• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 223
  • 41
  • 15
  • 10
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 343
  • 308
  • 172
  • 67
  • 55
  • 52
  • 35
  • 30
  • 30
  • 29
  • 25
  • 24
  • 23
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
311

Analysis and design of a gated envelope feedback technique for automatic hardware reconfiguration of RFIC power amplifiers, with full on-chip implementation in gallium arsenide heterojunction bipolar transistor technology

Constantin, Nicolas, 1964- January 2009 (has links)
No description available.
312

Surfactant-Enhanced Gallium Arsenide (111) Epitaxial Growth for Quantum Photonics

Hassanen, Ahmed January 2021 (has links)
In this thesis, the effect of surfactants (Bi /Sb) on GaAs(111) is explored, particularly in regards to modifying the surface morphology and growth kinetics. Both molecular beam epitaxy (MBE) and metal-organic chemical vapour deposition (MOCVD) techniques are discussed in this context. InAs/GaAs(111) quantum dots (QDs) have been promoted as leading candidates for efficient entangled photon sources, owing to their high degree of symmetry (c_3v). Unfortunately, GaAs(111) suffers from a defect-ridden homoepitaxial buffer layer, and the InAs/GaAs(111) material system does not natively support Stranski{Krastanov InAs QD growth. Surfactants have been identified as effective tools to alter grown surface morphologies and growth modes, potentially overcoming these obstacles, but have yet to be studied in detail in this context. For MBE, it is shown that Bi acts as a surfactant when employed in GaAs(111) homoepitaxy, and eliminates defects/hillocks, yielding atomically-smooth surfaces with step-flow growth, and RMS roughness values of 0.13 nm. The effect is more pronounced as the Bi flux increases, and Bi is suggested to be increasing adatom diffusion. A novel reflection high energy electron diffraction (RHEED)-based experiment was also designed and performed to measure the desorption activation energy (U_Des) of Bi on GaAs(111), yielding U_Des = 1.74 ± 0.38 eV. GaAs(111) homoepitaxy was also investigated using MOCVD, with GaAs(111)B exhibiting RMS roughness values of 0.09 nm. Sb is shown to provoke a morphological transition from plastically-relaxed 2D to 3D growth for InAs/GaAs(111)B, showing promise in its ability to induce QDs. Finally, simulations for GaAs-based quantum well (QW) photoluminescence were conducted, and such QWs are shown to potentially produce very sharp linewidths of 3.9 meV. These results enhance understanding of Bi surfactant behaviour on GaAs(111) and can open up its use in many technological applications, paving the way for the realization of high efficiency/viable QD entangled photon sources. / Thesis / Master of Applied Science (MASc)
313

