Spelling suggestions: "subject:"asymptotique"" "subject:"symptotique""
51 |
Problèmes de convergence, optimisation d'algorithmes et analyse stochastique de systèmes de files d'attente avec rappels.Arrar, Nawel 10 September 2012 (has links) (PDF)
Pour optimiser la gestion des réseaux de télécommunication, nous considérons le système de file d'attente M^X / G / 1 avec rappels et clients impatients. En utilisant la méthode des variables supplémentaires, nous obtenons les fonctions génératrices partielles de l'état stationnaire conjointe de l'état du serveur et du nombre de clients dans le groupe de rappels. Pour compléter l'analyse du modèle considéré, nous calculons la distribution stationnaire de la chaîne de Markov induite, grâce à laquelle nous présentons la propriété de la décomposition stochastique. Cependant, la fonction génératrice de la distribution stationnaire du nombre de clients dans le groupe de rappels, est obtenue sous une forme explicite, très complexe et ne révèle pas la nature de la distribution en question. Alors, nous étudions le comportement asymptotique de la variable aléatoire représentant le nombre de clients en orbite et dans le système pour des valeurs limites des différents paramètres. Nous complétons notre travail par des exemples numériques.
|
52 |
Combinatoire algébrique et géométrique des nombres de HurwitzSage, Marc 22 June 2012 (has links) (PDF)
Ce mémoire se veut une synthèse, destinée à la communauté combinatoricienne, de quelques outils développés pour aborder le problème d'Hurwitz ainsi qu'une présentation des résultats récoltés. Le problème d'Hurwitz consiste à évaluer, dans un groupe symétrique, le nombre (dit d'Hurwitz) de factorisations transitives de la permutation identité dont on a imposé le type cyclique des facteurs. Nous décrivons tout d'abord les origines topologiques de ce problème à travers le dénombrement des revêtements ramifiés de la sphère. Nous présentons également un cadre algébrique naturel, le monoïde des permutations scindées, qui permet d'exprimer les nombres d'Hurwitz comme coefficients de structure de l'algèbre de ce monoïde, plus précisément de la sous-algèbre engendrée par les classes de conjugaison, dont une base naturelle est indexée par les multipartitions (ou partitions scindées). La théorie des représentations de cette algèbre fournit un algorithme pour calculer les nombres d'Hurwitz à une partition dont la complexité (minimale, uniforme et exponentielle) est bien meilleure que celle d'une approche naïve. Ce cadre algébrique donne par ailleurs une formule décrivant les séries d'Hurwitz à plusieurs partitions comme polynômes en les séries d'Hurwitz à une seule partition. Nous présentons secondement le cadre géométrique dans lequel s'expriment d'une part la formule ELSV, laquelle décrit les nombres d'Hurwitz à une partition comme fonctions de certaines intégrales, d'autre part un théorème de M. Kazarian exprimant les séries de Hurwitz à une partition comme polynômes en certaines séries formelles dont l'étude asymptotique est achevée. Une fois décrit le fonctionnement de ce cadre intégral, nous récoltons l'asymptotique de tous les nombres d'Hurwitz
|
53 |
LA DECOMPOSITION PROPRE GENERALISEE POUR LA RESOLUTTON DE PROBLEMES MULTIPHYSIQUES TRANSITOlRES COUPLES DEDIES A LA MECANIQUE DES MATERIAUX - MAILLAGE ADAPTATIF ET COUPLAGE AVEC LA MANNguyen, Tuan Linh 20 November 2012 (has links) (PDF)
Ce travail de recherche est une contribution au développement de la méthode Décomposition Propre Généralisée (PGD) à la résolution de problèmes multiphysiques transitoires couplés à différents temps caractéristiques dédiés à la mécanique des matériaux. Cette méthode se résume à la recherche de solutions d'Equations aux Dérivées Partielles sous forme séparée. L'équation de la chaleur transitoire 2D est tout d'abord traitée. Une technique de maillage adaptatif automatique est proposée afin d'adapter la discrétisation aux différentes zones transitoires de la solution. L'imbrication entre la technique de maillage adaptatif et la PGD est discutée à travers deux types de couplage. Le premier consiste à recalculer la solution PGD sur chaque nouveau maillage à partir de la solution nulle et le second à calculer la solution sur chaque nouveau maillage en conservant les fonctions de base de la solution générées sur le maillage précédent. Le premier couplage apparaît plus performant dans la mesure où peu de modes sont nécessaires pour décrire précisément la solution sur le maillage final. Néanmoins, le second couplage permet de réduire fortement le nombre d'enrichissements cumulé au cours de l'ensemble du procédé de maillage adaptatif. Quel que soit le couplage utilisé, la technique de maillage adaptatif est capable de décrire automatiquement des transitoires localisés. La résolution de l'équation de la chaleur ID transitoire avec une non linéarité dans le terme source est envisagée. Une nouvelle approche couplant la méthode PGD et la Méthode Asymptotique Numérique (MAN) est proposée et testée. Elle permet de résoudre efficacement certaines familles de problèmes transitoires non linéaires. Enfm, deux problèmes multiphysiques multitemps sont traités. Il s'agit d'un partiellement couplé diffusothermique et d'un fortement couplé thermoviscoélastique. La PGD permet de prédire précisément la réponse de ces problèmes multiphysiques pour lesquels les termes de couplage font apparaître des transitoires spécifiques que l'on obtient avec un maillage suffisamment fin. La stratégie de maillage adaptatif associée à la PGD trouve alors tout son sens dans ces situations multitemps fortement couplées. L'association de la technique de maillage adaptatif avec la PGD mène aux mêmes conclusions que dans le cas avec une seule physique. La discussion porte sur deux stratégies de construction des maillages : concaténer les deux maillages temporelles de chaque physique ou adapter indépendamment le maillage de chaque physique. La concaténation des deux maillages permet de converger avec moins d'étapes de maillage adaptatif mais avec des densités de maillage beaucoup plus importantes.
