• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 250
  • 114
  • 21
  • Tagged with
  • 361
  • 142
  • 141
  • 103
  • 81
  • 68
  • 61
  • 56
  • 48
  • 44
  • 43
  • 43
  • 36
  • 36
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Problèmes de contrôle et équations hyperboliques non-linéaires

Vincent, Perrollaz 09 December 2011 (has links) (PDF)
Dans cette thèse nous étudierons plusieurs problèmes de la théorie du contrôle portant sur des modèles non-linéaires issus de la mécanique des fluides. Dans le chapitre un, nous étudions l'équation de Camassa-Holm sur un intervalle compact de R. Après avoir introduit de bonnes conditions aux bords et une notion de solution faible, nous montrons un théorème d'existence et un théorème d'unicité fort-faible pour le problème mixte. Dans une seconde partie nous fournissons une loi de retour pour les données aux bords qui nous permet de stabiliser asymptotiquement l'état stationnaire naturel de l'équation.\par Dans le chapitre deux, nous étudions le problème de la contrôlabilité exacte d'une loi de conservation scalaire à flux convexe, posée sur un intervalle compact et dans le cadre des solutions entropiques. On fournit des conditions suffisantes sur des fonctions de BV pour qu'elles soient atteignables en temps arbitraire depuis n'importe quelle donnée initiale. On contrôle l'équation via les données aux bords et aussi grâce à un terme source agissant uniformément en espace.\par Enfin le chapitre trois est consacré au problème de la stabilisation asymptotique des états stationnaires constants d'une loi de conservation scalaire à flux convexe, posée sur un intervalle compact et dans le cadre des solutions entropiques. On contrôle à nouveau l'équation via les données aux bords et un terme source agissant uniformément en espace. Nous fournissons deux lois de retour stationnaires (suivant que l'état à stabiliser est de vitesse critique ou non) qui nous permettent de montrer la stabilisation asymptotique globale.
62

Développement de modèles macroscopiques pour des systèmes quantiques non linéaires hors équilibre

Patel, Mamodyasine 24 January 2005 (has links) (PDF)
Cette thèse a pour objectif de proposer un modèle mathématique pour le transport électronique hors-équilibre dans des systèmes mésoscopiques tels que les hétérostuctures ou les super-réseaux. On est amené à faire une étude asymptotique de systèmes non-linéaires stationnaires 1D du type Schrödinger-Poisson hors-équilibre. Le potentiel présente des sauts ainsi que des puits quantiques ponctuels à la limite. Pour l'étude non-linéaire à proprement parler, on établit l'existence de solutions asymptotiques, et que celles-ci sont déterminées par un nombre fini de paramètres. Néanmoins, le gros de l'étude consiste en une compréhension des propriétés spectrales de l'équation de Schrödinger linéaire associée, le système non-linéaire étudié étant semi-linéaire. La nature du problème nécessite une analyse sur le spectre continu, qui plus est la présence des puits engendre des résonances quantiques. Après avoir établi l'asymptotique des fonctions du Hamiltonien, on s'attarde sur les fonctions du moment. Leur analyse, plus complexe, est étroitement liée aux résonances de l'opérateur. On fournit une réponse complète dans les cas où la répartition des puits permet un traitement de ces résonances, notamment lorsque les puits sont bien groupés ou confinés à l'intérieur de l'île et suivant qu'ils sont alimentés ou non. Cette discussion met en évidence l'existence de solutions stationnaires dites classiques, par opposition aux solutions de nature quantique. On termine l'étude en mettant en évidence l'existence de solutions quantiques dans des cas particuliers.
63