Non-degenerate Two Photon Gain In Bulk Gallium Arsenide

Turnbull, Brendan 01 January 2013 (has links)
The purpose of this thesis is to investigate the nonlinear phenomena known as doubly-stimulated, non-degenerate two-photon emission (ND-2PE) in Gallium Arsenide (GaAs). 2PE refers to the simultaneous emission of two-photons as electrons move from the conduction band in a direct gap semiconductor to the valence band. Following the same path for describing one-photon emission (1PE) we describe 2PE as a product of the irradiance, and the negative of the loss which in this case is two-photon absorption, , the negative coming from the population inversion. We attempt to observe 2PE by using a frequency non-degenerate pump-probe experiment in which a third beam optically excites a 4 µm thick GaAs sample. We use nondegenerate beams in hopes of utilizing the 3-orders of magnitude enhancement seen in twophoton absorption (2PA) by going to extreme nondegeneracy (END) to enhance 2PE. GaAs is chosen due to the availability of the appropriate wavelengths, the maturity of the GaAs technology, its use in optoelectronic devices and its ability to be electrically pumped. During the experimental development we learn how to effectively etch and manipulate thin GaAs samples and model the transmission spectrum of these samples using thin film transmission matrices. We are able to match the measured transmission spectrum with the theoretical transmission spectrum. Here we etch the bulk GaAs left on the sample leaving only the 4 µm thickness of molecular beam epitaxial grown GaAs plus additional layers of aluminum gallium arsenide (AlGaAs). These samples were grown for us by Professor Gregory Salamo of the University of Arkansas. iv Using the pump-probe experiment on the 4 µm GaAs sample, we measure the change of the 2PA due to the presence of optically excited carriers. The goal is to reduce the 2PA signal to zero and then invert the 2PA signal indicating an increase in transmission indicative of 2PE when the population is inverted. Our results show that we achieve a 45% reduction in the 2PA signal in a 4 μm thick GaAs sample due to the excited carriers. Unfortunately, we currently cannot experimentally determine whether the reduction is strictly due to free-carrier absorption (FCA) of our pump or possibly due to a change in the two-photon absorption coefficient. We measure the transmission of various wavelengths around the bang gap of GaAs as a function of excitation wavelength and achieve a transmittance of ~80% which we attribute to possibly be one photon gain (1PG) at 880 nm. We also go to cryogenic temperatures to concentrate the carriers near the bottom of the conduction band and improve the theoretical gain coefficient for 2PE. Unfortunately, we do not observe a measurable change in 2PA with the addition of optically excited carriers. Along with FCA of our infrared pump we suspect that the difficulties in this first set of experiments are also a result or radiative recombination due to amplified spontaneous emission reducing our free carrier density along with the fact that 4 m is too thick for uniform excitation. We now have 1 m samples from Professor Gregory Salamo which we hope will give better and more definitive results
314

Photocurrent Spectroscopy of CdS/Plastic, CdS/Glass, and ZnTe/GaAs Hetero-pairs Formed with Pulsed-laser Deposition

Acharya, Krishna Prasad 01 July 2009 (has links)
No description available.
315

Sensing and Energy Harvesting of Fluidic Flow by InAs Nanowires, Carbon Nanotubes and Graphene

Chen, Ying 11 June 2014 (has links)
No description available.
316

Control of electronic and optical properties of single and double quantum dots via electroelastic fields

Zallo, Eugenio 23 March 2015 (has links) (PDF)
Semiconductor quantum dots (QDs) are fascinating systems for potential applications in quantum information processing and communication, since they can emit single photons and polarisation entangled photons pairs on demand. The asymmetry and inhomogeneity of real QDs has driven the development of a universal and fine post-growth tuning technique. In parallel, new growth methods are desired to create QDs with high emission efficiency and to control combinations of closely-spaced QDs, so-called "QD molecules" (QDMs). These systems are crucial for the realisation of a scalable information processing device after a tuning of their interaction energies. In this work, GaAs/AlGaAs QDs with low surface densities, high optical quality and widely tuneable emission wavelength are demonstrated, by infilling nanoholes fabricated by droplet etching epitaxy with different GaAs amounts. A tuning over a spectral range exceeding 10 meV is obtained by inducing strain in the dot layer. These results allow a fine tuning of the QD emission to the rubidium absorption lines, increasing the yield of single photons that can be used as hybrid semiconductor-atomic-interface. By embedding InGaAs/GaAs QDs into diode-like nanomembranes integrated onto piezoelectric actuators, the first device allowing the QD emission properties to be engineered by large electroelastic fields is presented. The two external fields reshape the QD electronic properties and allow the universal recovery of the QD symmetry and the generation of entangled photons, featuring the highest degree of entanglement reported to date for QD-based photon sources. A method for controlling the lateral QDM formation over randomly distributed nanoholes, created by droplet etching epitaxy, is demonstrated by depositing a thin GaAs buffer over the nanoholes. The effect on the nanohole occupancy of the growth parameters, such as InAs amount, substrate temperature and arsenic overpressure, is investigated as well. The QD pairs show good optical quality and selective etching post-growth is used for a better characterisation of the system. For the first time, the active tuning of the hole tunnelling rates in vertically aligned InGaAs/GaAs QDM is demonstrated, by the simultaneous application of electric and strain fields, optimising the device concept developed for the single QDs. This result is relevant for the creation and control of entangled states in optically active QDs. The modification of the electronic properties of QDMs, obtained by the combination of the two external fields, may enable controlled quantum operations.
317

