• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 5
  • 2
  • Tagged with
  • 29
  • 29
  • 13
  • 11
  • 9
  • 9
  • 8
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Étude de la régulation de la méthylation du récepteur aux œstrogènes de type alpha dans le cancer du sein / Regulation of estrogen receptor alpha methylation in breast cancer

Poulard, Coralie 27 September 2013 (has links)
Le cancer du sein représente une cause de mortalité élevée chez la femme. Le cancer du sein est un cancer hormono-dépendant. De ce fait, il est extrêmement important de définir le rôle joué par les différents acteurs protéiques de la signalisation hormonale, notamment la signalisation œstrogénique. Parallèlement aux effets nucléaires de ERa où l'hormone lie le récepteur nucléaire et régule la transcription génique, il existe une voie dite non génomique. L'équipe a montré que les œstrogènes induisent la méthylation de ERa, qui est un prérequis au recrutement de la Pl3K et de la tyrosine kinase Src, conduisant à l'activation de molécules de signalisation telles que les MAPK et Akt, induisant prolifération et survie cellulaire. Durant ma thèse, j'ai pu démontrer que le complexe mERa/Src/Pl3K existe in vivo et constitue un nouveau biomarqueur indépendant de mauvais pronostique. La recherche de nouveaux partenaires du complexe mERa/Src/Pl3K nous a permis d'identifier le suppresseur de tumeur LKB1 et l'arginine déméthylase JMJD6. De façon surprenante, l'étude de l'expression de LKB1 par immunohistochimie dans une cohorte de tumeurs mammaires a montré une dualité fonctionnelle selon sa localisation subcellulaire. De plus, nous avons démontré que JMJD6 s'associe à ERa méthylé lorsque le récepteur est complexé à Src et Pl3K, et permet ainsi la déméthylation de ERa et la dissociation du complexe mERa/Src/Pl3K. Ce travail a ainsi pu mettre en évidence que les différents acteurs de cette signalisation peuvent constituer des éléments clés au diagnostique mais également lors de la décision thérapeutique, puisque qu'il existe des drogues peuvant cibler cette voie de signalisation / Estrogen receptor a {ERa}, belonging to the superfamily of hormone nuclear receptors, regulates many physiological processes, notably the growth and survival of breast tumor cells, acting as a ligand-dependent transcription factor. Besides to the well described transcriptional effects, estrogen also mediate extranuclear events called non genomic signaling via its receptor. /n fact, team shows that ERa is methylated and that this event is a prerequisite for the recrutement of Src and P/3K and the activation of Akt which orchestrate cell proliferation and survival. During my PhD, / demonstrated that the non genomic signaling complex mERa/Src/P/3K exists in vivo and is operative. /n addition, the complex is found to be an independent prognostic factor for disease free survival. This is an emergent concept that estrogen non genomic pathway is operative in vivo and can constitute a new therapeutic targets. The search for new partners of the complex has allowed us to identify the tumor suppressor LKB1 and arginine demethylase JMJD6. Expression of LKB1 in immunohistochemistry revealed dual properties based on its subcellular localization. When LKB1 is complexed with mERa/Src/P/3K it may acquire oncogenic properties. /n addition, JMJD6 interacts with methylated ERa when the receptor is associated with Src and P/3K, and allows the demethylation of ERa and the dissociation of the complex mERa/Src/P/3K. This work showed that estrogenic non genomic players can constitute new therapeutic targets in Breast tumors
22

PRMT1, un nouveau corégulateur de la signalisation de la progestérone dans le cancer du sein / PRMT1, un nouveau corégulateur de la signalisation de la progestérone dans le cancer du sein

