Spelling suggestions: "subject:"atomic force"" "subject:"atomic sorce""
611 |
Characterization, Mechanism and Kinetics of Phase-separation of Mixed Langmuir-Blodgett FilmsQaqish, Shatha Eid 16 April 2009 (has links)
The phase separation of mixed Langmuir-Blodgett (LB) monolayers was investigated using a combination of atomic force microscopy (AFM), X-ray photoelectron emission microscopy (X-PEEM) and confocal fluorescent microscopy measurements. Shapes of phase-separated domains that formed on solid substrate surfaces depended on a competition between line tension and dipole-dipole interactions. In the mixed LB film of arachidic acid (C19H39COOH) (C20) and perfluorotetradecanoic acid (C13F27COOH) (F14), the components phase separated into elevated hexagonal domains of C20 surrounded by a continuous domain primarily consisting of F14. The underlying molecular arrangement of C20 was found to be an oblique packing. The domains in this system grew via Ostwald ripening and the kinetics of their growth was modeled by twodimensional LifshitzSlyozov equation. In the stearic acid (C17H35COOH) (C18) and F14 mixed films, the C18 domains formed a linear pattern where the F14 molecules filled the areas in between the lines occupied by C18. For the mixed film of palmitic acid (C15H31COOH) (C16) and perfluorooctadecanoic acid (C17F35COOH) (F18), the surfactants phaseseparated into elevated hexagonal domains with hairy extensions radiating from them. These domains were composed of F18 and surrounded by C16. Ostwald ripening was found to be the mechanism of domain growth. Phase separation was controlled by different forces such as line tension and dipole interactions, as well as the diffusion of the molecules, solubility of the surfactant in the sub-phase, temperature and surface pressure. Simple mechanisms regarding phase separation and pattern formation were discussed in these mixed systems. It was observed that all fatty acid / F14 systems in this study were immiscible at all molar fractions examined. The fatty acid / F18 systems were immiscible at short chains of fatty acids (myristic acid (C13H27COOH) C14, C16, C18), whereas at longer fatty acid chains (C20, C22 behenic acid (C21H43COOH)) the components of the mixed system became miscible. When perfluorocarboxylic acid chain combined with fatty acids, the domains changed from large hexagonal domains into narrow lines as the fatty acid chain decreased in length.
|
612 |
Nanomechanics of Ankyrin Repeat ProteinsLee, Whasil January 2011 (has links)
<p>Ankyrin repeats (ARs) are polypeptide motifs identified in thousands of proteins. Many AR proteins play a function as scaffolds in protein-protein interactions which may require specific mechanical properties. Also, a number of AR proteins have been proposed to mediate mechanotransduction in a variety of different functional settings. The folding and stability of a number of AR proteins have been studied in detail by chemical and temperature denaturation experiments, yet the mechanic of AR proteins remain largely unknown. In this dissertation, we have researched the mechanical properties of AR proteins by using protein engineering and a combination of atomic force microscopy (AFM)-based single-molecule force spectroscopy and steered molecular dynamics (SMD) simulations. Three kinds of AR proteins were investigated: NI6C (synthetic AR protein), D34 (of ankyrin-R) and gankyrin (oncoprotein). While the main focus of this research was to characterize the response of AR proteins to mechanical forces, our results extended beyond the protein nanomechanics to the understanding of protein folding mechanisms.</p> / Dissertation
|
613 |
Folding Based DNA Sensor and Switch:Responsive Hairpin, Quadruplex and i-Motif StructuresChen, Kuan-liang 03 August 2010 (has links)
The study for surfaced-immobilized nucleic acid probes in
nanometer region in response to hybridization and to discrimination ofdifferent target nuclei acids. The hairpin locked nucleic acid (LNA-HP) isselected to be the probe molecule, and target molecules include perfect
complementary (PC) and single mismatch (1MM). The self-assembledLNA-HP molecular nanospot is successfully prepared by liquid phaseAFM (Atomic Force Microscope)-based nanolithography technique, then
in situ hybridization is carried out by using different targets (PC/1MM).To obtain the information of structure change, we use AFM to analyze therelative heights in the process of hybridization. The experimental results
point out that (1) the structure changes of surface probe molecules maycorrelate with the AFM signal when target sequence hybridizes to the probe, (2) miniaturization of the size of the nucleic acid probe may promote hybridization efficiency and enhance the discrimination between
PC and 1MM.