|
54 |
Modèles d'échanges ioniques dans le rein: théorie, analyse asymptotique et applications numériquesTournus, Magali 04 July 2013 (has links) (PDF)
Cette thèse de mathématiques appliquées traite de problèmes théoriques, numériques et asymptotiques en transport motivés par la physiologie rénale. Plus précisément, elle vise à comprendre et quantifier les échanges de solutés qui peuvent mener dans des cas pathologiques à des néphrocalcinoses, qui se caractérisent par des dépôts calciques dans le parenchyme rénal. Le manuscrit est constitué de deux parties. La première partie concerne le développement et l'analyse mathématique d'un modèle simplifié du rein. Il s'agit d'un système de 3 EDP hyperboliques à vitesses constantes, couplées par leur terme source non linéaire et assorti de conditions aux bords spécifiques. Le modèle rentre dans le cadre des modèles cinétiques avec un nombre fini de vitesses et des conditions aux bords de type réflexion. Nous montrons que ce système est bien posé, qu'il tend en temps grand vers un état stationnaire. On montre que le taux de convergence est exponentiel avec des éléments spectraux. Nous proposons l'étude du rôle de deux paramètres à travers une analyse asymptotique. L'une d'entre elles nous place dans le cadre de la relaxation hyperbolique vers une loi de conservation scalaire avec un flux hétérogène en espace sur un domaine borné. La deuxième partie concerne le développement et l'analyse numérique d'un modèle réaliste du rein. Il s'agit d'un système de 27 équations aux dérivées partielles de type hyperboliques dont les vitesses sont les solutions de 8 équations différentielles non linéaires, et toutes ces équations sont couplées par leur terme source. Les conditions aux bords sont là aussi spécifiques au modèle. Nous interprétons ensuite les résultats obtenus d'un point de vue physiologique, en proposant des prédictions de profils de concentration calciques dans le rein, dans le cas normal et dans certains cas pathologiques.
|
55 |
Stabilité d'ondes périodiques, schéma numérique pour le chimiotactismeLe Blanc, Valérie 24 June 2010 (has links) (PDF)
Cette thèse est articulée autour de deux facettes de l'étude des équations auxdérivées partielles. Dans une première partie, on étudie la stabilité des solutionspériodiques pour des lois de conservation. On démontre d'abord la stabilité asymptotiquedans L1 des solutions périodiques de lois de conservation scalaires et inhomogènes.On montre ensuite un résultat de stabilité structurelle des roll-waves. Plusprécisément, on montre que les solutions périodiques d'un système hyperbolique sansviscosité sont limites des solutions du problème avec viscosité, quand le terme deviscosité tend vers 0. Dans une deuxième partie, on s'intéresse à un système d'équationsaux dérivées partielles issu de la biologie : le modèle de Patlak-Keller-Segelen dimension 2 ; il décrit les phénomènes de chimiotactisme. Pour ce modèle, onconstruit un schéma de type volume fini, ce qui permet d'approcher la solution touten gardant certaines propriétés du système : positivité, conservation de la masse,estimation d'énergie.
