• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 250
  • 114
  • 21
  • Tagged with
  • 361
  • 142
  • 141
  • 103
  • 81
  • 68
  • 61
  • 56
  • 48
  • 44
  • 43
  • 43
  • 36
  • 36
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Processus de Poisson généralisé autorégressif d'ordre 1

Najem, El-Halla January 2004 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
82

Combinatoire algébrique et géométrique des nombres de Hurwitz / Algebraic and geometric combinatorics of Hurwitz numbers

Sage, Marc 22 June 2012 (has links)
Ce mémoire se veut une synthèse, destinée à la communauté combinatoricienne, de quelques outils développés pour aborder le problème d'Hurwitz ainsi qu'une présentation des résultats récoltés. Le problème d'Hurwitz consiste à évaluer, dans un groupe symétrique, le nombre (dit d'Hurwitz) de factorisations transitives de la permutation identité dont on a imposé le type cyclique des facteurs. Nous décrivons tout d'abord les origines topologiques de ce problème à travers le dénombrement des revêtements ramifiés de la sphère. Nous présentons également un cadre algébrique naturel, le monoïde des permutations scindées, qui permet d'exprimer les nombres d'Hurwitz comme coefficients de structure de l'algèbre de ce monoïde, plus précisément de la sous-algèbre engendrée par les classes de conjugaison, dont une base naturelle est indexée par les multipartitions (ou partitions scindées). La théorie des représentations de cette algèbre fournit un algorithme pour calculer les nombres d'Hurwitz à une partition dont la complexité (minimale, uniforme et exponentielle) est bien meilleure que celle d'une approche naïve. Ce cadre algébrique donne par ailleurs une formule décrivant les séries d'Hurwitz à plusieurs partitions comme polynômes en les séries d'Hurwitz à une seule partition. Nous présentons secondement le cadre géométrique dans lequel s'expriment d'une part la formule ELSV, laquelle décrit les nombres d'Hurwitz à une partition comme fonctions de certaines intégrales, d'autre part un théorème de M. Kazarian exprimant les séries de Hurwitz à une partition comme polynômes en certaines séries formelles dont l'étude asymptotique est achevée. Une fois décrit le fonctionnement de ce cadre intégral, nous récoltons l'asymptotique de tous les nombres d'Hurwitz / This thesis is meant to be a digest, adressed to the combinatorician community, of some tools developped to tackle the problem of Hurwitz, as well as an exhibition of the thus-harvested results. The problem of Hurwitz consists of computing, in a symmetric group, the (so-called Hurwitz) number of transitive factorisations of the identity permutation whose factors have prescribed cyclic types. We first describe the topological layout of this problem through the enumeration of the ramified coverings of the sphere. We also present a natural algebraic frame, the monoid of split permutations, which allows to describe Hurwitz numbers as structure coeffcients of the algebra of this monoid, more precisely of the subalgebra spanned by the conjugacy classes, whose natural basis is indexed by multipartitions (or split partitions). The representation theory of this algebra yields an algoithm to compute one-partition Hurwitz numbers whose complexity (minimal, uniform and exponential) is far better than that of a naive edging about. This algebraic frame yields a formula describing several-partition Hurwitz series as polynomials in one-partition Hurwitz series. We secondly present the geometric frame in which are been expressed on the one hand the ELSV formula, which describes one-partition Hurwitz numbers as functions of some integrals, one the other hand a theorem of M. Kazarian expressing one-partition Hurwitz series as polynomials in some formal power series whose asymptotics is completly understood. Once the using of this integration frame has been described, we derive the asymptotics of all Hurwitz numbers
83

Différentiation automatique de codes mécaniques : application à l'analyse de sensibilité des tôles sandwich aux paramètres de modélisation / Automatic differentiation of mechanical codes : application to sensitivity analysis of viscoelastic sandwich sheets with respect to modeling parameters

