿RGG-box¿ em suas seqüências de aminoácidos, que são conhecidos alvos para metilação. Posteriormente verificamos que Ki-1/57 e seu provável parálogo CGI-55 conservam dois motivos ¿RGG/RXR-box¿ e que são substratos in vitro para a metilação de argininas pela PRMT1. Estudos de mapeamento mostraram que todos os fragmentos contendo o motivo ¿RGG/RXR-box¿ interagem com a PRMT1 e são alvos à metilação in vitro. Ki-1/57 endógena, imunoprecipitada de células L540, mostrou ser metilada in vivo, além de ser um alvo a metilação pela PRMT1 in vitro, somente quando as células são previamente tratadas com o inibidor da metilação Adox. Tratamento das células Hela com o inibidor da metilação (Adox) causa desaparecimento da imuno-marcação citoplasmática de Ki-1/57 e relativa redistribuição do parálogo CGI-55 para o citosol. Assim, pode ser especulado que a metilação destas proteínas deve ser um evento importante para suas localizações subcelulares e conseqüentemente para suas funções. Em resumo, nossos dados sugerem que o SDHL é um método efetivo na identificação de novos substratos celulares para a PRMT1 e poderia ser estendido para a identificação e caracterização de novos substratos para os outros integrantes da família das PRMTs humanas / Abstract: The protein Ki-1/57 that is found both in the cytoplasm and nucleus is associated with serine/threonine protein kinase activity and gets phosphorylated on serine and threonine residues upon cellular activation. We demonstrated that Ki-1/57 interacts with the Chromatin-Helicase-DNA-binding domain protein 3 (CHD3) and with the adaptor/signaling protein RACK1 in the nucleus. By utilizing the yeast two-hybrid system (YTHS), we were further able to find the protein arginine-methylatranseferase-1 (PRMT1) as another interacting protein. PRMT1 is a member of the family constituted by 9 human enzymes that catalyze methylation reactions on arginine residues. Afterwards, by using PRMT1 as bait in the YTHS we identified both Ki-1/57 and NSAP1 as interacting proteins, along with 13 other proteins. The majority of them present RGG-box clusters in their amino acid sequences, which are known to be targets for arginine methylation. We further found that Ki-1/57 and its putative paralogue CGI-55 have two RGG/RXR-box clusters conserved between them and that they are substrates for arginine-methylation by PRMT1 in vitro. In mapping studies, we observed that all Ki-1/57 protein fragments containing the RGG/RXRbox clusters interact with PRMT1 and are targets for methylation in vitro. Endogenous cellular Ki-1/57 seems to be methylated in vivo and is a target for methylation by PRMT1 in vitro, only when cells have been previously treated with the methylation inhibitor Adox. Treatment of Hela cells with the inhibitor of methylation (Adox) causes the disappearance of the immuno-staining of Ki-1/57 in the cytoplasm and a relative redistribution of the paralogue CGI-55 to the cytosol. It can therefore be speculated that the methylation of these proteins is important for their sub-cellular localization and in consequence for their function. In summary our data suggest that the YTHS is an effective method for the identification of novel cellular PRMT substrates and could be extended for the identification and characterization of novel substrates to the other components of the human PRMT1 family / Doutorado / Bioquimica / Doutor em Biologia Funcional e Molecular
18

Ki-1/57 e uma proteina intrinsecamente desordenada envolvida em mecanismos de regulação genica / Ki-1/57 is an intrinsically disordered protein involved in mechanisms of gene regulation