|
56 |
Contribution à l'étude de la régression non paramétrique et à l'estimation de la moyenne d'un processus à temps continuDegras, David 07 December 2007 (has links) (PDF)
Cette thèse porte sur l'étude de la régression non paramétrique en présence de mesures répétées. D'abord, nous étendons aux estimateurs splines de lissage les vitesses de convergence présentées dans la littérature pour d'autres estimateurs usuels sous différentes hypothèses classiques de dépendance des données. Ensuite, dans le cadre de l'estimation de la moyenne d'un processus aléatoire à temps continu, nous généralisons les résultats existants sur la convergence en moyenne quadratique et nous établissons de nouveaux résultats de normalité asymptotique pour les distributions finies-dimensionnelles. Enfin, dans le cadre d'un échantillon fini et corrélé, nous comparons les performances d'estimateurs construits par moindres carrés ordinaires ou généralisés, nous proposons une méthode efficace de sélection du paramètre de lissage tenant compte de la structure de covariance des données, et à travers des simulations, nous mettons en évidence l'apport du lissage local par rapport au lissage global.
|
57 |
Comportement asymptotique de problèmes posés dans des cylindres. Problèmes d'unicité pour des systèmes de BoussinesqBruyere, Nicolas 17 December 2007 (has links) (PDF)
La thèse est composée de deux parties indépendantes.<br />Dans la première partie, on étudie le comportement asymptotique de problèmes elliptiques et paraboliques à données $L^1+W^{-1,p'}$ (respectivement $L^1+L^p(0,T;W^{-1,p'})$ dans le cas parabolique), dans des domaines devenant infiniment grands. En utilisant le cadre des solutions renormalisées et les résultats de régularité des solutions pour de telles données, on prouve, sous certaines hypothèses structurelles sur les variables d'espace, des résultats de convergence dans les espaces de régularité des solutions.<br />Dans la seconde partie, dans le cas de la dimension $2$, on étudie des systèmes de type Boussinesq. Ces systèmes dérivent de modèles de mécanique des fluides et consistent en un couplage des équations de Navier-Stokes incompressibles et de l'équation de la chaleur. On s'intéresse essentiellement aux questions d'unicité de la solution, particulièrement délicate à prouver du fait du couplage très non linéaire entre les équations. On travaille dans le cadre des solutions faibles pour les équations de Navier-Stokes et dans le cadre des solutions renormalisées pour des problèmes paraboliques pour l'équation de la chaleur. On établit tout d'abord des résultats de régularité pour ces équations puis on montre plusieurs résultats d'existence et d'unicité de la solution du système pour de petites données.
|
58 |
Equations aux différences et scission de séparatricesSellama, Hocine 07 December 2007 (has links) (PDF)
Cette thèse a pour objet d'étudier l'influence de la discrétisation d'une équation différentielle sur les variétés stables et instables dans deux exemples concrets : l'équation logistique et l'équation du pendule. L'équation logistique est équivalente à un système qui admet deux points selles A et B. Il est connu que la variété stable en A coïncide avec la variété instable en B. En améliorant des résultats antérieures de A. Fruchard et R. Schäfke, nous montrons que les deux variétés ne coïncident plus pour l'équation discrétisée. La démonstration est basée sur une modification d'une approche développée par R. Schäfke et H. Volkmer. Nous construisons d'abord une solution formelle à coefficients polynomiaux. Ensuite, nous donnons une approximation asymptotique des coefficients de la solution formelle. Ces estimations nous permettent d'obtenir une quasi-solution c'est à dire une fonction qui vérifie l'équation aux différences avec une erreur exponentiellement petite, puis de déterminer le comportement asymptotique de la distance entre les deux variétés. Pour conclure, nous démontrons qu'une constante alpha dans le terme dominant de la distance entre les variétés n'est pas nulle et nous donnons une approximation précise de cette constante. La deuxième partie de cette thèse est consacrée à une étude analogue concernant l'équation du pendule et de sa discrétisation (Application standard). Des résultats similaires ont été obtenus par Lazutkin et al., mais la preuve que nous avons utilisée est complètement différente. Ce cas est plus difficile que le précédent parce qu'il s'agit d'une équation du second ordre.