Lampoh, Komlanvi 18 September 2012 (has links)
En ingénierie, pour mieux comprendre le comportement mécanique d'une structure soumise à une certaine perturbation des paramètres de conception, on procède souvent à une analyse de sensibilité. Celle-ci fournit des informations quantitatives et qualitatives sur le comportement du modèle étudié et offre un accès aux gradients utilisables dans ces méthodes d'identification et d'optimisation. Dans cette thèse, nous démontrons que ces informations peuvent être obtenues à coût de développement faible en appliquant un outil de Différentiation Automatique (DA) au code informatique qui implémente le modèle. Nous adaptons la technique DA à la méthode asymptotique numérique, dans sa version Diamant, pour le calcul de la sensibilité des solutions numériques de problèmes non-linéaires discrétisés par la méthode des éléments finis. Nous discutons de manière générique à la fois les aspects théoriques et l'implémentation de plusieurs algorithmes écrits en Matlab. Les applications concernent des poutres et des plaques sandwich dans les cas statiques et dynamique (vibration libre). Les sensibilités sont calculées par rapport aux paramètres géométriques, mécanique et par rapport à des matrices de rigidité élémentaires. La généralité de nos développements permet de prendre en compte plusieurs lois viscoélastiques sans effort supplémentaire. Trois types de modèles viscoélastiques sont étudiés : module complexe constant, faible amortissement et fort amortissement. Comparée à l'approximation par différences finis souvent utilisée en mécanique, notre approche fournit des résultats plus précis pour la sensibilité de la réponse d'une structure lorsque les paramètres de conception sont perturbés. Elle permet aussi de réduire le temps de calcul / In engineering, for a better understanding of the mechanical behavior of a structure submitted to some perturbation of the modeling parameters, one often proceed to a sensitivity analysis. This provides quantitative and qualitative information on the behavior of the model under study and gives access to gradients that may be used in identification and optimization methods. In this thesis, we demonstrate that this information may be obtained at a low development effort by applying an Automatic Differentiation (AD) tool to the computer code that implements the model. We adapt the AD techniques to the Asymptotic Numerical Method (ANM), in its Diamant version for sensitivity computations of numerical solutions of nonlinear problems discretized through a finite element method. We discuss in a generic manner both the theoretical aspects and the implementation of several algorithms written in Matlab. Applications are concerned with sandwich beams and sandwich plates in both the static and dynamic (free vibration) cases. Sensitivities are computed with respect to geometric and mechanical parameters, and with respect to elementary stiffness matrix. The generality of our developments allows to take into account several viscoelastic laws with no additional effort. Three kinds of viscoelastic models are studied: constant complex modulus, low damping and higher damping. In comparison with the finite difference approximation often used in mechanics, our approach provides more accurate results for the sensitivity of the structure response to a perturbation of the modeling parameters. It also allows a reduction of the computation effort
84

Etude asymptotique et numérique d'écoulements de fluides non-newtoniens dans des structures tubulaires minces / Asymptotical and numerical analysis of a viscous non newtonian fluid flow in thin tube structures