Bressan, Gustavo Costa 08 April 2009 (has links)
Orientador: Jorg Kobarg / Tese (doutorado) - Universidade Estadual de Campinas, Instituto e Biologia / Made available in DSpace on 2018-08-14T00:02:08Z (GMT). No. of bitstreams: 1 Bressan_GustavoCosta_D.pdf: 16510013 bytes, checksum: 30f3887b16b18caf89b81d091caca8d7 (MD5) Previous issue date: 2009 / Resumo: A proteína Ki-1/57 foi descoberta através da reação cruzada do anticorpo monoclonal Ki-1 em células do linfoma de Hodgkin. Foi demonstrado previamente que Ki-1/57 sofre fosforilação por PKCs e metilação por PRMT1, uma arginino metiltransferase que modula diversas proteínas ligadoras a RNA. Nesse trabalho, é mostrada a interação de Ki-1/57 com sondas de RNA e com proteínas envolvidas no controle de splicing de pré-mRNA. O seu envolvimento no controle de splicing foi confirmado em ensaios de cotransfecção em células de mamíferos. Análises de microscopia de confocal mostraram a localização da construção EGFP-Ki-1/57 em diferentes corpúsculos nucleares de forma dependente da metilação celular. Essas regiões compreendem nucléolos, speckles, corpos de Cajal e GEMS, conhecidamente envolvidas na biogênese, maturação ou armazenamento de complexos de processamento de RNA/pré-RNA no núcleo. Análises a partir de construções truncadas sugeriram o N-terminal de Ki-1/57 como importante para a interação com proteínas reguladoras de splicing e localização nos corpúsculos nucleares, enquanto o C-terminal como necessário e suficiente para a ligação a RNA poliuridina e localização citoplasmática. Por outro lado, essas duas regiões pareceram atuar em conjunto no processamento do gene E1A. Similarmente a hnRNPQ, Ki-1/57 e outras proteínas funcionalmente relacionadas, SFRS9 é mostrada como alvo de metilação por PRMT1. A inibição da metilação resultou em um aumento do número de células apresentando localização da construção EGFP-SFRS9 no interior de nucléolos, mostrando a importância dessa modificação para a localização subnuclear de SFRS9. As características estruturais de Ki-1/57 também foram investigadas através de diferentes abordagens. Análises por SAXS, gel filtração analítica e ultracentrifugação analítica indicaram uma estrutura bastante alongada e flexível para a construção C-terminal 6xhis-(122-413)Ki-1/57. Ensaios de proteólise limitada também sugeriram uma baixa composição de núcleos hidrofóbicos estáveis e compactos. A capacidade de Ki-1/57 em sofrer enovelamento induzido após a interação com ligantes também foi monitorada em experimentos de dicroísmo circular. Embora não tenha sido observada nenhuma alteração estrutural após a incubação de 6xhis-(122-413)Ki-1/57 com o RNA poliuridina, a adição de TFE foi capaz de promover pequenos ganhos de elementos de estrutura secundária regular. Esses dados, juntamente com predições computacionais, sugerem que Ki-1/57 é uma nova proteína intrinsecamente desordenada, o que pode explicar o elevado número de diferentes proteínas parceiras que ela é capaz de interagir. / Abstract: The Ki-1/57 protein has been discovered through the cross reactivity of the monoclonal antibody Ki-1 in Hodgkin lymphoma cells. Previously, it was demonstrated that Ki-1/57 undergoes phosphorylation by PKCs and methylation by PRMT1, an arginine methyltransferase that modulates many RNA binding proteins. Here, the interaction of Ki-1/57 with RNA polyuridine and proteins involved in pre-mRNA splicing control are shown. Its involvement in splicing regulation was confirmed by cotransfection assays in mammalian cells. Confocal microscopy analyses revealed the localization of EGFP-Ki-1/57 at different nuclear bodies, depending on the cellular methylation status. These regions include nucleoli, speckles, Cajal bodies and GEMS, which are all known to be involved in biogenesis, maturation or storing of RNA/pre-mRNA processing complexes in the nucleus. Analysis from experiments with truncated forms of Ki-1/57 suggested its N-terminus as important for its interaction with splicing proteins and localization at nuclear bodies. In turn, its C-terminus was seen as necessary and sufficient for the cytoplasmic localization and polyuridine RNA binding. However, these two regions seemed to be required working together for an efficient splicing activity on E1A gene. Similarly to hnRNPQ, Ki-1/57 and others functionally related proteins, SFRS9 is shown here as a target for methylation by PRMT1. The inhibition of this activity resulted in increase in the number of cells showing EGFP-SFRS9 in the nucleoli, suggesting the importance of methylation for the subnuclear localization of SFRS9. The structural characteristics of Ki-1/57 also have been investigated through different approaches. Analyses by SAXS, analytical gel filtration and analytical ultracentrifugation techniques suggested a very elongated and flexible structure for the C-terminal construct (122-413)Ki-1/57. Also, limited proteolysis analysis suggested a low composition of stable and compact hydrophobic cores. The ability of Ki-1/57 in suffering binding-induced folding was also investigated. Although no structural modification has been observed after incubating (122-413)Ki-1/57 with a polyuridine RNA, the addition of the TFE probe was able to promote a small gain of regular secondary structural elements. These findings, together with different computational predictions, pointed out that Ki-1/57 is a novel intrinsically unstructured protein. This could explain the wide array of protein partners with which it is able to interact. / Doutorado / Bioquimica / Doutor em Biologia Funcional e Molecular
19