Modélisations mathématiques d'un multi-matériau

Bessoud, Anne-Laure 19 June 2009 (has links) (PDF)
Cette thèse est consacrée à la modélisation d'une structure constituée de l'assemblage de deux solides Ω+ et Ω− à l'aide d'une couche mince (d'épaisseur d'ordre ε) très rigide (d'ordre 1/ε), où ε est un petit paramètre. Différentes situations et considérations sont prises en compte. Dans un premier temps, on se place dans le cadre de l'élasticité linéaire. Une analyse asymptotique formelle conduit à un problème posé sur Ω+UΩ-US où S est l'intersection des frontières . Nous nous intéressons dans cette partie aux deux aspects suivants : - Prise en compte de la géométrie et de la rigidité de la couche intermédiaire : résultats de convergence faible et forte pour des modèles de plaques et de coques ; - Proposition de méthodes de résolution numérique par décomposition de domaine ou avec pénalisation. Nous proposons ensuite une modélisation dans un cadre plus général et obtenons dans le cadre de la Γ-convergence, un modèle en élasticité linéaire non isotrope et un modèle en élasticité non linéaire. Lorsque le matériau dans la couche rigide présente des transitions de phase solide/solide, sa densité d'énergie g possède plusieurs puits de potentiel rendant compte de microstructures. Pour modéliser ces microstructures, il convient de réécrire l'énergie dans la couche en terme de mesures de Young. L'énergie de la structure est alors donnée par une bifonctionnelle ayant pour argument un couple déplacement-mesure de Young. Une des deux fonctions marginales de la fonctionnelle limite nous redonne l'énergie (classique) du modèle limite obtenu précédemment par Γ-convergence . Nous pouvons également réécrire l'énergie de toute la structure en terme de mesures de Young. Nous montrons alors comment les solutions du problème formulé en terme de mesures de Young donnent une description microscopique des solutions classiques. Enfin, lorsque la couche mince a un comportement plastique, des difficultés liées à la croissance linéaire de l'énergie de densité g apparaissent. En s'inspirant des méthodes de régularisation de Norton-Hoff, nous étudions le cas où g est à croissance d'ordre p, 1< p <2, la densité d'énergie f dans le reste de la structure étant à croissance d'ordre 2. Nous obtenons un premier modèle limite lorsque ε tend vers 0. Nous étudions ensuite la Γ-convergence de la fonctionnelle limite obtenue lorsque p tend vers 1. Mots clés : élasticité, multi-matériau, Γ-convergence, analyse asymptotique, mesures de Young.
64

Sur l'estimation de probabilités de queues multivariées / Estimating multivariate tails probabilities

Dalhoumi, Mohamed Néjib 25 September 2017 (has links)
Cette thèse présente des contributions à la modélisation multivariée des queues de distribution. Nous introduisons une nouvelle modélisation des probabilités de queue jointes d'une distribution multivariée avec des marges Pareto. Ce modèle est inspiré de celui de Wadsworth et Tawn (2013). Une nouvelle variation régulière multivariée non-standard de coefficient une fonction à deux variables est introduite, permettant de généraliser deux approches de modélisation respectivement proposées par Ramos et Ledford (2009)et Wadsworth et Tawn (2013). En nous appuyant sur cette modélisation nous proposons une nouvelle classe de modèles semi-paramétriques pour l'extrapolation multivariée selon des trajectoires couvrant tout le premier quadrant positif. Nous considérons aussi des modèles paramétriques construits grâce à une mesure non-négative satisfaisant une contrainte qui généralise celle de Ramos et Ledford (2009). Ces nouveaux modèles sont flexibles et conviennent tant pour les situations de dépendance que d'indépendance asymptotique. / This PhD thesis presents contributions to the modelling of multivariate extremevalues. We introduce a new tail model for multivariate distribution with Pareto margins. This model is inspired from the Wadsworth and Tawn (2013) one. A new non-standard multivariate regular variation with index equals to a function of two variables is thus introduced to generalize both modeling approaches proposedby Ramos and Ledford (2009) and Wadsworth and Tawn (2013), respectively. Building on this new approach we propose a new class of non-parametric models allowing multivariate extrapolation along trajectories covering the entire first positive quadrant. Similarly we consider parametric models built with a non-negative measure satisfying a constraint that generalizes the Ramos and Ledford (2009) one. These new models are flexible and valid in both situations of dependence or asymptotic independence.
65

Open periodic waveguides : Theory and computation / Guides d'ondes périodiques ouverts : Théorie et calcul