Fares, Roula 21 November 2011 (has links)
Afin de modéliser le flux sanguin dans les vaisseaux, l’équation de Stokes avec une viscosité variable est considérée dans une structure tubulaire mince, c’est à dire, dans une union de rectangles minces avec des hauteurs d’ordre ε et des bases d’ordre 1. Un développement asymptotique de la solution est construit. Dans le cas des perturbations aléatoires de la viscosité constante, nous prouvons que le premier terme de la vitesse est déterministe, alors que pour la pression, il est aléatoire, mais les espérances de la pression satisfont l’équation déterministe de Darcy. Les estimations pour la différence entre la solution exacte et son approximation asymptotique sont prouvées. Enfin, nous donnons quelques résultats numériques. Nous étendons les résultats à une structure tubulaire mince composée de deux rectangles minces avec des parois élastiques qui sont reliés par un domaine dont les parois sont rigides. Après une approche variationnelle du problème qui nous donne des résultats d’existence, d’unicité, de régularité, et certaines estimations, a priori, nous construisons une solution asymptotique. Nous présentons et résolvons les problèmes de tous les termes du développement asymptotique. Pour deux cas différents, nous décrivons l’ordre des étapes de résolution de l’algorithme du problème et nous construisons le terme principal du développement asymptotique. Et enfin, nous présentons une analyse variationnelle et asymptotique pour un cas plus général où la viscosité dépend du tenseur des déformations dans un canal mince. Par le biais des estimations a priori, nous justifions nos constructions asymptotiques, par l’obtention d’une petite erreur entre les solutions exactes et asymptotiques / In order to model the blood flow through vessels, the Stokes equation with the nonconstant viscosity is considered in a thin tube structure, i.e., in a connected union of thin rectangles with heights of order ε and bases of order 1 with smoothened boundary. An asymptotic expansion of the solution is constructed. In the case of random perturbations of the constant viscosity, we prove that the leading term for the velocity is deterministic, while for the pressure it is random, but the expectations of the pressure satisfies the deterministic Darcy equation. Estimates for the difference between the exact solution and its asymptotic approximation are proved. Finally, we give some numerical results. We extend the results for a thin tube structure composed by two thin rectangles with lateral elastic boundaries which are connected by a domain with rigid boundaries. After a variational approach of the problem which gives us existence, uniqueness, regularity results and some a priori estimates, we construct an asymptotic solution. We present and solve the problems for all the terms of the asymptotic expansion. For two different cases, we describe the order of steps of the algorithm of solving the problem and we construct the main term of the asymptotic expansion. And finally, we present a variational and an asymptotic analysis for a more general case where the viscosity depends on the infinitesimal strain tensor in a thin channel. By means of the a priori estimates, we justify our asymptotic constructions, by obtaining a small error between the exact and the asymptotic solutions
85

Etude de certains ensembles singuliers associés à une application polynomiale / Some singular sets associated to a polynomial maps

Nguyen thi bich, Thuy 30 September 2013 (has links)
Ce travail comporte deux parties dont la première concerne l'ensemble asymptotique $S_F$ d'une application polynomiale $F: C^n to C^n$. Dans les année 90s, Jelonek a montré que cet ensemble est une variété algébrique complexe singulière de dimension (complexe) $n-1$. Nous donnons une méthode, appelée {it méthode des fa{c c}ons}, pour stratifier cet ensemble. Nous obtenons une stratification de Thom-Mather. Par ailleurs, il existe une stratification de Whitney de $S_F$ telle que l'ensemble des fa{c c}ons possibles soit constant sur chaque strate. En utilisant les fa{c c}ons, nous donnons un algorithme pour expliciter l'ensemble asymptotique d'une application quadratique dominante en trois variables. Nous obtenons aussi une liste des ensembles asymptotiques possibles dans ce cas. La deuxième partie concerne l'ensemble $V_F$ : En 2010, Anna et Guillaume Valette ont construit une pseudo-variété réelle $V_F subset R^{2n + p}$, où $p > 0$, associée à une application polynomiale $F: C^n to C^n$. Dans le cas $n = 2$, ils ont prouvé que si $F$ est une application polynomiale de déterminant jacobien partout non nul, alors $F$ n'est pas propre si et seulement si l'homologie d'intersection de $V_F$ n'est pas triviale en dimension 2. Nous donnons une généralisation de ce résultat, dans le cas d'une application polynomiale $F : C^n to C^n$ de jacobien partout non nul. Nous donnons aussi une méthode pour stratifier l'ensemble $V_F$. Comme applications, nous obtenons des stratifications de l'ensemble des valeurs critiques asymptotiques de $F$ et de l'ensemble des points de bifurcation de $F$. / There are two parts in the present work. The first part concerns the asymptotic set of a polynomial mapping $F: C^n to C^n$. In the 90s, Zbigniew Jelonek showed that this set is a $(n-1)$ - (complex) dimensional singular variety. We give a method, called {it m'ethode des fa{c c}ons}, for stratifying this set. We obtain a Thom-Mather stratification. Moreover, there exists a Whitney stratification such that the set of possible fa{c c}ons is constant on every stratum. By using the fa{c c}ons, we give an algorithm for expliciting the asymptotic sets of a dominant quadratic polynomial mapping in three variables. As a result, we have a complete list of the asymptotic sets in this case. The second part concerns the set called Valette set $V_F$. In 2010, Anna and Guillaume Valette constructed a real pseudomanifold $V_F subset R^{2n + p}$, where $p > 0$, associated to a polynomial mapping $F: C^n to C^n$. In the case $n = 2$, they proved that if $F$ is a polynomial mapping with nowhere vanishing Jacobian, then $F$ is not proper if and only if the homology (or intersection homology) of $V_F$ is not trivial in dimension 2. We give a generalization of this result, in the case of a polynomial mapping $F : C^n to C^n$ with nowhere vanishing Jacobian. We give also a method for stratifying the set $V_F$. As applications, we have the stratifications of the set of asymptotic critical values of $F$ and the set of bifurcation points of $F$.
86