Control of electronic and optical properties of single and double quantum dots via electroelastic fields

Zallo, Eugenio 12 March 2015 (has links)
Semiconductor quantum dots (QDs) are fascinating systems for potential applications in quantum information processing and communication, since they can emit single photons and polarisation entangled photons pairs on demand. The asymmetry and inhomogeneity of real QDs has driven the development of a universal and fine post-growth tuning technique. In parallel, new growth methods are desired to create QDs with high emission efficiency and to control combinations of closely-spaced QDs, so-called "QD molecules" (QDMs). These systems are crucial for the realisation of a scalable information processing device after a tuning of their interaction energies. In this work, GaAs/AlGaAs QDs with low surface densities, high optical quality and widely tuneable emission wavelength are demonstrated, by infilling nanoholes fabricated by droplet etching epitaxy with different GaAs amounts. A tuning over a spectral range exceeding 10 meV is obtained by inducing strain in the dot layer. These results allow a fine tuning of the QD emission to the rubidium absorption lines, increasing the yield of single photons that can be used as hybrid semiconductor-atomic-interface. By embedding InGaAs/GaAs QDs into diode-like nanomembranes integrated onto piezoelectric actuators, the first device allowing the QD emission properties to be engineered by large electroelastic fields is presented. The two external fields reshape the QD electronic properties and allow the universal recovery of the QD symmetry and the generation of entangled photons, featuring the highest degree of entanglement reported to date for QD-based photon sources. A method for controlling the lateral QDM formation over randomly distributed nanoholes, created by droplet etching epitaxy, is demonstrated by depositing a thin GaAs buffer over the nanoholes. The effect on the nanohole occupancy of the growth parameters, such as InAs amount, substrate temperature and arsenic overpressure, is investigated as well. The QD pairs show good optical quality and selective etching post-growth is used for a better characterisation of the system. For the first time, the active tuning of the hole tunnelling rates in vertically aligned InGaAs/GaAs QDM is demonstrated, by the simultaneous application of electric and strain fields, optimising the device concept developed for the single QDs. This result is relevant for the creation and control of entangled states in optically active QDs. The modification of the electronic properties of QDMs, obtained by the combination of the two external fields, may enable controlled quantum operations.
318