Malbéteau, Lucie 11 October 2019 (has links)
La progression du cancer du sein repose principalement sur la signalisation des œstrogènes et de la progestérone, et les traitements modulant l’action des œstrogènes ont amélioré la survie des patientes atteintes d’un cancer à récepteurs œstrogéniques (ERα). Des études récentes convergent sur le concept selon lequel, dans les cancers du sein ER+, PR (Progesterone Receptor) peut inhiber les fonctions favorisant la croissance induite par l'œstrogène en reprogrammant directement la liaison d'ERα sur de nouveaux gènes cibles. Les données cliniques montrent que cette signature génique est associée à un bon pronostic dans une cohorte de 1.959 patientes atteintes de cancer du sein et qu’un agoniste de la progestérone améliore l'activité antiproliférative des thérapies anti-oestrogéniques1. Ainsi, ces données démontrent qu’ER n’est pas le seul acteur de la tumorigénèse mammaire et qu'il existe une interférence fonctionnelle entre ces deux voies hormonales, soulignant le besoin d’une meilleure compréhension de la signalisation de PR. D’un point de vue mécanistique, l’activité de PR est étroitement liée à l’interaction avec les nucléosomes. En effet, PR fonctionne comme un facteur « pionnier » et se lie à la chromatine au sein de complexes protéiques, régulant son activité transcriptionnelle. Sans progestérone, PR forme un complexe répressif associé à des enzymes modificatrices de la chromatine comme LSD1, HDAC1/2 et la protéine de l'hétérochromatine HP1γ2. En réponse au traitement hormonal, ce complexe est déplacé, ce qui permet de recruter des coactivateurs et des cofacteurs associés, qui modifient la structure de la chromatine locale et entraînent l'activation ou la répression des gènes cibles de PR. Nous avons identifié un nouveau régulateur de la signalisation de la progestérone, l'arginine méthyltransférase PRMT1, enzyme souvent surexprimée dans les cancers mammaires3,4. Par diverses approches in vitro et in vivo, nous avons montré une interaction directe entre PR et PRMT1, dans le noyau des cellules tumorales mammaires, et à la fois en absence d’hormone et après 1h de stimulation à la progestérone. De plus, PRMT1 apparaît comme un nouveau membre du complexe répressif sur la chromatine, associé à PR et à ses partenaires, dans un sous-ensemble de gènes inductibles par la progestérone. Nos résultats indiquent également que l’expression de PRMT1 affecte l’activité transcriptionnelle de PR et que son inhibition perturbe l’activation rapide de la voie de la protéine kinase après une stimulation progestative. Nous montrons pour la première fois que PR est méthylé sur un résidu arginine, conservé parmi les récepteurs nucléaires (R637), localisé dans son domaine de liaison à l'ADN. La production d’un anticorps dirigé contre la forme méthylée de PR nous a permis de préciser qu’elle se localisait dans le noyau des cellules et n’était retrouvée qu’après traitement progestatif. En outre, la mutation de R637 de PR entraine une diminution de l’expression d'un sous-ensemble de cibles de PR, ce qui entraine un retard de croissance cellulaire. En conclusion, ces résultats confirment l'implication de PRMT1 et de son activité méthyltransférase dans la signalisation de PR et plus particulièrement dans son activité transcriptionnelle. Nous démontrons donc que la méthylation sur résidus d'arginine est un nouveau mécanisme de contrôle lors de la réponse à la progestérone dans les cellules tumorales mammaires / Breast cancer progression is mainly driven by estrogen and progesterone signalling and therapies modulating oestrogen‘s action have improved the survival of ER+ cancer patients. As progesterone receptor (PR) is an ER target gene, its expression in breast cancer was considered as a predictive marker of ER functionality. However, recent studies are converging on the concept that PR can directly affect ER functions in breast cancer cells1. Activated PR can redirect ER to novel chromatin binding sites associated with cell differentiation and apoptosis, leading to a potential improvement of the tumour response to anti-oestrogen therapies. In considering the differential effects of progesterone in breast cancer, it is important to define the variable might influence progesterone pathway and the downstream mediators involved in this signalling. Recently, Beato and al reported that, in breast cancer cells, the unliganded form of PR (non-activated with progesterone) bind to genomic sites and target a repressive complex containing enzyme modifying chromatin as the demethylase LSD1 or the Heterochromatin Protein 1 (HP1γ)2. Under hormonal treatment, this complex is displaced, which makes it possible to recruit coactivators and associated cofactors, which modify the structure of the local chromatin and cause the activation or repression of the target genes of PR. In addition, cellular response to progesterone is also regulated by receptor post-translational modifications that may affect its stability, its subcellular localization and its interactions with regulators. In our study, we demonstrated for the first time that PR is methylated on arginine residues, by the arginine methyltransferase PRMT1. We identified as target the arginine 637 (R637), a conserved arginine among nuclear receptor superfamily, located in the DNA-binding domain of the receptor. By in vitro and in vivo approaches, we are studying the impact of PRMT1 on PR signalling pathways. In T47D breast cancer cells, we demonstrated that PR interacts with PRMT1, mainly in the nucleus. Of interest, PRMT1 interacts with PR in the nucleus in absence of hormone stimulation and it appears as a new member of the repressive complex on a subset of progesterone inducible genes. Our results also indicate that PRMT1 expression affects PR transcriptional activity and PRMT1 knockdown disrupts the rapid activation of protein kinase pathway after progestin stimulation. The production of an antibody directed against the methylated form of PR allowed us to specify that methylated-PR is localized in the nucleus of cells and was found only after progesterone treatment. Furthermore, PRMT1 depletion and mutation of R637 resulted in an inhibition of a subset of PR-regulated genes which led to retarded cell growth.Our data reveal the impact of PRMT1 expression on PR pathways and provide evidence for the asymmetric arginine dimethylation of PR. We therefore demonstrate that methylation on arginine residues could be a novel control mechanism in the response to progesterone in mammary tumor cells
23