Analyse et optimisation des batteurs dynamiques non linéaires / Analysis and optimization of nonlinear vibration absorbers

Djemal, Fathi 15 January 2015 (has links)
Les vibrations qui sont en général source de dérangement, d’usure et même destruction des machines et structures mécaniques doivent être contrôlées ou éliminées. Pour cette raison, la lutte contre les vibrations est devenue depuis des années un enjeu majeur pour les chercheurs de laboratoire et de développement dans l’industrie afin de développer des solutions efficaces contre ces problèmes. De nombreuses technologies ont donc été développées. Parmi ces technologies, les absorbeurs de vibration non linéaires présentent des performances importantes dans l’atténuation de vibration sur une large bande de fréquences. C’est dans ce contexte que cette thèse se focalise sur l’analyse et l’optimisation des absorbeurs de vibration non linéaires. L’objectif de cette thèse est d’analyser le comportement dynamique non linéaire des systèmes présentant des absorbeurs de vibration non linéaires. Pour cela, un modèle dynamique d’un système à deux degrés de liberté est développé mettant en équations le comportement non linéaire. La résolution des équations de mouvement est faite par la Méthode Asymptotique Numérique (MAN). La performance de cette méthode est montrée via une comparaison avec la méthode de Newton-Raphson. L’analyse des modes non linéaires du système ayant une non-linéarité cubique est faite par une formulation explicite des Fonctions de Réponse en Fréquence non linéaires (FRFs) et les Modes Normaux Non linéaires (MNNs). Un démonstrateur sur la base d’un système simple à deux degré de liberté est mis en place afin de recaler les modèles envisagés sur la base des résultats expérimentaux trouvés. / Vibrations are usually undesired phenomena as they may cause discomfort, disturbance, damage, and sometimes destruction of machines and structures. It must be reduced or controlled or eliminated. For this reason, the vibrations attenuation became a major issue for scientists and researchers in order to develop effective solutions for these problems. Many technologies have been developed. Among these technologies, the nonlinear vibration absorbers have significant performance in the vibration attenuation over a wide frequency band. In this context, this thesis focuses on the analysis and optimization of nonlinear vibration absorbers. The objective of the thesis is to analyze the nonlinear dynamic behavior of systems with nonlinear vibration absorbers. For this, a dynamic model of a two degrees of freedom system is developed. The Asymptotic Numerical Method (ANM) is used to solve the nonlinear equations of motion. The performance of this method is shown via a comparison with the Newton-Raphson method. The nonlinear modal analysis system with cubic nonlinearity is made by an explicit formulation of the nonlinear Frequency Response Functions (FRFs) and Nonlinear Normal Modes (MNNs). An experimental study is performed to validate the numerical results.
87