Mécanismes de déformation de nanoparticules d’Au par irradiation ionique

Harkati Kerboua, Chahineze 12 1900 (has links)
Résumé Dans la présente thèse, nous avons étudié la déformation anisotrope par bombardement ionique de nanoparticules d'or intégrées dans une matrice de silice amorphe ou d'arséniure d’aluminium cristallin. On s’est intéressé à la compréhension du mécanisme responsable de cette déformation pour lever toute ambigüité quant à l’explication de ce phénomène et pour avoir une interprétation consistante et unique. Un procédé hybride combinant la pulvérisation et le dépôt chimique en phase vapeur assisté par plasma a été utilisé pour la fabrication de couches nanocomposites Au/SiO2 sur des substrats de silice fondue. Des structures à couches simples et multiples ont été obtenues. Le chauffage pendant ou après le dépôt active l’agglomération des atomes d’Au et par conséquent favorise la croissance des nanoparticules. Les nanocomposites Au/AlAs ont été obtenus par implantation ionique de couches d’AlAs suivie de recuit thermique rapide. Les échantillons des deux nanocomposites refroidis avec de l’azote liquide ont été irradiés avec des faisceaux de Cu, de Si, d’Au ou d’In d’énergie allant de 2 à 40 MeV, aux fluences s'étendant de 1×1013 à 4×1015 ions/cm2, en utilisant le Tandem ou le Tandetron. Les propriétés structurales et morphologiques du nanocomposite Au/SiO2 sont extraites en utilisant des techniques optiques car la fréquence et la largeur de la résonance plasmon de surface dépendent de la forme et de la taille des nanoparticules, de leur concentration et de la distance qui les séparent ainsi que des propriétés diélectriques du matériau dans lequel les particules sont intégrées. La cristallinité de l’arséniure d’aluminium est étudiée par deux techniques: spectroscopie Raman et spectrométrie de rétrodiffusion Rutherford en mode canalisation (RBS/canalisation). La quantité d’Au dans les couches nanocomposites est déduite des résultats RBS. La distribution de taille et l’étude de la transformation de forme des nanoparticules métalliques dans les deux nanocomposites sont déterminées par microscopie électronique en transmission. Les résultats obtenus dans le cadre de ce travail ont fait l’objet de trois articles de revue. La première publication montre la possibilité de manipuler la position spectrale et la largeur de la bande d’absorption des nanoparticules d’or dans les nanocomposites Au/SiO2 en modifiant leur structure (forme, taille et distance entre particules). Les nanoparticules d’Au obtenues sont presque sphériques. La bande d’absorption plasmon de surface (PS) correspondante aux particules distantes est située à 520 nm. Lorsque la distance entre les particules est réduite, l’interaction dipolaire augmente ce qui élargit la bande de PS et la déplace vers le rouge (602 nm). Après irradiation ionique, les nanoparticules sphériques se transforment en ellipsoïdes alignés suivant la direction du faisceau. La bande d’absorption se divise en deux bandes : transversale et longitudinale. La bande correspondante au petit axe (transversale) est décalée vers le bleu et celle correspondante au grand axe (longitudinale) est décalée vers le rouge indiquant l’élongation des particules d’Au dans la direction du faisceau. Le deuxième article est consacré au rôle crucial de la déformation plastique de la matrice et à l’importance de la mobilité des atomes métalliques dans la déformation anisotrope des nanoparticules d’Au dans les nanocomposites Au/SiO2. Nos mesures montrent qu'une valeur seuil de 2 keV/nm (dans le pouvoir d'arrêt électronique) est nécessaire pour la déformation des nanoparticules d'or. Cette valeur est proche de celle requise pour la déformation de la silice. La mobilité des atomes d’Au lors du passage d’ions est confirmée par le calcul de la température dans les traces ioniques. Le troisième papier traite la tentative de formation et de déformation des nanoparticules d’Au dans une matrice d’arséniure d’aluminium cristallin connue pour sa haute résistance à l’amorphisation et à la déformation sous bombardement ionique. Le résultat principal de ce dernier article confirme le rôle essentiel de la matrice. Il s'avère que la déformation anisotrope du matériau environnant est indispensable pour la déformation des nanoparticules d’or. Les résultats expérimentaux mentionnés ci-haut et les calculs de températures dans les traces ioniques nous ont permis de proposer le scénario de déformation anisotrope des nanoparticules d’Au dans le nanocomposite Au/SiO2 suivant: - Chaque ion traversant la silice fait fondre brièvement un cylindre étroit autour de sa trajectoire formant ainsi une trace latente. Ceci a été confirmé par la valeur seuil du pouvoir d’arrêt électronique. - L’effet cumulatif des impacts de plusieurs ions conduit à la croissance anisotrope de la silice qui se contracte dans la direction du faisceau et s’allonge dans la direction perpendiculaire. Le modèle de chevauchement des traces ioniques (overlap en anglais) a été utilisé pour valider ce phénomène. - La déformation de la silice génère des contraintes qui agissent sur les nanoparticules dans les plans perpendiculaires à la trajectoire de l’ion. Afin d’accommoder ces contraintes les nanoparticules d’Au se déforment dans la direction du faisceau. - La déformation de l’or se produit lorsqu’il est traversé par un ion induisant la fusion d’un cylindre autour