Vasilevskaya, Elizaveta 07 July 2016 (has links)
Cette thèse porte sur la propagation des ondes acoustiques dans des milieux périodiques.Ces milieux ont des propriétés remarquables car le spectre associée à l’opérateur d’ondesdans ces milieux a une structure de bandes : il existe des plages de fréquences danslesquelles les ondes monochromatiques ne se propagent pas. Plus intéressant encore, enintroduisant des défauts linéiques dans ce type de milieux, on peut créer des modes guidésà l’intérieur de ces bandes de fréquences interdites. Dans ce manuscrit nous montrons qu’ilest possible de créer de tels modes guidés dans le cas de milieux périodiques particuliersde type quadrillage : plus précisément, le domaine périodique considéré est constitué duplan R2 privé d’un ensemble infini d’obstacles rectangulaires régulièrement espacés (d’unedistance ") dans deux directions orthogonales du plan, que l’on perturbe localement endiminuant la distance entre deux colonnes d’obstacles. Les résultats sont ensuite étendusau cas 3D.Ce travail comporte un aspect théorique et un aspect numérique. Du point de vue théoriquel’analyse repose sur le fait que, comme " est petit, le spectre de l’opérateur associé ànotre problème est "proche" du spectre d’un problème posé sur le graphe obtenu commela limite géométrique du domaine quand " tend vers 0. Or, pour le graphe limite, il estpossible de calculer explicitement le spectre. Ensuite, en utilisant des méthodes d’analyseasymptotique on étudie le spectre de l’opérateur non-limite. On illustre les résultats théoriquespar des résultats numériques obtenus à l’aide d’une méthode numérique spécialementdédiée aux milieux périodiques : cette dernière est basée sur la réduction du problèmede valeurs propres initial (linéaire) posé dans un domaine non-borné à un problème nonlinéaireposé dans un domaine borné (en utilisant l’opérateur de Dirichlet-to-Neumannexact). / The present work deals with propagation of acoustic waves in periodic media. Thesemedia have particularly interesting properties since the spectrum associated with theunderlying wave operator in such media has a band-gap structure: there exist intervals offrequences for which monochromatic waves do not propagate. Moreover, by introducinglinear defects in this kind of media, one can create guided modes inside the bands offorbidden frequences. In this work we show that it is possible to create such guidedmodes in the case of particular periodic media of grid type: more precisely, the periodicdomain in question is R2 minus an infinite set of rectangular obstacles periodically spacedin two orthogonal directions (the distance between two neighbour obstacles being "),which is locally perturbed by diminishing the distance between two columns of obstacles.The results are extended to the 3D case.This work has a theoretical and a numerical aspect. From the theoretical point of view theanalysis is based on the fact that, " being small, the spectrum of the operator associatedwith our problem is "close" to the spectrum of a problem posed on a graph which is ageometric limit of the domain as " tends to 0. However, for the limit graph the spectrumcan be computed explicitly. Then, we study the spectrum of the non-limit operatorusing asymptotic analysis. Theoretical results are illustrated by numerical computationsobtained with a numerical method developed for study of periodic media: this method isbased on the reduction of the initial (linear) eigenvalue problem posed in an unboundeddomain to a non-linear problem posed in a bounded domain (using the exact Dirichletto-Neumann operator).
66

Calcul asymptotique de résonances de plasmon de cavités rectangulaires / Asymptotics of plasmonic resonnances of rectangular cavities