Post-translational Modifications Of C/EBP Alpha p30 Regulate Its Functions In Leukemogenesis and Differentiation

Nguyễn, Thùy Linh 24 November 2022 (has links)
Die myeloische Entwicklung wird durch die Familie der Transkriptionsfaktoren CCAAT/Enhancer-Binding-Protein (C/EBP) reguliert. Eine aberrante Expression oder Funktion von C/EBPs stört die normale myeloische Differenzierung und wird bei vielen Arten hämatopoetischer Malignome beobachtet. Mutationen von CEBPA führen zu einem veränderten Expressionsanteil der verkürzten Isoform C/EBPa p30 und werden bei etwa 15% der AML-Patienten (akute myeloische Leukämie) nachgewiesen. Obwohl die verkürzte Isoform C/EBPα p30 als Onkogen identifiziert wurde da sie die Proliferation myeloischer Vorläufer fördert, behält sie dennoch eine Differenzierungsfunktion. Unser Interesse gilt der Frage, wie diese beiden Funktionen von C/EBPα p30 reguliert werden. Die C/EBP-Familie gehört der Gruppe intrinsisch ungeordneter Proteine an, die zudem viele posttranslationale Modifikationen (PTMs) aufweisen. PTMs auf C/EBPα verändern seine biologische Funktionsweise stark. Frühere Forschungsarbeiten haben drei Argininreste am N-Terminus von C/EBPα p30 identifiziert, die aufgrund des Methylierungsstatus differentiell mit anderen Proteinen interagieren. In dieser Arbeit untersuchen wir den Einfluss der C/EBPα p30 Arginin-Methylierung auf seine pro-leukämische Aktivität sowie dessen Fähigkeit zur Neuausrichtung der hämatopoietischen Differenzierungslinie. Mit Hilfe von Aminosäuresubstitutionen fanden wir heraus, dass C/EBPα p30 Mutanten der Methylierungsmimesis oder Ladungsabschaffung die myeloische Differenzierung verstärkt, während Ladungserhalt-Mutanten die Erneuerung und Proliferation hämatopoetischer Stamm-/Vorläuferzellen unterstützt. Transkriptionelles Profiling von Zellen, die mutierte C/EBPα -p30-Varianten exprimieren, deutet auf potenzielle Ziele der methyliertem bzw. unmethyliertem C/EBPα p30 hin. Die Ergebnisse legen nahe, dass der Arginin-Methylierungsstatus das Leukämie- und Differenzierungs-Potenzial von C/EBPα p30 verändert und somit ein neues Ziel der Leukämietherapie darstellen könnten. / Myeloid development is regulated by the family of transcription factors CCAAT/enhancer-binding-protein (C/EBP). Aberrant expression or functioning of C/EBPs disturbs normal myeloid differentiation and is found in many types of hematopoietic malignancies. Mutations of CEBPA lead to imbalanced expression of the truncated isoform C/EBPα p30 and are found in approximately 15% of AML (acute myeloid leukemia) patients. Yet, how C/EBPα participates in leukemic progression remains to be discovered. More specifically, the truncated isoform C/EBPα p30, although being identified as an oncogenic isoform that promotes proliferation of myeloid progenitors, still retains differentiation function. The question of how both functions of C/EBPα p30 are regulated, is of our interest. C/EBP family also represents a group of intrinsically disordered proteins, which contain many post-translational modifications (PTMs). PTMs on C/EBPα greatly alter its functioning. Previous works have identified three arginine residues at the N-terminus of C/EBPα p30 that interact differently with others protein dependent on their methylation status. We hypothesize, that methylation of these arginine residues plays important roles in the biology of C/EBPα p30. In this study, we used a lymphoid-to-myeloid transdifferentiation (LMT) system to investigate the influence of arginine-methylation on C/EBPα-induced lineage switch and its pro-leukemic activity. Using amino acid substitution, we found that C/EBPα p30 mutants that resemble arginine-methylated p30 enhanced myeloid differentiation, while the charge-retention mutant, resembling arginine-unmethylated p30, supported renewability and proliferation of hematopoietic progenitors. Transcriptional profiling of cells expressing C/EBPα p30 variants suggested potential targets of either methylated or unmethylated p30. The results implied that arginine methylations alter C/EBPα p30’s leukemic potential and might comprise novel targets of leukemia therapy.
24