Elastodynamic homogenization of periodic media / Homogénéisation élastodynamique de milieux périodiques

Nassar, Hussein 01 October 2015 (has links)
La problématique récente de la conception de métamatériaux a renouvelé l'intérêt dans les théories de l'homogénéisation en régime dynamique. En particulier, la théorie de l'homogénéisation élastodynamique initiée par J.R. Willis a reçu une attention particulière suite à des travaux sur l'invisibilité élastique. La présente thèse reformule la théorie de Willis dans le cas des milieux périodiques, examine ses implications et évalue sa pertinence physique au sens de quelques ``conditions d'homogénéisabilité'' qui sont suggérées. En se basant sur les résultats de cette première partie, des développements asymptotiques approximatifs de la théorie de Willis sont explorés en relation avec les théories à gradient. Une condition nécessaire de convergence montre alors que toutes les branches optiques de la courbe de dispersion sont omises quand des développements asymptotiques de Taylor de basse fréquence et de longue longueur d'onde sont déployés. Enfin, une nouvelle théorie de l'homogénéisation est proposée. On montre qu'elle généralise la théorie de Willis et qu'elle l'améliore en moyenne fréquence de sorte qu'on retrouve certaines branches optiques omises auparavant. On montre également que le milieu homogène effectif défini par la nouvelle théorie est un milieu généralisé dont les champs satisfont une version élastodynamique généralisée du lemme de Hill-Mandel / The recent issue of metamaterials design has renewed the interest in homogenization theories under dynamic loadings. In particular, the elastodynamic homogenization theory initiated by J.R. Willis has gained special attention while studying elastic cloaking. The present thesis reformulates Willis theory for periodic media, investigates its outcome and assesses its physical suitability in the sense of a few suggested ``homogenizability conditions''. Based on the results of this first part, approximate asymptotic expansions of Willis theory are explored in connection with strain-gradient media. A necessary convergence condition then shows that all optical dispersion branches are lost when long-wavelength low-frequency Taylor asymptotic expansions are carried out. Finally, a new homogenization theory is proposed to generalize Willis theory and improve it at finite frequencies in such a way that selected optical branches, formerly lost, are recovered. It is also proven that the outcome of the new theory is an effective homogeneous generalized continuum satisfying a generalized elastodynamic version of Hill-Mandel lemma
88

Estimation a posteriori et méthode de décomposition de domaine / A posteriori estimation method and domain decomposition