de sa trajectoire. La mobilité des atomes d’or a été confirmée par le calcul de la température équivalente à l’énergie déposée dans le matériau par les ions incidents. Le scénario ci-haut est compatible avec nos données expérimentales obtenues dans le cas du nanocomposite Au/SiO2. Il est appuyé par le fait que les nanoparticules d’Au ne se déforment pas lorsqu’elles sont intégrées dans l’AlAs résistant à la déformation. / Abstract In the present thesis, we study the anisotropic deformation of gold nanoparticles embedded in amorphous silica or crystalline aluminum arsenide, under ion bombardment. We try to comprehend the mechanism responsible for this deformation and to remove any ambiguity related to the explanation of this phenomenon. A hybrid process combining sputtering and plasma enhanced chemical vapour deposition was used to fabricate Au/SiO2 layers on fused silica substrates. Structures with single and multilayer were obtained. Heating during or after deposition activates the Au atom agglomeration and favours the growth of the nanoparticles. Also, a Au/AlAs nanocomposite was obtained by ion implantation of AlAs films, followed by rapid thermal annealing. The samples of the two nanocomposites, cooled with liquid nitrogen, were irradiated with 2 to 40 MeV Cu, Si, Au or In ion beams, at fluences ranging from 1×1013 to 4×1015 ions/cm2, using a Tandem or Tandetron accelerator. The structural and morphological properties of the Au/SiO2 nanocomposite were extracted by optical means; the frequency and the width of surface plasmon resonance band depend on the nanoparticle shape and size, their concentration, the inter-particle distance and the dielectric properties of material in which the particles are embedded. The aluminum arsenide crystallinity was studied by two techniques: Raman spectroscopy and Rutherford backscattering spectrometry in channelling configuration (RBS/ channelling). The Au concentration in the nanocomposite layers was deducted from RBS results. The size distribution and metallic nanoparticles shape transformation in both nanocomposites were observed by electronic transmission microscopy. The results obtained within the framework of this work are the subject of three journal papers. The first publication shows the possibility of manipulating the width and spectral position of the gold nanoparticle absorption band in Au/SiO2 nanocomposites by modifying their structure (form, size and inter-particle distance). The obtained Au nanoparticles are nearly spherical. The surface plasmon (PS) absorption band corresponding to the distant particles is located at 520 nm. After ion irradiation, the spherical nanoparticles transform into ellipsoids aligned along the ion beam. The absorption band splits into two bands: transversal and longitudinal. The band corresponding to the ellipsoids small axis (transversal) is blue-shifted and that corresponding to the long axis (longitudinal) is red-shifted indicating the elongation of particles in the beam direction. The second paper is consecrated to the crucial role of the plastic deformation of the matrix and to the importance of the metal atomic mobility in the anisotropic nanoparticles deformation in Au/SiO2 nanocomposites. Our measurements show that a threshold value of 2 keV/nm (electronic stopping power) is necessary for the deformation of Au nanoparticles. This value is close to that required for silica deformation. Mobility of the Au atoms at the time of the ion passage is confirmed by temperature calculation within the ionic track. The third paper treats the attempt of formation and deformation of Au nanoparticles in crystalline aluminum arsenide matrix known by its high resistance to amorphisation and deformation under ionic bombardment. The principal result of the last article confirms the essential role of the matrix. It proves that the anisotropic deformation of surrounding material is indispensable for gold nanoparticles deformation. The experimental results mentioned above and temperature calculations within ionic tracks allowed us to propose the following anisotropic deformation scenario of Au nanoparticles embedded in Au/SiO2 nanocomposite: - Each ion crossing the silica melts (very briefly) a narrow cylinder around its trajectory forming thus a latent track. This is consistent with the observed threshold value in the electronic stopping power. - The cumulative effect of many separate ion impacts leads to the anisotropic growth of the silica matrix which contracts in the direction of the beam and elongates in the perpendicular direction. The overlap model of the ionic tracks was used to validate this phenomenon. - The deformation of silica generates strains which act on the nanoparticles in the plane perpendicular to the ion trajectory. In order to accommodate these strains, the Au nanoparticles deform in the beam direction. - The deformation of nanoparticles occurs each time an ion traverses the gold particle and melts a cylinder around its trajectory. The mobility of the gold atoms was confirmed by a calculation of the equivalent temperature from the deposited energy in the material by incident ions. The scenario above is compatible with our experimental data obtained in the case of the Au/SiO2 nanocomposite. It is further supported by the fact that the Au nanoparticules do not deform when they are integrated in AlAs which is resistant to the deformation.
319