PRMT5-CATALYZED ARGININE METHYLATION OF NF-kappaB p65 INTHE ENDOTHELIAL CELL INDUCTION OF PRO-INFLAMMATORYCHEMOKINES

Harris, Daniel Pellerin 27 January 2016 (has links)
No description available.
25

The role of protein arginine methylation in T-lymphocyte activation

Geoghegan, Vincent L. January 2012 (has links)
T-lymphocytes are an essential cell type of the adaptive immune system. Due to their importance in immune responses and disorders, the molecular mechanisms leading to T-lymphocyte activation have been the subject of extensive research which has translated into important therapeutic developments. Early signalling events involving tyrosine phosphorylation are well characterised. However, later events involving other post-translational modifications are less well understood. Several studies have provided evidence suggesting a role for protein arginine methylation in T-lymphocyte activation. Arginine methylation is an essential post-translational modification in mammals and yet has not been extensively studied. No large scale analysis of arginine methylation sites has been performed. To gain insight into the role of protein arginine methylation in T-lymphocyte activation, the aims of this work were to: 1. Establish whether levels of arginine methylation are altered during Tlymphocyte activation 2. Use mass spectrometry based proteomics to identify arginine methylated proteins in the T-lymphocyte proteome 3. Further characterise an arginine methylated protein important to Tlymphocyte activation Arginine methylation was found to be induced after long term (>20 hours) stimulation of primary T-lymphocytes. Large increases in the main protein arginine methyltransferase, PRMT1, were also observed. Enrichment and labelling methods were developed to detect arginine methylated peptides from T-lymphocytes by mass spectrometry. This resulted in the identification of 265 unique arginine methylation sites in 141 proteins. 204 of the methylation sites were novel and 103 of the proteins had not previously been described as arginine methylated. Individual arginine methylation sites were characterised before and after activation of T-lymphocytes, with some sites showing significant changes in abundance. Among the novel arginine methylated proteins discovered were Dynamin II, WASp and WIPF1. These proteins are involved in re-organisation of the actin cytoskeleton at the immunological synapse formed between a Tlymphocyte and an antigen presenting cell. The functional consequences of the arginine methylation sites inWASp were characterised. WASp is essential for T-lymphocyte activation and some initial evidence showed that one of the arginine methylation sites is important for WASp activation.
26

New Roles for Arginine Methylation in RNA Metabolism and Cancer

Goulet, Isabelle 05 October 2011 (has links)
Because it can expand the range of a protein’s interactions or modulate its activity, post-translational methylation of arginine residues in proteins must be duly coordinated and ‘decoded’ to ensure appropriate cellular interpretation of this biological cue. This can be achieved through modulation of the enzymatic activity/specificity of the protein arginine methyltransferases (PRMTs) and proper recognition of the methylation ‘mark’ by a subset of proteins containing ‘methyl-sensing’ protein modules known as ‘Tudor’ domains. In order to gain a better understanding of these regulatory mechanisms, we undertook a detailed biochemical characterization of the predominant member of the PRMT family, PRMT1, and of the novel Tudor domain-containing protein 3 (TDRD3). First, we found that PRMT1 function can be modulated by 1) the expression of up to seven PRMT1 isoforms (v1-7), each with a unique N-terminal region that confers distinct substrate specificity, and by 2) differential subcellular localization, as revealed by the presence of a nuclear export sequence unique to PRMT1v2. Second, our findings suggest that TDRD3 is recruited to cytoplasmic stress granules (SGs) in response to environmental stress potentially by engaging in methyl-dependent protein-protein interactions with proteins involved in the control of gene expression. We also found that arginine methylation may serve as a general regulator of overall SG dynamics. Finally, we uncovered that alteration of PRMT1, TDRD3, and global arginine methylation levels in breast cancer cells may be closely associated with disease progression and poor prognosis. Therefore, further studies into the pathophysiological consequences ensuing from misregulation of arginine methylation will likely lead to the development of novel strategies for the prevention and treatment of breast cancer.
27