Gtet, Abdelfatah 19 December 2017 (has links)
La diffraction d'une onde électromagnétique par une structure présentant des échelles d'espace petites devant la longueur d'onde est un phénomène complexe qui décrit à la fois l'interaction entre l'onde et la géométrie de la structure et la matière qui la constitue. Quand la fréquence n'est pas résonnante, l'onde incidente interagit faiblement avec des petites irrégularités de la structure. En langage mathématique, ceci se traduit par le fait que la différence entre les champs électromagnétiques de la structure perturbée et ceux de la structure de référence est de l'ordre de la perturbation. Par contre, quand la fréquence est résonante, le comportement de l'onde est très sensible aux petites déformations singulières de la géométrie de la structure. Cette sensibilité est susceptible d'être détectée dans les mesures du champ lointain, et est la brique de base de plusieurs capteurs et filtres plasmoniques. Dans ce projet de thèse nous nous sommes intéressés aux propriétés optiques de surfaces métalliques comportant des cavités sub-longueur d'onde distribués périodiquement ou non, et de couches métalliques minces. Ces structures possèdent des résonances électromagnétiques proches de l’axe réel, et sont capables de concentrer l’énergie électromagnétique dans des volumes bien inférieurs à la cubique de la longueur d’onde incidente. La compréhension de ce phénomène est un enjeu important pour le développement des spectroscoepies ultra-sensibles, mais aussi dans le domaine des bio-capteurs et de l’opto-électronique. En utilisant des techniques asymptotiques couplées avec des équations intégrales, nous avons déterminé le développement asymptotique des fréquences de résonance de ces structures quand le rapport entre l'échelle de la structuration spatiale et la longueur d'onde tend vers zéro. Les modèles asymptotiques dérivés sont beaucoup plus simples à étudier et à simuler et rendent parfaitement compte des résultats expérimentaux. Ils permettent de prédire les fréquences résonnantes, la quantité d’énergie localisée en fonction de la géométrie des structures et des propriétés des matériaux qui les constituent. / Rough metallic surfaces with subwavelength structurations possess extraordinary diffractive properties: at certain frequencies, one may observe fine localization and very large enhancement of the electromagnetic fields. The discovery of these phenomena has raised considerable interest as potential applications are numerous (optical switches, sensors, devices for microscopy). This behavior results from the combination of very complex interaction between the incident excitation, the geometry and the material properties of the scatterer. The main goal of this thesis is to better understand these phenomena from the mathematical point of view.In mathematical terms, the localization and concentration of the fields is the mark of a resonance phenomenon. In our context, the corresponding resonant field may be surface plasmons, i.e., waves that propagate along the interface of the grating, and that decay exponentially away from it. Another type of resonance is due to possible cavity modes. Thus, the study of these phenomena pertains to eigenvalue problems for the solutions of the Maxwell system, in geometric configurations where in the whole of a dielectric (generally air) and a metal are separated by an infinite rough interface.We are interested in particular micro-structured devices, namely metallic surfaces that contain rectangular grooves with sub-wavelength apertures, and thin plane layers. Configurations of this type can be manufactured quite precisely and have been subject to many experimental works. The simple geometry of these structures allows us to transform the eigenvalue problem for the Maxwell system into a nonlinear eigenvalue problem for an integral operator that depends on a small parameter, which, using tools from analytic perturbation of operators theory, lends itself to a precise asymptotic analysis. Precisely, we showed that the resonances of these structures converge tothe zeros of some explicit dispersion equations when the ratio between the roughness parameter and the wavelength tends to zero. These asymptotic models provide a precise localization of the resonances in the complex plane, and are suited for numerical approximation, shape and material optimization.
67

On p-adic decomposable form inequalities / Sur des inégalités p-adiques de formes décomposables