Wachstum und Charakterisierung von Seltenerdoxiden und Magnesiumoxid auf Galliumarsenid-Substraten

Hentschel, Thomas 18 November 2015 (has links)
Die Erzeugung spinpolarisierter Ladungsträger in einem Halbleiter gilt als Grundvoraussetzung zur Realisierung spintronischer Bauelemente. Einen möglichen Ansatz zu deren Realisierung stellen Ferromagnet/Halbleiter(FM/HL)-Hybridstrukturen dar, deren Herstellung jedoch mit einigen Schwierigkeiten verbunden ist. Durch die Vermischung des ferromagnetischen Materials mit dem Halbleiter werden die elektronischen Eigenschaften der Hybridstruktur verändert und die Spininjektionseffizienz stark verringert. Durch das gezielte Einfügen einer dünnen Oxidschicht in den FM/HL-Grenzübergang kann die Diffusion unterdrückt, die Kristallqualität verbessert und die Effizienz der Struktur erhöht werden. Diese Arbeit beschäftigt sich mit dem Wachstum und der Charakterisierung dünner Oxidschichten, hergestellt mittels Molekularstrahlepitaxie. Zwei Seltenerdoxide, La2O3 und Lu2O3, werden auf GaAs-Substraten gewachsen und die Kristallqualität der Schichten miteinander verglichen. Mit der Heusler-Legierung Co2FeSi als Injektorschicht wird eine FM/Oxid/HL-Hybridstruktur auf Basis einer La2O3/GaAs(111)B-Struktur realisiert und magnetisch und elektrisch charakterisiert. Ein häufig verwendetes Barrierenmaterial in FM/HL-Hybridstrukturen ist Magnesiumoxid (MgO). In dieser Arbeit werden dünne MgO-Schichten auf GaAs(001) an der PHARAO-Wachstumsanlage am BESSY II erzeugt. Dies geschieht durch getrenntes Verdampfen von metallischem Mg bzw. Einleiten von molekularem Sauerstoff in die Wachstumskammer. Um die Oxidation des Halbleitersubstrats zu verhindern, wird vor dem MgO-Wachstum eine dünne Mg-Schicht abgeschieden. Abhängig von der Dicke dieser Schicht sind zwei in-plane-Orientierungen des MgO relativ zum GaAs kontrolliert einstellbar. Darüber hinaus werden Hybridstrukturen mit Eisen Fe als Injektorschicht und schrittweise erhöhter MgO-Schichtdicke gewachsen. Die Eindiffusion von Fe in das GaAs-Substrat nimmt mit zunehmender MgO-Schichtdicke um mehrere Größenordnungen ab. / The generation of spin-polarized charge carriers in a semiconductor is a basic building block for the implemention of spintronic devices. A feasible approach to their implementation are ferromagnet/semiconductur(FM/SC) hybrid structures, whose fabrication is associated with some issues. The intermixing of the ferromagnetic material with the semiconductor leads to distortion of the electrical properties of the hybrid structure and the spin injection efficiency is reduced. By intentionally inserting a thin oxide layer into the FM/SC interface diffusion can be suppressed while the crystal quality and the spin injection efficiency of the structure are both increased. In this thesis the growth and characterization of thin oxide films fabricated by molecular beam epitaxy are discussed. Two rare earth oxides, La2O3 and Lu2O3, are grown on GaAs substrates and their crystal qualities are compared. Based on La2O3/GaAs(111)B full FM/SC hybrid structures are grown with the Heusler alloy Co2FeSi as injection layer and characterized by magnetic and electrical means. Another material used as a barrier in FM/SC hybrid structures is magnesium oxide (MgO). Here, thin MgO layers are grown on GaAs(001) at the PHARAO system at BESSY II. The growth is conducted by the separated evaporation of metallic Mg and introducing molecular oxygen into the growth chamber. To avoid oxidation of the semiconducting substrate a thin Mg layer is deposited prior to the MgO growth. Depending on the Mg layer thickness two different MgO in-plane orientations can be achieved with respect to the GaAs substrate. Furthermore, FM/SC hybrid structures with iron Fe as injection layer are grown while the MgO layer thickness is increased gradually. The indiffusion of Fe into the GaAs substrate is suppressed by several orders of magnitude with increasing MgO layer thickness.
320

Molecular beam epitaxy of GaAs nanowires and their suitability for optoelectronic applications