Kamel, Slimani 27 March 2014 (has links)
Cette thèse est consacrée à l’analyse numérique en particulier aux estimations a posteriori de l’erreur dans la méthode de décomposition asymptotique partielle de domaine. Il s’agit de problèmes au dérivées partielles elliptiques linéaires et semi- linéaires avec une source qui ne dépend que d’une seule variable dans une partie du domaine. La MAPDD - Méthod of Asymptotic Partial Domain Decomposition - est une méthode inventée par Grigori . Panasenko et développée dans les références [G.P98, G.P99]. L’aidée principale est de remplacer un problème 3D ou 2D par un problème hybride combinée 3D−1D, 3D−2D ou 2D−1D, ou la dimension du problème diminue dans une partie du domaine. Des méthodes de calcul efficaces de solution pour le problème hybride en résultant sont récemment devenues disponibles pour plusieurs systèmes (linéaires/non linéaires, fluide/solide, etc.) ainsi chaque sous-problème est calcul ́ avec un code indépendant de type boîte noire [PBB10, JLB09, JLB11]. La position de la jonction entre les problèmes hétérogènes est asymptotiquement estimée dans les travaux de G. Panasenko [G.P98]. La méthode MAPDD a été conçu pour traiter des problèmes ou un petit paramètre apparaître, et fournit un développement en série de la solution avec des solutions de problèmes simplifiées à l’égard de ce petit paramètre. Dans le problème considéré dans les chapitres 3 et 4, aucun petit paramètre n’existe, mais en raison de considérations géométriques concernant le domaine on suppose que la solution ne diffère pas significativement d’une fonction qui dépend seulement d’une variable dans une partie du domaine Ω. La théorie de MAPDD n’est pas adaptée pour une telle situation, et si cette théorie est appliquée formellement elle ne fournit pas d’estimation d’erreur. / This thesis is devoted to numerical analysis in particular a postoriori estimates of the error in the method of asymptotic partial domain decomposition. There are problems in linear elliptic partial and semi-linear with a source which depends only of one variable in a portion of domain. Method of Asymptotic Partial Decomposition of a Domain (MAPDD) originates from the works of Grigori.Panasonko [12, 13]. The idea is to replace an original 3D or 2D problem by a hybrid one 3D − 1D; or 2D − 1D, where the dimension of the problem decreases in part of domain. Effective solution methods for the resulting hybrid problem have recently become available for several systems (linear/nonlinear, fluid/solid, etc.) which allow for each subproblem to be computed with an independent black-box code [21, 17, 18]. The location of the junction between the heterogeneous problems is asymptotically estimated in the works of Panasenko [12]. MAPDD has been designed for handling problems where a small parameter appears, and provides a series expansion of the solution with solutions of simplified problems with respect to this small parameter. In the problem considered in chapter 3 and 4, no small parameter exists, but due to geometrical considerations concerning the domain Ω it is assumed that the solution does not differ very much from a function which depends only on one variable in a part of the domain. The MAPDD theory is not suited for such a context, but if this theory is applied formally it does not provide any error estimate. The a posteriori error estimate proved in this chapter 3 and 4, is able to measure the discrepancy between the exact solution and the hybrid solution which corresponds to the zero-order term in the series expansion with respect to a small parameter when it exists. Numerically, independently of the existence of an asymptotical estimate of the location of the junction, it is essential to detect with accuracy the location of the junction. Let us also mention the interest of locating with accuracy the position of the junction in blood flows simulations [23]. Here in this chapter 3,4 the method proposed is to determine the location of the junction (i.e. the location of the boundary Γ in the example treated) by using optimization techniques. First it is shown that MAPDD can be expressed with a mixed domain decomposition formulation (as in [22]) in two different ways. Then it is proposed to use an a posteriori error estimate for locating the best position of the junction. A posteriori error estimates have been extensively used in optimization problems, the reader is referred to, e.g. [1, 11].
89

High dimension and symmetries in quantum information theory / Grande dimension et symétries en théorie quantique de l'information

