Spelling suggestions: "subject:"arsenide"" "subject:"arsenides""
261 |
A Simulation Study of Enhancement mode Indium Arsenide Nanowire Field Effect TransistorNarendar, Harish January 2009 (has links)
No description available.
|
262 |
VLSI design and implementation of a parallel sorterMao, Hsein-Jung Joey January 1988 (has links)
No description available.
|
263 |
Wave Chaos and Enhancement of Coherent Radiation with Rippled Electrodes in a Photoconductive AntennaKim, Christopher Yong Jae January 2016 (has links)
Time-domain terahertz spectroscopy is now a well-established technique. Of the many methods available for a terahertz source for terahertz spectroscopy, the most widely used may be the GaAs-based photoconductive antenna, as it provides relatively high power at terahertz frequencies, commercially available up to 150 µW, and a wide-bandwidth, approximately 70 GHz to 3.5 THz. One of the limitations for developing more accurate and sensitive terahertz interrogation techniques is the lack of higher power sources. Because of our research interests in terahertz spectroscopy, we investigated detailed design and fabrication parameters involved in the photoconductive antenna, which exploits the surface plasma oscillation to produce a wideband pulse. The investigation enabled us to develop a new photoconductive antenna that is capable of generating a high power terahertz beam, at least twenty times stronger than those currently available. Throughout this research, it was discovered that antenna electrodes with particular geometries could produce superradiance, also known as the Dicke effect. Chaotic electrodes with a predisposition to lead charge-carriers into chaotic trajectories, e.g. rippled geometry, were exploited to reduce undesirable heat effects by driving thermal-electrons away from the terahertz generation site, i.e. the location of the surface plasma, while concentrating the removed charge-carriers in separate locations slightly away from the surface plasma. Then, spontaneous emission of coherent terahertz radiation may occur when the terahertz pulse generated by the surface plasma stimulates the concentrated carriers. This spontaneous emission enhanced the total coherent terahertz beam strength, as it occurs almost simultaneously with the primary terahertz beam. In principle, the spontaneous emission power increases as N^2, with the number N of dipole moments resulted from the concentrated charge carriers. Hence, if the design parameters are optimized, it may be possible to increase the strength of coherent terahertz beam by more than one order of magnitude with a photoconductive antenna containing rippled electrodes. However, as the parameters are yet to be optimized, we have only demonstrated 10-20 % enhancement with our current photoconductive antennas. Photoconductive antennas were fabricated via photolithography and characterized by time-domain terahertz spectroscopy and pyroelectric detection. In addition to chaotic electrodes, a variety of other parameters were characterized, including GaAs substrate thickness, GaAs crystal lattice orientation, trench depth for electrodes, metal-semiconductor contact, and bias voltage across electrodes. Nearly all parameters were found to play a crucial role influencing terahertz beam emission and carrier dynamics. By exploiting wave chaos and other antenna parameters, we developed a new photoconductive antenna capable of continuous operation with terahertz power twenty times larger than that of the conventional photoconductive antennas, improving from 150 µW to 3 mW. With further optimizations of the parameters, we expect more dramatic improvement of the photoconductive antenna in the near future. / Physics
|
264 |
Residual Stress Effects on Power Slump and Wafer Breakage in GaAs MESFETsWard, Allan III 06 June 1996 (has links)
The objectives of this investigation are to develop a precise, non-destructive single crystal stress measurement technique, develop a model to explain the phenomenon known as 3power slump2, and investigate the role of device processing on wafer breakage. All three objectives were successfully met. The single crystal stress technique uses a least squares analysis of X-ray diffraction data to calculate the full stress tensor. In this way, precise non-destructive stress measurements can be made with known error bars. Rocking curve analysis, stress gradient corrections, and a data reliability technique were implemented to ensure that the stress data are correct. A theory was developed to explain 3power slump2, which is a rapid decrease in the amplifying properties of microwave amplifier circuits during operation. The model explains that for the particular geometry and bias configuration of the devices studied in this research, power slump is linearly related to shear stress at values of less than 90 MPa. The microscopic explanation of power slump is that radiation enhanced dislocation glide increases the kink concentration, thereby increasing the generation center concentration in the active region of the device. These generation centers increase the total gate current, leading to a decrease in the amplifying properties of the device. Passivation layer processing has been shown to both reduce the fracture strength and increase the residual stress in GaAs wafers, making them more susceptible to wafer breakage. Bare wafers are found to have higher fracture strength than passivated wafers. Bare wafers are also found to contain less residual stress than SiON passivated wafers, which, in turn, are found to have less stress than SiN passivated wafers. Topographic imaging suggests that SiN passivated wafers have larger flaws than SiON passivated wafers, and that the distribution of flaw size among SiN passivated wafers is wider than the distribution of flaws in SiON passivated wafers. These flaws are believed to lead to breakage of the device during processing, resulting in low fabrication yield. Both the power slump model and the wafer breakage data show that these phenomena are dependent on residual stress developed in the substrate during device fabrication. Reduction of process-induced residual stress should therefore simultaneously decrease wafer breakage rates and reduce power slump during device fabrication and operation. / Ph. D.