Breuer, Steffen 19 January 2012 (has links)
Thema dieser Arbeit ist die Synthese von GaAs Nanodrähten mittels Molekularstrahlepitaxie. Dabei wird das Wachstum mittels Au- und jenes mittels selbst-induziertem VLS-Mechanismus verglichen. Die Au-induzierte Methode ist als vielseitiger Ansatz für die Herstellung von Nanodrähten bekannt. Darüberhinaus wird seit Neuerem der selbst-induzierte Mechanismus untersucht, bei dem Galliumtropfen die Rolle des Goldes übernehmen, um eine etwaige Verunreinigung mit Au von vornherein auszuschliessen. Mit beiden Wachstumsmethoden erzielen wir GaAs Nanodrähte mit großem Aspektverhältnis und epitaktischer Beziehung zum Si(111) Substrat. Während des Au-induzierten Wachstums entsteht eine parasitäre Schicht zwischen den Drähten, die mittels des selbst-induzierten Mechanismus vermieden werden. Alle GaAs Drähte sind vollständig relaxiert. Die durch die Gitterfehlanpassung (4,1\% zwischen GaAs und Si) verursachte Verspannung wird durch Versetzungen an der Grenzfläche abgebaut. Selbst-induzierte Drähten zeigen ausschließlich unpolare Seitenfacetten, während verschiedene polare Facetten für Au-induzierte Nanodrähte beschrieben werden. Mittels VLS-Nukleationstheorie könnne wir den Einfluss des Tropfenmaterials auf die Stabilität der verschiedenen Seitenfacetten erklären. Optoelektronische Anwendungen benötigen lange Minoritätsladungsträgerlebensdauern bei Raumtemperatur. Daher wurden mit (Al,Ga)As Hüllen ummantelte GaAs Nanodrähte mittels zeitaufgelöster PL vermessen. Das Ergebnis sind 2,5 ns für die selbst-induzierten aber nur 9 ps für die Au-induzierten Nanodrähte. Durch temperaturabhängige PL Messungen kann eine charakteristische Aktivierungsenergie von 77 meV nachgewiesen werden, die nur in den Au-induzierten Nanodrähten vorliegt. Dies suggeriert, dass sich Au aus den Tröpfchen in die GaAs Nanodrähte einbaut und dort als tiefes, nichtstrahlendes Rekombinationszentrum fungiert. / In this work the synthesis of GaAs nanowires by molecular beam epitaxy (MBE) using the vapour-liquid-solid (VLS) mechanism is investigated. A comparison between Au- and self-assisted VLS growth is at the centre of this thesis. While the Au-assisted method is established as a versatile tool for nanowire growth, the recently developed self-assisted variation results from the exchange of Au by Ga droplets and thus eliminates any possibility of Au incorporation. By both methods, we achieve nanowires with epitaxial alignment to the Si(111) substrates. Caused by differences during nanowire nucleation, a parasitic planar layer grows between the nanowires by the Au-assisted method, but can be avoided by the self-assisted method. Au-assisted nanowires grow predominantly in the metastable wurtzite crystal structure, while their self-assisted counterparts have the zincblende structure. All GaAs nanowires are fully relaxed and the strain arising from the lattice mismatch between GaAs and Si of 4.1\% is accommodated by misfit dislocations at the interface. Self-assisted GaAs nanowires are generally found to have vertical and non-polar side facets, while tilted and polar nanofacets were described for Au-assisted GaAs nanowires. We employ VLS nucleation theory to understand the effect of the droplet material on the lateral facets. Optoelectronic applications require long minority carrier lifetimes at room temperature. We fabricate GaAs/(Al,Ga)As core-shell nanowires and analyse them by transient photoluminescence (PL) spectroscopy. The results are 2.5 ns for the self-assisted nanowires as well as 9 ps for the Au-assisted nanowires. By temperature-dependent PL measurements we find a characteristic activation energy of 77 meV that is present only in the Au-assisted nanowires. We conclude that most likely Au is incorporated from the droplets into the GaAs nanowires and acts as a deep, non-radiative recombination centre.

Page generated in 0.0402 seconds