Lancien, Cécilia 09 June 2016 (has links)
S'il fallait résumer le sujet de cette thèse en une expression, cela pourrait être quelque chose comme: phénomènes de grande dimension (mais néanmoins finie) en théorie quantique de l'information. Cela étant dit, essayons toutefois de développer brièvement. La physique quantique a inéluctablement affaire à des objets de grande dimension. Partant de cette observation, il y a, en gros, deux stratégies qui peuvent être adoptées: ou bien essayer de ramener leur étude à celle de situations de plus petite dimension, ou bien essayer de comprendre quels sont les comportements universels précisément susceptibles d'émerger dans ce régime. Nous ne donnons ici notre préférence à aucune de ces deux attitudes, mais au contraire oscillons constamment entre l'une et l'autre. Notre but dans la première partie de ce manuscrit (Chapitres 5 et 6) est de réduire autant que possible la complexité de certains processus quantiques, tout en préservant, évidemment, leurs caractéristiques essentielles. Les deux types de processus auxquels nous nous intéressons sont les canaux quantiques et les mesures quantiques. Dans les deux cas, la complexité d'une transformation est mesurée par le nombre d'opérateurs nécessaires pour décrire son action, tandis que la proximité entre la transformation d'origine et son approximation est définie par le fait que, quel que soit l'état d'entrée, les deux états de sortie doivent être proches l'un de l'autre. Nous proposons des solutions universelles (basées sur des constructions aléatoires) à ces problèmes de compression de canaux quantiques et d'amenuisement de mesures quantiques, et nous prouvons leur optimalité. La deuxième partie de ce manuscrit (Chapitres 7, 8 et 9) est, au contraire, spécifiquement dédiée à l'analyse de systèmes quantiques de grande dimension et certains de leurs traits typiques. L'accent est mis sur les systèmes multi-partites et leurs propriétés ayant un lien avec l'intrication. Les principaux résultats auxquels nous aboutissons peuvent se résumer de la façon suivante: lorsque les dimensions des espaces sous-jacents augmentent, il est générique pour les états quantiques multi-partites d'être à peine distinguables par des observateurs locaux, et il est générique pour les relaxations de la notion de séparabilité d'en être des approximations très grossières. Sur le plan technique, ces assertions sont établies grâce à des estimations moyennes de suprema de processus gaussiens, combinées avec le phénomène de concentration de la mesure. Dans la troisième partie de ce manuscrit (Chapitres 10 et 11), nous revenons pour finir à notre état d'esprit de réduction de dimensionnalité. Cette fois pourtant, la stratégie est plutôt: pour chaque situation donnée, tenter d'utiliser au maximum les symétries qui lui sont inhérentes afin d'obtenir une simplification qui lui soit propre. En reliant de manière quantitative symétrie par permutation et indépendance, nous nous retrouvons en mesure de montrer le comportement multiplicatif de plusieurs quantités apparaissant en théorie quantique de l'information (fonctions de support d'ensembles d'états, probabilités de succès dans des jeux multi-joueurs non locaux etc.). L'outil principal que nous développons dans cette optique est un résultat de type de Finetti particulièrement malléable / If a one-phrase summary of the subject of this thesis were required, it would be something like: miscellaneous large (but finite) dimensional phenomena in quantum information theory. That said, it could nonetheless be helpful to briefly elaborate. Starting from the observation that quantum physics unavoidably has to deal with high dimensional objects, basically two routes can be taken: either try and reduce their study to that of lower dimensional ones, or try and understand what kind of universal properties might precisely emerge in this regime. We actually do not choose which of these two attitudes to follow here, and rather oscillate between one and the other. In the first part of this manuscript (Chapters 5 and 6), our aim is to reduce as much as possible the complexity of certain quantum processes, while of course still preserving their essential characteristics. The two types of processes we are interested in are quantum channels and quantum measurements. In both cases, complexity of a transformation is measured by the number of operators needed to describe its action, and proximity of the approximating transformation towards the original one is defined in terms of closeness between the two outputs, whatever the input. We propose universal ways of achieving our quantum channel compression and quantum measurement sparsification goals (based on random constructions) and prove their optimality. Oppositely, the second part of this manuscript (Chapters 7, 8 and 9) is specifically dedicated to the analysis of high dimensional quantum systems and some of their typical features. Stress is put on multipartite systems and on entanglement-related properties of theirs. We essentially establish the following: as the dimensions of the underlying spaces grow, being barely distinguishable by local observers is a generic trait of multipartite quantum states, and being very rough approximations of separability itself is a generic trait of separability relaxations. On the technical side, these statements stem mainly from average estimates for suprema of Gaussian processes, combined with the concentration of measure phenomenon. In the third part of this manuscript (Chapters 10 and 11), we eventually come back to a more dimensionality reduction state of mind. This time though, the strategy is to make use of the symmetries inherent to each particular situation we are looking at in order to derive a problem-dependent simplification. By quantitatively relating permutation symmetry and independence, we are able to show the multiplicative behavior of several quantities showing up in quantum information theory (such as support functions of sets of states, winning probabilities in multi-player non-local games etc.). The main tool we develop for that purpose is an adaptable de Finetti type result
90

Modélisation de la rupture d'un milieu fragile soumis à l'injection d'un fluide visqueux : Analyse de la singularité en pression et du décollement en pointe de fissure / Modeling of cracks in a brittle medium under a viscous fluid load : Analysis of the pressure singularity and fluid lag near the crack tip