Crosstalk entre la kinase LKB1 et l'arginine methyltransferase PRMT5 dans le cancer du sein / Crosstalk between the kinase LKB1 and the arginine methyltransferase PRMT5 in breast cancer

Lattouf, Hanine 24 November 2017 (has links)
La protéine arginine méthyltransférase 5 est la majeure arginine méthyltransférase de type II chez les mammifères, responsable de la génération de la majorité des arginines protéiques symétriquement diméthylées. Elle est impliquée dans divers processus oncogéniques tel que la progression tumorale et la croissance indépendante de l'ancrage. PRMT5 est surexprimée dans plusieurs cancers comme le cancer de l'ovaire, des poumons et du colon. Cependant, son expression dans le cancer du sein n'est pas assez étudiée. Dans ce projet de thèse, nous avons analysé l'expression de PRMT5 dans une cohorte de 440 tumeurs mammaires. Nos résultats montrent que son expression nucléaire est un facteur de bon pronostic, notamment dans les tumeurs ERa-positives. Nous avons aussi mis en évidence une corrélation entre PRMT5 et la sérine/thréonine kinase LKB1, suggérant un lien entre ces deux protéines. Plusieurs approches in vitro et in cellulo nous ont permis de démontrer que PRMT5 et LKB1 interagissent dans le cytoplasme des cellules mammaires épithéliales. Bien que PRMT5 soit incapable de méthyler LKB1, nous avons montré pour la première fois que PRMT5 est un substrat de cette kinase. Nous avons par la suite identifié les Thr132, 139 et 144 comme cibles de la phosphorylation, au niveau du tonneau TIM en N-terminal de PRMT5. La mutation des thréonines T139/144 en alanine diminue significativement l'activité de PRMT5, probablement suite à une perte de son interaction avec des protéines régulatrices comme MEP50, pICLn et RiOK1. De plus, la modulation de l'expression de LKB1 altère l'activité de PRMT5, témoignant d'un nouveau mécanisme de régulation médié par la phosphorylation identifiée / Protein arginine methyltrasferase 5 is the major type II arginine methyltransferase in humans. It symmetrically dimethylates arginine residues on target proteins in both the cytoplasm and the nucleus. PRMT5 was reported to be an oncoprotein implicated in anchorage independent growth and tumor progression. So far, it has been involved in various cancers such as ovarian cancer, lung cancer and colon cancer, but its expression pattern in breast cancer has not been deeply studied. In this thesis project, we analyzed PRMT5 expression in a cohort of 440 breast tumor samples and we found that its nuclear expression is a good prognosis factor, mainly in ERa-positive tumors. Interestingly, our clinical results analysis showed that PRMT5 expression is correlated with the serine/threonine kinase LKB1, suggesting a relationship between both proteins. Several in vitro and in cellulo approaches gave evidence that PRMT5 and LKB1 interact directly in the cytoplasm of mammary epithelial cells. Moreover, although PRMT5 is not able to methylate LKB1, we found that PRMT5 is a bona fade substrate for LKB1. We next identified Thr132, 139 and 144 residues as target sites for phosphorylation, located in the TIM barrel domain of PRMT5. Interestingly, the Thr139/144 mutation to alanine decreased drastically PRMT5 methyltransferase activity, probably due to the loss of PRMT5 interaction with regulatory proteins such as MEP50, pICLn and RiOK1. In addition, the modulation of LKB1 expression modifies PRMT5 enzymatic activity, highlighting a new regulatory mechanism mediated by the discovered posttranslational modification of this arginine methyltransferase
20