|
265 |
Optical studies of GaAs:C grown at low temperature and of localized vibrations in normal GaAs:CVijarnwannaluk, Sathon 03 May 2002 (has links)
Optical studies of heavily-doped GaAs:C grown at low temperature by molecular beam epitaxy were performed using room-temperature photoluminescence, infrared transmission, and Raman scattering measurements. The photoluminescence experiments show that in LT-GaAs:C films grown at temperatures below 400 °C, nonradiative recombination processes dominate and photoluminescence is quenched. When the growth temperature exceeds 400 °C, band-to-band photoluminescence emission appears. We conclude that the films change in character from LT-GaAs:C to normal GaAs:C once the growth temperature reaches 400 °C. Annealing, however, shows a different behavior. Once grown as LT-GaAs:C, this material retains its nonconducting nonluminescing LT characteristics even when annealed at 600 °C. The Raman-scattering measurements showed that the growth temperature and the doping concentration influence the position, broadening, and asymmetry of the longitudinal-optical phonon Raman line. We attribute these effects to changes in the concentration of interstitial carbon in the films. Also, the shift of the Raman line was used to estimate the concentration of arsenic-antisite defects in undoped LT-GaAs. The infrared transmission measurements on the carbon-doped material showed that only a fraction of the carbon atoms occupy arsenic sites, that this fraction increases as the growth temperature increases, and that it reaches about 100% once the growth temperature reaches 400 °C. The details of all these measurements are discussed.
Infrared transmission and photoluminescence measurements were also carried out on heavily-doped GaAs:C films grown by molecular beam epitaxy at the standard 600 C temperature. The infrared results reveal, for dopings under 5 x 10⁹ cm⁻³, a linear relation between doping concentration and the integrated optical absorption of the carbon localized-vibrational-mode band. At higher dopings, the LVM integrated absorption saturates. Formation of C<sub>As</sub>-C<sub>As</sub> clusters is proposed as the mechanism of the saturation. The photoluminescence spectra were successfully analyzed with a simple model assuming thermalization of photoelectrons to the bottom of the conduction band and indirect-transition recombination with holes populating the degenerately doped valence band. The analysis yields the bandgap reduction and the Fermi-level-depth increase at high doping. / Ph. D.
|
266 |
Piezoelectric effects in GaAs MESFET'sEly, Kevin Jon 20 October 2005 (has links)
Gallium arsenide MESFETS require protective passivation at several steps in their fabrication. A common film used for device passivation is silicon nitride. This passivation film is deposited on gallium arsenide substrates by chemical vapor deposition techniques and possesses high intrinsic stress. The stresses arise from the difference in the gallium arsenide and silicon nitride material properties, such as coefficient of expansion, density, modulus, and deposition temperature. The stress has been shown to cause electrical performance shifts in GaAs MESFET structures due to the piezoelectric nature of the gallium arsenide lattice.