New Roles for Arginine Methylation in RNA Metabolism and Cancer

Goulet, Isabelle 05 October 2011 (has links)
Because it can expand the range of a protein’s interactions or modulate its activity, post-translational methylation of arginine residues in proteins must be duly coordinated and ‘decoded’ to ensure appropriate cellular interpretation of this biological cue. This can be achieved through modulation of the enzymatic activity/specificity of the protein arginine methyltransferases (PRMTs) and proper recognition of the methylation ‘mark’ by a subset of proteins containing ‘methyl-sensing’ protein modules known as ‘Tudor’ domains. In order to gain a better understanding of these regulatory mechanisms, we undertook a detailed biochemical characterization of the predominant member of the PRMT family, PRMT1, and of the novel Tudor domain-containing protein 3 (TDRD3). First, we found that PRMT1 function can be modulated by 1) the expression of up to seven PRMT1 isoforms (v1-7), each with a unique N-terminal region that confers distinct substrate specificity, and by 2) differential subcellular localization, as revealed by the presence of a nuclear export sequence unique to PRMT1v2. Second, our findings suggest that TDRD3 is recruited to cytoplasmic stress granules (SGs) in response to environmental stress potentially by engaging in methyl-dependent protein-protein interactions with proteins involved in the control of gene expression. We also found that arginine methylation may serve as a general regulator of overall SG dynamics. Finally, we uncovered that alteration of PRMT1, TDRD3, and global arginine methylation levels in breast cancer cells may be closely associated with disease progression and poor prognosis. Therefore, further studies into the pathophysiological consequences ensuing from misregulation of arginine methylation will likely lead to the development of novel strategies for the prevention and treatment of breast cancer.
28

New Roles for Arginine Methylation in RNA Metabolism and Cancer

Goulet, Isabelle 05 October 2011 (has links)
Because it can expand the range of a protein’s interactions or modulate its activity, post-translational methylation of arginine residues in proteins must be duly coordinated and ‘decoded’ to ensure appropriate cellular interpretation of this biological cue. This can be achieved through modulation of the enzymatic activity/specificity of the protein arginine methyltransferases (PRMTs) and proper recognition of the methylation ‘mark’ by a subset of proteins containing ‘methyl-sensing’ protein modules known as ‘Tudor’ domains. In order to gain a better understanding of these regulatory mechanisms, we undertook a detailed biochemical characterization of the predominant member of the PRMT family, PRMT1, and of the novel Tudor domain-containing protein 3 (TDRD3). First, we found that PRMT1 function can be modulated by 1) the expression of up to seven PRMT1 isoforms (v1-7), each with a unique N-terminal region that confers distinct substrate specificity, and by 2) differential subcellular localization, as revealed by the presence of a nuclear export sequence unique to PRMT1v2. Second, our findings suggest that TDRD3 is recruited to cytoplasmic stress granules (SGs) in response to environmental stress potentially by engaging in methyl-dependent protein-protein interactions with proteins involved in the control of gene expression. We also found that arginine methylation may serve as a general regulator of overall SG dynamics. Finally, we uncovered that alteration of PRMT1, TDRD3, and global arginine methylation levels in breast cancer cells may be closely associated with disease progression and poor prognosis. Therefore, further studies into the pathophysiological consequences ensuing from misregulation of arginine methylation will likely lead to the development of novel strategies for the prevention and treatment of breast cancer.
29

New Roles for Arginine Methylation in RNA Metabolism and Cancer

Goulet, Isabelle January 2011 (has links)
Because it can expand the range of a protein’s interactions or modulate its activity, post-translational methylation of arginine residues in proteins must be duly coordinated and ‘decoded’ to ensure appropriate cellular interpretation of this biological cue. This can be achieved through modulation of the enzymatic activity/specificity of the protein arginine methyltransferases (PRMTs) and proper recognition of the methylation ‘mark’ by a subset of proteins containing ‘methyl-sensing’ protein modules known as ‘Tudor’ domains. In order to gain a better understanding of these regulatory mechanisms, we undertook a detailed biochemical characterization of the predominant member of the PRMT family, PRMT1, and of the novel Tudor domain-containing protein 3 (TDRD3). First, we found that PRMT1 function can be modulated by 1) the expression of up to seven PRMT1 isoforms (v1-7), each with a unique N-terminal region that confers distinct substrate specificity, and by 2) differential subcellular localization, as revealed by the presence of a nuclear export sequence unique to PRMT1v2. Second, our findings suggest that TDRD3 is recruited to cytoplasmic stress granules (SGs) in response to environmental stress potentially by engaging in methyl-dependent protein-protein interactions with proteins involved in the control of gene expression. We also found that arginine methylation may serve as a general regulator of overall SG dynamics. Finally, we uncovered that alteration of PRMT1, TDRD3, and global arginine methylation levels in breast cancer cells may be closely associated with disease progression and poor prognosis. Therefore, further studies into the pathophysiological consequences ensuing from misregulation of arginine methylation will likely lead to the development of novel strategies for the prevention and treatment of breast cancer.

Page generated in 0.5381 seconds