Cordova Hinojosa, Rogers Bill 12 November 2018 (has links)
La propagation d'une fissure chargée par un écoulement de fluide visqueux est un phénomène complexe où la compréhension des phénomènes mécaniques mis en jeu en pointe de fissures reste encore partielle. C'est le cas de la zone de décollement entre le solide et le fluide qui apparaît pour un certain choix de débit d'injection, de viscosité du fluide et de ténacité du matériau. Cette thèse propose une modélisation simplifiée de ce problème d'interaction fortement couplé. Dans un premier chapitre, on étudie un modèle simplifié unidimensionnel de film élastique collé sur un substrat rigide et on considère une injection de fluide visqueux entre le film et le substrat. On suppose que la propagation de la fissure est régie par la loi de Griffith. On néglige l'existence du retard possible entre le fluide et le solide et on choisit une loi de comportement non-linéaire pour le fluide visqueux. A partir d'une analyse asymptotique pour une faible viscosité, on établit une solution approchée du problème. On montre que le champ pression est singulier en pointe de fissure et on montre l'influence du débit d'injection sur la cinétique du trajet de fissuration. Dans le deuxième chapitre on propose de prendre en compte l'existence de la zone de décollement en modifiant la formulation du modèle et en le réécrivant sous la forme d'un problème d'optimisation en temps discret où les zones de décollement font partie des inconnues du problème. On valide la formulation proposée sur l'exemple analytique de l'écrasement d'une goutte par une barre rigide. On montre ensuite que cette formulation et l'algorithme lié à son implémentation sont capables de gérer l'évolution de l'écrasement de plusieurs gouttes de forme quelconque en capturant correctement les phase d'étalement des gouttes ainsi que de leur coalescence. On étend ensuite cette formulation au cas de l'écrasement d'une goutte par un film élastique. Dans le dernier chapitre, on examine la validité de l'hypothèse de lubrification utilisée en fracturation hydraulique. A l'aide de la méthode de développement asymptotique, on construit une équation de Reynolds régularisée avec des termes de gradient supérieur tenant compte de la variation spatiale de la hauteur des parois. On compare alors le comportement des champs de pression donnés par les équations de Reynolds classique et régularisée sur des exemples d'écoulement entre des conduits de formes multiples. / The crack evolution under a viscous fluid action is a complex phenomenon where the understanding of the mechanical phenomena near the crack tip is still largely limited. This is the case for the lag between the solid and the fluid front propagation which appears for some configurations of injection rate, fluid viscosity and material toughness. This thesis proposes a simplified model for this strongly coupled interaction problem.The first chapter studies a simplified one-dimensional model of a elastic film bonded to a rigid substrate. We consider a viscous fluid injection between the film and the substrate. The crack propagation is assumed to follow the Griffith's law. The existence of the lag is neglected and a non-linear behavior law is chosen for the viscous fluid. Using an asymptotic analysis, an approximate solution is established for the low viscosity case. It is shown that the pressure field diverges at the crack tip and that the kinetics of the crack is influenced by the injection rate. The second chapter proposes to take into account the existence of the lag by modifying the model formulation and rewriting it as a discrete time optimisation problem where the delamination zones are part of the unknowns of the problem. This formulation is validated for the analytical example of a drop crushed by a rigid bar. It is shown that this formulation and its implementation can manage the evolution of several drops of any shape and correctly captures the drops spreading and coalescence. This formulation is then extended to the case of a drop crushed by an elastic film. In the last chapter, the validity of the lubrication hypothesis is examinated. Using an asymptotic analysis, a regularized Reynolds equation is constructed with higher gradient terms taking into account the spatial variation of the walls height. A comparison between the pressure fields behaviour given by the classical and the regularized Reynolds equation is shown for different conducts.

Page generated in 0.0533 seconds