This work develops a framework of mathematical models and experimental techniques by which the intrinsic stresses in the film and the GaAs substrate can be evaluated. Specifically, this work details the stress field and the electrical performance shifts in fully planarized self aligned gate GaAs MESFETS. The devices were 10 micron gate periphery FET devices with a 0.4 micron etched gate length. The test devices included both enhancement mode and depletion mode structures. The major contributors to the stress in GaAs devices was found to be the intrinsic stress effects of the silicon nitride passivation film. An externally applied stress, such as that applied to a package base that a typical GaAs device would be mounted into for actual service, was found to be insufficient to cause significant shifts in the device performance. The package body effectively reduces the transfer of stress to the device body and thereby minimizes the piezoelectric effect. The intrinsic stress effects are due to the deposition of the film itself. This intrinsic stress was found to have a significant effect on the device electrical characteristics. The stress was found to permanently shift the threshold voltage and current in 10 micron self aligned gate MESFETS. The shift was measured at 26 millivolts per 100 MPa film stress for depletion mode devices and 23 millivolts per 100 MPa for enhancement mode devices. For the maximum measured biaxial stress of -0.54 MPa in the gallium arsenide, the total measured shift was 140 millivolts. The level of shift is similar to that reported by earlier researchers. This piezoelectric shift has been modeled, with model predictions within 50/0 of the experimental values for the DFET devices and 11 % for the EFET devices. / Ph. D.
|
267 |
The optimization of SPICE modeling parameters utilizing the Taguchi methodologyNaber, John F. 07 June 2006 (has links)
A new optimization technique for SPICE modeling parameters has been developed in this dissertation to increase the accuracy of the circuit simulation. The importance of having accurate circuit simulation models is to prevent the very costly redesign of an Integrated Circuit (IC). This radically new optimization technique utilizes the Taguchi method to improve the fit between measured and simulated I-V curves for GaAs MESFETs. The Taguchi method consists of developing a Signal-to-Noise Ratio (SNR) equation that will find the optimum combination of controllable signal levels in a design or process to make it robust or as insensitive to noise as possible. In this dissertation, the control factors are considered the circuit model curve fitting parameters and the noise is considered the variation in the simulated I-V curves from the measured I-V curves. This is the first known application of the Taguchi method to the optimization of IC curve fitting model parameters. In addition, this method is not technology or device dependent and can be applied to silicon devices as well. Improvements in the accuracy of the simulated I-V curve fit reaching 80% has been achieved between DC test extracted parameters and the Taguchi optimized parameters. Moreover, the computer CPU execution time of the optimization process is 96% less than a commercial optimizer utilizing the Levenberg-Marquardt algorithm (optimizing 31 FETs). This technique does a least square fit on the data comparing measured currents versus simulated currents for various combinations of SPICE parameters. The mean and standard deviation of this least squares fit is incorporated in determining the SNR, providing the best combination of parameters within the evaluated range. Furthermore, the optimum values of the parameters are found without additional simulation by fitting the response curves to a quadratic equation and finding the local maximum. This technique can easily be implemented with any simulator that utilizes simulation modeling parameters extracted from measured DC test data. In addition, two methods are evaluated to obtain the worst case modeling parameters. One method lobks at the correlation coefficients between modeling parameters and the second looks at the actual device parameters that define the +/- 3σ limits of the process. Lastly, an example is given that describes the applicability of the Taguchi methodology in the design of a differential amplifier, that accounts for the effect of offset voltage. / Ph. D.
|
268 |
Corrosion and corrosion suppression on n-type gallium arsenide semiconductor liquid-junction solar cellsCwynar, James Edward January 1984 (has links)
N-type GaAs is a potentially useful semiconductor in liquid junction type solar cells. Corrosion and corrosion suppression on an n-type GaAs semiconductor in both light and dark has been studied. The application of non-electroactive layers for corrosion suppression on semiconductor electrodes is a relatively new field. GaAs corrodes to form Ga(III) and As(III) solution species during photocurrent generation. The corrosion rate is determined electroanalytically in acidic media by measuring As(III) using differential pulse polarography (DPP). In neutral electrolytes a rotating ring-disc experiment measured the efficiency of hole-transfer to a redox couple. Two protecting processes have been utilized. Silanization and electrochemical polymerization of divinylbenzene and phenol were used to deposit non-electroactive layers on the electrode surface. The polyphenylene oxide coating partially suppressed corrosion in acid electrolytes. However, the coatings did not improve hole transfer efficiency in neutral electrolytes. / Master of Science
|
269 |
Raman-scattering studies of the structure of ion-implanted GaAsHoltz, Mark W. January 1987 (has links)
Extensive Raman-scattering studies have been performed in order to study the structure of ion-implanted GaAs, prior to any anneal. The spectroscopic evidence is consistent with a fine-scale mixture of amorphous and microcrystalline GaAs. Excessive bombardment with 120-keV SiF₃⁺ ions results in a 500-A thick surface layer which is completely amorphous (a-GaAs).