Liu, Junjiang 05 March 2015 (has links)
Soit F ∈ Z[X1, . . . ,Xn] une forme décomposable, c’est-à-dire un polynôme homogène de degré d qui peut être factorisé en formes linéaires sur C. Notons NF (m) le nombre de solutions entières à l’inégalité |F(x)| ≤ m et VF (m) le volume de l’ensemble {x ∈ Rn :|F(x)| ≤ m}. En 2001, Thunder [19] a prouvé une conjecture de W.M. Schmidt, énonçant que, sous des conditions de finitude appropriées, on a NF (m) << m n/d où la constante implicite ne dépend que de n et d. En outre, il a montré une formule asymptotique NF (m) = m n/d V (F) + OF (m n/(d+n−2)) où, cependant, la constante implicite dépend de F. Dans des articles ultérieurs, la préoccupation de Thunder était d’obtenir une formule asymptotique similaire, mais avec la borne supérieure du terme d’erreur |NF (m) −m n/dV (F)| ne dépendant que de n et d. Dans [20] et [22], il a réussi à prouver que si gcd(n, d) = 1, la constante implicite dans le terme d’erreur peut en effet être fonction uniquement de n et d. L’objectif principal de cette thèse est d’étendre les résultats de Thunder au cadre p-adique. `A savoir, nous sommes intéressés par les solutions à l’inégalité |F(x)| · |F(x)|p1 . . . |F(x)|pr ≤ m en x = (x1, x2, . . . ,xn) ∈ Zn avec gcd(x1, x2, . . . ,xn, p1 · · · pr) = 1. (5.4.9) où p1, . . . , pr sont des nombres premiers distincts et |·|p désigne la valeur absolue p-adique habituelle. Le chapitre 1 est consacré au cadre p-adique de ce problème et aux preuves des lemmes auxiliaires. Le chapitre 2 est consacré à l’extension des résultats de Thunder de [19]. Dans le chapitre 3, nous montrons l’effectivité de la condition sous laquelle le nombre de solutions de (5.4.9) est fini. Le chapitre 4 et le chapitre 5 généralisent les résultats de Thunder dans [20], [21] et [22]. / Let F ∈ Z[X1, . . . ,Xn] be a decomposable form, that is, a homogeneous polynomial of degree d which can be factored into linear forms over C. Denote by NF (m) the number of integer solutions to the inequality |F(x)| ≤ m and by VF (m) the volume of the set{x ∈ Rn : |F(x)| ≤ m}. In 2001, Thunder [19] proved a conjecture of W.M. Schmidt, stating that, under suitable finiteness conditions, one has NF (m) << mn/d where the implicit constant depends only on n and d. Further, he showed an asymptotic formula NF (m) = mn/dV (F) + OF (mn/(d+n−2)) where, however, the implicit constant depends on F. In subsequent papers, Thunder’s concern was to obtain a similar asymptotic formula, but with the upper bound of the error term |NF (m)−mn/dV (F)| depending only on n and d. In [20] and [22], hemanaged to prove that if gcd(n, d) = 1, the implicit constant in the error term can indeed be made depending only on n and d.The main objective of this thesis is to extend Thunder’s results to the p-adic setting. Namely, we are interested in solutions to the inequality |F(x)| · |F(x)|p1 . . . |F(x)|pr ≤ m in x = (x1, x2, . . . ,xn) ∈ Zn with gcd(x1, x2, . . . ,xn, p1 · · · pr) = 1. (5.4.3)where p1, . . . , pr are distinct primes and | · |p denotes the usual p-adic absolute value.Chapter 1 is devoted to the p-adic set-up of this problem and to the proofs of the auxiliary lemmas. Chapter 2 is devoted to extending Thunder’s results from [19]. In chapter 3, we show the effectivity of the condition under which the number of solutions of (5.4.3) is finite. Chapter 4 and chapter 5 generalize Thunder’s results from [20], [21] and [22].
68

Deux problèmes d’estimation statistique pour les processus stochastiques / Two problems of statistical estimation for stochastic processes