|
59 |
Modèles Mathématiques pour l'Inspection Nondestructive des PipelinesLouati, Kaouthar 13 December 2006 (has links) (PDF)
Dans les trois premiers chapitres de ce manuscrit de thèse, On propose trois nouvelles méthodes pour l'identification et la localisation des corrosions internes dans les pipelines. La première est par impédance électrique, la deuxième est par ondes guidées ultrasoniques et la troisième est par ultrasons.<br />On jette les bases mathématiques de ces différentes méthodes et on présente quelques tests numériques qui montrent leur efficacité.<br />Notre approche rentre dans la stratégie asymptotique développée au CMAP pour la résolution des problèmes inverses d'une manière robuste et stable. On exploite l'existence d'un petit paramètre (la mesure de Hausdorff de la partie corrosive) pour extraire des données la localisation de la partie corrosive et estimer son étendue. Le tout, d'abord, à travers des formules asymptotiques des mesures dépendantes du petit paramètre, rigoureusement établies à l'aide de la méthode des équations intégrales, et ensuite, par le biais de nouveaux algorithmes non-itératifs d'inversion. La plupart de ces algorithmes sont de type MUSIC (multiple signalclassification).<br />Le dernier chapitre est indépendant des trois premiers. il est consacré à la reconstruction de la forme d'un objet perturbé connaissant le champ lointain électrique ou acoustique. On développe pour le cas acoustique et électrique une relation linéarisée entre le champ lointain, résultant des données sur le bord de conditions de Dirichlet comme paramètre, et la forme de la structure perturbée comme variable. Cette relation nous ouvre la voie à la reconstruction<br />des coefficients de Fourier de la perturbation et nous aide à la reconstruction des coefficients de Fourier de la perturbation ce qui nous mène à formuler un développement asymptotique complet de<br />l'opérateur Dirichlet-Neumann.
|
60 |
Méthodes numériques e fficaces pour la valorisation des GMWBBen Zineb, Tarik 14 December 2012 (has links) (PDF)
Cette thèse traite du problème de valorisation par des méthodes numériques efficaces de contrats GMWB dans une optique de calcul par formules fermées ou par méthode de Monte Carlo sous contrainte de faible nombre de simulations. Les produits GMWB sont des produits très complexes qui ont connu ces dernières années un grand succès de par la garantie dont bénéficie l'assuré sur les retraits futurs avec un effet upside dépendant de la performance du fond sous-jacent au contrat. En outre, le souscripteur dispose de nombreuses options attrayantes qu'il peut exercer à tout moment dont l'option de racheter partiellement ou totalement son contrat, la possibilité de modifier l'allocation de la prime payée (fund switching) pendant la durée du contrat et enfin l'option d'avancer ou de reporter la date de début des paiements. Cependant, de telles options cumulées avec la complexité du produit et les risques de marché et de mortalité exposent l'assureur qui doit gérer des dizaines de milliers de contrats sous plusieurs contraintes opérationnelles (temps de calcul,faible nombre de simulation, etc.) à une difficulté majeure en terme de valorisation et de couverture. Une grande partie de cette thèse (chapitres de 2, 4, 5 et 6) est consacrée à l'étude de l'option de rachat partiel ou total dans les contrats GMWB selon deux angles : le point de vue assuré rationnel et le point de vue couvreur appréhendant le pire cas. A ce propos, dans notre cadre général en temps discret avec une volatilité locale et taux d'intérêt à la Hull-White 1 facteur, la stratégie optimale déterminant le coût du contrat dans les deux cas est la solution d'un problème de contrôle stochastique optimal en temps discret. Néanmoins, grâce à une propriété d'homogénéité partielle sur le prix et les flux, on démontre qu'elle est explicite et de type Bang-Bang. Le problème de valorisation étant ainsi ramené à celui d'arrêt optimal , nous avons proposé une méthode de Monte Carlo de type Longstaff Schwartz dont l'étape de régression empirique a été traitée par la méthode de moindres carrés habituels et par une nouvelle méthode appelée VCP (Variables de contrôle préliminaires). Cette dernière consiste dans un premier temps à réduire la variance empirique des flux à régresser à travers une projection L2 sur des variables de contrôle adaptées et centrées, et puis à faire la régression par moindres carrées habituels sur les nouveaux flux à variance réduite. Une étude numérique sur un cas test ainsi qu'une quantification théorique de l'erreur par les techniques de régression non paramétriques ont conclu à son efficacité dans un contexte de faible nombre de simulation (contrainte d'Axa). Quant au chapitre 3, il est consacré à justifier numériquement et théoriquement l'hypothèse de mutualisation du risque de mortalité souvent supposée par les praticiens dans le cas américain sur un produit simple sensible à ce risque. Enfin, la dernière partie de la thèse (chapitre 7) est consacrée à la valorisation par formules fermées approchées pour des contrats GMWB simplifiés dans un modèle Black Scholes avec taux d'intérêt de dynamique Hull-White à 1 facteur. En effectuant un développement asymptotique sur le montant des retraits, on obtient des formules approchées du prix du contrat GMWB par un prix Black-Scholes corrigé par une somme explicite de Grecques, le tout étant plus rapide à évaluer. Des estimations d'erreur sont établies lorsque la fonction payoff est régulière. La précision des formules asymptotiques est testée numériquement et montre un excellent comportement de ces approximations, même pour des contrats à longue maturité (20 ans).
|
Page generated in 0.0566 seconds