A detailed chemical-etch damage depth profile has been completed for 45-keV Be⁺-implanted GaAs, which is not completely amorphized. The damage is characterized using the microcrystalline longitudinal-optical (LO) phonon frequency, line width, and intensity, and the intensity of the a-GaAs component of the Raman spectrum. The damage layer possesses a 1500-A thick surface layer of constant, high damage. This high-damage plateau is followed by a transition region in which the damage level smoothly decreases until the undisturbed crystal is reached near 4000 A. LO intensities were analyzed, within the amorphous/crystalline mixed-phase model, to obtain the volume fractions of the two components. Consistent estimates of the optical absorption in the high-damage plateau were obtained via two independent means.
Resonance-Raman experiments were carried out, using laser lines between 1.5 and 2.71 eV. The intensity of the a-GaAs spectral component was found to depend on scattering volume (optical penetration), thus providing an internal intensity standard allowing the effects of scattering volume and scattering efficiencies to be separated. The LO phonon was found to resonate approaching the E₁ electronic transition at 2.9 eV. The strength of the resonance decreases with smaller crystallite size.
A new Raman band was observed near 47 cm⁻¹ for photon energies below 2 eV. It resonates at 1.7 eV, near E₀ and not near E₁. I propose that this new feature arises from GaAs acoustic modes made Raman active by defectassisted scattering involving the crystalline/amorphous interface regions. A quantitative analysis is developed, with some success.
Intensities of silicon local are observed to remain constant upon annealing, although conductivity increases by several orders of magnitude. The anneal primarily restores the mobility to that of crystalline GaAs. / Ph. D.
|
270 |
Telecom wavelength quantum devicesFelle, Martin Connor Patrick January 2017 (has links)
Semiconductor quantum dots (QDs) are well established as sub-Poissonian sources of entangled photon pairs. To improve the utility of a QD light source, it would be advantageous to extend their emission further into the near infrared, into the low absorption wavelength windows utilised in long-haul optical telecommunication. Initial experiments succeeded in interfering O-band (1260—1360 nm) photons from an InAs/GaAs QD with dissimilar photons from a laser, an important mechanism for quantum teleportation. Interference visibilities as high as 60 ± 6 % were recorded, surpassing the 50 % threshold imposed by classical electrodynamics. Later, polarisation-entanglement of a similar QD was observed, with pairs of telecom-wavelength photons from the radiative cascade of the biexciton state exhibiting fidelities of 92.0 ± 0.2 % to the Bell state. Subsequently, an O-band telecom-wavelength quantum relay was realised. Again using an InAs/GaAs QD device, this represents the first implementation of a sub-Poissonian telecom-wavelength quantum relay, to the best knowledge of the author. The relay proved capable of implementing the famous four-state BB84 protocol, with a mean teleportation fidelity as high as 94.5 ± 2.2 %, which would contribute 0.385 secure bits per teleported qubit. After characterisation by way of quantum process tomography, the performance of the relay was also evaluated to be capable of implementing a six-state QKD protocol. In an effort to further extend the emitted light from a QD into the telecom C-band (1530—1565 nm), alternative material systems were investigated. InAs QDs on a substrate of InP were shown to emit much more readily in the fibre-telecom O- and C-bands than their InAs/GaAs counterparts, largely due to the reduced lattice mismatch between the QD and substrate for InAs/InP (~3 %) compared to InAs/GaAs (~7 %). Additionally, to minimize the fine structure splitting (FSS) of the exciton level, which deteriorates the observed polarisation-entanglement, a new mode of dot growth was investigated. Known as droplet epitaxy (D-E), QDs grown in this mode showed a fourfold reduction in the FSS compared to dots grown in the Stranski-Krastanow mode. This improvement would allow observation of polarisation-entanglement in the telecom C-band. In subsequent work performed by colleagues at the Toshiba Cambridge Research Labs, these D-E QDs were embedded in a p-i-n doped optical cavity, processed with electrical contacts, and found to emit entangled pairs of photons under electrical excitation. The work of this thesis provides considerable technological advances to the field of entangled-light sources, that in the near future may allow for deterministic quantum repeaters operating at megahertz rates, and in the further future could facilitate the distribution of coherent multipartite states across a distributed quantum network.
|
Page generated in 0.1 seconds