Gasparyan, Samvel 12 December 2016 (has links)
Le travail est consacré aux questions de la statistique des processus stochastiques. Particulièrement, on considère deux problèmes d'estimation. Le premier chapitre se concentre sur le problème d'estimation non-paramétrique pour le processus de Poisson non-homogène. On estime la fonction moyenne de ce processus, donc le problème est dans le domaine d'estimation non-paramétrique. On commence par la définition de l'efficacité asymptotique dans les problèmes non-paramétriques et on procède à exploration de l'existence des estimateurs asymptotiquement efficaces. On prend en considération la classe des estimateurs à noyau. Dans la thèse il est démontré que sous les conditions sur les coefficients du noyau par rapport à une base trigonométrique, on a l'efficacité asymptotique dans le sens minimax sur les ensembles divers. Les résultats obtenus soulignent le phénomène qu'en imposant des conditions de régularité sur la fonction inconnue, on peut élargir la classe des estimateurs asymptotiquement efficaces. Pour comparer les estimateurs asymptotiquement efficaces (du premier ordre), on démontre une inégalité qui nous permet de trouver un estimateur qui est asymptotiquement efficace du second ordre. On calcule aussi la vitesse de convergence pour cet estimateur, qui dépend de la régularité de la fonction inconnue et finalement on calcule la valeur minimale de la variance asymptotique pour cet estimateur. Cette valeur joue le même rôle dans l'estimation du second ordre que la constantede Pinsker dans le problème d'estimation de la densité ou encore l'information de Fisher dans les problèmes d'estimation paramétrique.Le deuxième chapitre est dédié au problème de l’estimation de la solution d’une équation différentielle stochastique rétrograde (EDSR). On observe un processus de diffusion qui est donnée par son équation différentielle stochastique dont le coefficient de la diffusion dépend d’un paramètre inconnu. Les observations sont discrètes. Pour estimer la solution de l’EDSR on a besoin d’un estimateur-processus pour leparamètre, qui, chaque instant n’utilise que la partie des observations disponible. Dans la littérature il existe une méthode de construction, qui minimise une fonctionnelle. On ne pouvait pas utiliser cet estimateur, car le calcul serait irréalisable. Dans le travail nous avons proposé un estimateur-processus qui a la forme simple et peut être facilement calculé. Cet estimateur-processus est un estimateur asymptotiquementefficace et en utilisant cet estimateur on estime la solution de l’EDSR de manière efficace aussi. / This work is devoted to the questions of the statistics of stochastic processes. Particularly, the first chapter is devoted to a non-parametric estimation problem for an inhomogeneous Poisson process. The estimation problem is non-parametric due to the fact that we estimate the mean function. We start with the definition of the asymptotic efficiency in non-parametric estimation problems and continue with examination of the existence of asymptotically efficient estimators. We consider a class of kernel-type estimators. In the thesis we prove that under some conditions on the coefficients of the kernel with respect to a trigonometric basis we have asymptotic efficiency in minimax sense over various sets. The obtained results highlight the phenomenon that imposing regularity conditions on the unknown function, we can widen the class ofasymptotically efficient estimators. To compare these (first order) efficient estimators, we prove an inequality which allows us to find an estimator which is asymptotically efficient of second order. We calculate also the rate of convergence of this estimator, which depends on the regularity of the unknown function, and finally the minimal value of the asymptotic variance for this estimator is calculated. This value plays the same role in the second order estimation as the Pinsker constant in the density estimation problem or the Fisher information in parametric estimation problems. The second chapter is dedicated to a problem of estimation of the solution of a Backward Stochastic Differential Equation (BSDE). We observe a diffusion process which is given by its stochastic differential equation with the diffusion coefficientdepending on an unknown parameter. The observations are discrete. To estimate the solution of a BSDE, we need an estimator-process for a parameter, which, for each given time, uses only the available part of observations. In the literature there exists a method of construction, which minimizes a functional. We could not use this estimator, because the calculations would not be feasible. We propose an estimator-process which has a simple form and can be easily computed. Using this estimator we estimate the solution of a BSDE in an asymptotically efficient way.
69

Méthode asymptotique numérique pour l'étude multi échelle des instabilités dans les matériaux hétérogènes / Asymptotic numerical method for multiscale study of the instabilities in the heterogeneous materials