Étude de la régulation de la méthylation du récepteur aux œstrogènes de type alpha dans la carcinogenèse mammaire : rôle de la protéine kinase LKB1 / Regulation of estrogen receptor alpha methylation in breast carcinogenesis : involvment of the protein kinase LKB1

Bouchekioua-Bouzaghou, Katia 05 July 2012 (has links)
Parallèlement à leur action nucléaire, les œstrogènes exercent également des effets via une signalisation cytoplasmique par des mécanismes pas complètement élucidés. Nous avons mis en évidence la méthylation de ERα (mERα) sur arginine est l’évènement clé de la signalisation non génomique des œstrogènes dans les cellules tumorales mammaires. Cette méthylation entraîne la formation d’un complexe contenant ERα/SRc/PI3K/FAK qui active des cascades de phosphorylation régulant la prolifération cellulaire. La production d’un anticorps spécifique de la forme méthylée a permis de montrer que ERα est hyperméthylé dans 55% des tumeurs mammaires. Afin de comprendre les mécanismes de régulation de la méthylation, nous avons recherché de nouveaux partenaires impliqués dans ce processus. Au cours de ma thèse, j’ai montré que la protéine kinase LKB1 est impliquée dans la signalisation non génomique des œstrogènes. Dans les cellules MCF-7, les œstrogènes entraînent rapidement le recrutement de LKB1 au sein du complexe précédemment décrit. De plus, LKB1 est indispensable à la formation de ce macro complexe ainsi qu’à la phosphorylation de Bad en aval. En effet, par cette action, LKB1 participe au rôle protecteur des œstrogènes contre l’apoptose orchestré par les œstrogènes. De plus, une étude de l’expression de mERα et LKB1, sur une série de tumeurs mammaires, a montré une corrélation significative entre l’expression de ces deux protéines associée à l’envahissement ganglionnaire. Ces résultats révèlent une signification biologique de l’interaction LKB1/mERα, suggérant un rôle oncogénique putatif de LKB1 / Besides its nuclear action, estrogens mediate also cytoplasmic signaling, however the mechanisms are not fully understood. We recently showed that arginine methylation of estrogen receptor alpha (Erα) is required for the recruitment of PI3K and Src, activating downstream kinases. An antibody that specifically recognized Erα dimethylated was generated allowing the detection of Erα hypermethylation in 55% of breast tumors. To decipher the molecular mechanisms that regulate Erα methylation in non genomic pathways, we investigated new partners of the methylated form of Erα (mERα). We identified the tumor suppressor LKB1, a Ser/Thr kinase involved in cell metabolism and cell polarity as a new partner of mERα. To ascribe a biological role to this interaction, we analyzed the protein complexes containing mErα and LKB1. LKB1 is part of the complexe involved in Erα non genomic pathway. LKB1 is essential for Erα methylation and the formation of the macrocomplex Erα/p85/Src suggesting a functional role of LKB1 in Erα methylation and then activation of downstream signaling pathways. Using a phosphospecific antibody microarray, we observed that LKB1 was required for Bad phosphorylation, suggesting its involvement in apoptosis. Indeed, we found that LKB1 participes in the protective role of estrogen against apoptosis. Interestingly, an IHC study on human breast tumors points a correlation between the expression of LKB1 and mErα : their expression is correlated with lymph node metastasis. Altogether, these results reveal biological significance of mErα/LKB1 interaction, suggesting a putative oncogenic role to LKB1

Page generated in 0.1254 seconds