Nezamabadi, Saeid 03 December 2009 (has links)
La modélisation multi-échelle des matériaux hétérogènes est un challenge en mécanique numérique. Dans le contexte non linéaire, les propriétés effectives des matériaux hétérogènes ne peuvent pas être obtenues par les techniques utilisées pour les milieux linéaires car le principe de superposition n'est plus valable. Ainsi, dans le contexte des éléments finis, une alternative au maillage de l'ensemble de la structure avec la prise en compte de toutes les hétérogénéités, est l'utilisation de la méthode d'éléments finis multi-échelles (EF2). Les techniques de ce type offrent de nombreux avantages, tels que la prise en compte : des grandes déformations au niveau micro et macro sont souvent résolus par les procédures classiques de Newton-Raphson, qui sont généralement adaptées à la résolution des problèmes non linéaires mais qui présentent des difficultés en présence d'instabilités. Dans cette thèse, la combinaison de la méthode des éléments finis multi-échelles (EF2) et la méthode asymptotique numérique (MAN), surnommée MAN multi-échelle, permet de mettre en œuvre une technique numérique efficace pour traiter les problèmes d'instabilités dans le cadre des matériaux hétérogènes. Ces instabilités peuvent survenir à la fois au niveau micro et au niveau macro. Différentes classes de comportement des matériaux ont été implantées dans notre procédure. Pour améliorer le conditionnement du problème multi-échelle à résoudre, une technique d'homogénéisation du second ordre a été également adaptée dans le cadre de la technique MAN multi-échelle. Par ailleurs, afin de réduire le temps de calcul, quelques techniques ont été proposées dans ce travail / The multiscale modelling of the heterogeneous materials is a challenge in computational mechanics. In the nonlinear case, the effective properties of heterogeneous materials cannot be obtained by the techniques used for linear media because the superposition principle is no longer valid. Hence, in the context of the finite element method, an alternative to mesh the whole structure, including all heterogeneities, is the use of the multiscale finite element method (FE2). These techniques have many advantages, such as taking into account : large deformations at the micro and macro scales, the nonlinear constitutive behaviors of the material, and microstructure evolution. The nonlinear problems in micro and macro scales are often solved by the classical Newton-Raphson procedures, which are generally suitable for solving nonlinear problems but have difficulties in the presence of instabilities. In this thesis, the combination of the multiscale finite element method (FE2) and the asymptotic numerical method (ANM), called Multiscale-ANM, allows one to obtain a numerical effective technique for dealing with the instability problems in the context of heterogeneous materials. These instabilities can occur at both micro and macro levels. Different classes of material constitutive relation have been implemented within our procedure. To improve the multiscale problem conditioning, a second order homogenization technique was also adapted in the framework of Multiscale-ANM technique. Furthermore, to reduce the computational time, some techniques been proposed in this work
70

Micromagnétismes des films minces / micromagnetics of very thin films

Soueid, Salwa 10 March 2015 (has links)
Les matériaux ferromagnétiques possèdent la propriété de devenir magnétiques, c’est à dire de s'aimanter, lorsqu'ils sont en présence d'un champ magnétique et de conserver une partie de leur magnétisation lorsque le champ est supprimé. C’est pour cette raison, ces matériaux sont devenus d'usage dans de nombreuses applications industrielles. Le modèle mathématique du micromagnétisme a été introduit par W.F. Brown (voir [11]) pour d'écrire le comportement de l'aimantation dans les matériaux ferromagnétiques depuis les années 40.Pour étudier ce phénomène, on le transforme en un système l'étude de ces équations donnent les informations physiques attendus dans des espaces appropriés. Dans cette thèse on s’est intéressé à des structures minces de films ferromagnétiques. En pratique, une structure mince est un objet tridimensionnel ayant une ou deux directions prépondérantes comme par exemple une plaque, une barre ou un fil. Nous étudions le comportement de l'énergie quand l'épaisseur du film tend vers zéro. Dans le premier travail, nous généralisons un résultat dû à Gioia et James à des dimensions supérieures à 4. Plus précisément, on considère un domaine mince borné ferromagnétique dans R^n, le but est d'étudier les comportements asymptotiques de l'énergie libre du domaine mince ferromagnétique. Dans le deuxième travail, on s'intéresse à une approche dynamique de problème micromagnétisme . On étudie le comportement asymptotique des solutions des équations Landau Lifshitz dans un multi-structure mince ferromagnétique composée de deux films minces orthogonaux d'épaisseur respectif h^a et h^b. On distingue différents régimes: lorsque lim h^a_n/h^b_n in ]0;infty[. On identifie le problème limite et on montre que ce dernier est couplé par une condition de jonction sur l'axe vertical x2, pour tout x2 in] -1/2,1/2[.La troisième partie est liée à ce dernier travail, nous complétons l'étude précédente lorsque lim h^a_n/h^b_n = 0 et +infty (voir [2]). En suite dans la quatrième chapitre, on a étudié des phénomènes de micromagnétisme dans un multi-structure mince: il s'agit d'un ouvert connexe de R3 composé de deux parties ayant un angle etha in ]0; pi[, le but est d'étudier les comportements asymptotiques de l'énergie libre dans ce domaine lorsque l'épaisseur tend vers zéro. Il s'agit d'un problème non convexe et non local (…) / The ferromagnetic materials possess the magnetic property of future, that is to magnetize, when they are in the presence of a magnetic field and to keep a part of their magnetizing when the field is deleted. It is for that reason, these materials became of use in numerous industrial applications (...)

Page generated in 0.0678 seconds