Studies on whether the different chemical impetus in solution can affect conformation of the human telomeric DNA of sequence is conducted. A human talomeric DNA composed of ( 5¡¦-TTAGGG-3¡¦:5¡¦-CCCTAA-3¡¦ ) repeats, with a 100-200 nt ( T2AG3 ) repetitive unit overhang at 3¡¦ ends is chosen. This extended single-stranded sequence is
called G-rich DNA, which forms the special G-quadruplex structure in solution containing sodium ions or potassium ions. The single-stranded sequence composed of ( C3TA2 ) repetitive units called C-rich DNA displays the i-motif folded structure in the low pH environment. These biomimetic DNA¡¦s are thiol-modified to self-assemble on gold surfaces. Separate measurements with AFM (the molecular thickness and rootmean-
square roughness of the self-assembly monolayer of DNA ) and CD( circular dichroism ) ( structure characterization ) confirm the conformational changes of G-rich and C-rich DNA¡¦s on gold surface are indeed dependent of the presence of cations and protons.
|
614 |
Characterization of bioparticulate adhesion to synthetic carpet polymers with atomic force microscopyThio, Beng Joo Reginald 27 October 2008 (has links)
Particles originating from bacteria, fungi (including mold spores, mildew, yeast), pollen, dust mites, and viruses can induce immune responses that trigger allergies and asthma. Carpeting is believed to act as a "sink" where bioparticulates are trapped via adhesive interactions and then are released by foot traffic or cleaning. This scenario can result in an accumulation of contaminants at higher levels than would be found outdoors or in a carpet-less environment. Numerous organizations (school districts, hospitals) have taken steps to remove carpeting, even though this hypothesis remains unproven. While statistical studies exist both in support and denial of the accumulation hypothesis, there is little fundamental understanding of the microscopic-level interactions between carpet and bioparticles. A fundamental understanding of particle affinities with polymers utilized in carpet would help to develop accurate models and address real problems in a rational and productive manner. In addition, a solution to the bioparticulate accumulation problem would have a profound impact on US health, resulting in significant economic savings. More than 20 million people suffer from asthma in the U.S., with children being the most vulnerable. In 2000 there were 9.3 million physician office visits and 1.8 million emergency room visits due to asthma alone, resulting in an estimated $9.4 billion in medical costs and $4.6 billion in lost productivity annually.
In this thesis, two measurement techniques were developed to quantify the adhesive interactions between biological particulates and polymeric carpeting materials. Atomic force microscopy (AFM) was used to measure the adhesive interactions of relevant biological particulates (in this case the E. coli bacteria and A. artemisiifolia ragweed pollen grains) with Nylon-6 and Nylon-6,6, polyamide-12 and polystyrene. The adhesion force measurements were modeled using several adhesion theories. We found that the Hamaker models were sufficient for explaining the data, indicating the prominence of van der Waals forces in controlling bioparticle interactions with polyamides. In addition, the geometry of the pollen played a significant role: adhesion forces were approximately a multiple of the number of contact points the grain has with the surface. Forces for E. coli and polyamides were about the same magnitude as polyamide-polyamide surface self-interactions.
|
615 |
Quantitative characterization and modeling of the microstructure of solid oxide fuel cell composite electrodesZhang, Shenjia 23 August 2010 (has links)
Three-phase porous composites containing electrolyte (ionic conductor), electronic conductor, and porosity phases are frequently used for solid oxide fuel cell (SOFC) electrodes. Performance of such electrodes is microstructure sensitive. Topological connectivity of the microstructural phases and total length of triple phase boundaries are the key microstructural parameters that affect the electrode performance. These microstructural attributes in turn depend on numerous process parameters including relative proportion, mean sizes, size distributions, and morphologies of the electrolyte and electronic conductor particles in the powder mix used for fabrication of the composites. Therefore, improvement of the performance of SOFC composite electrodes via microstructural engineering is a complex multivariate problem that requires considerable input from microstructure modeling and simulations. This dissertation presents a new approach for geometric modeling and simulation of three-dimensional (3D) microstructure of three-phase porous composites for SOFC electrodes and provides electrode performance optimization guidelines based on the parametric studies on the effects of processing parameters on the total length and topological connectivity of the triple phase boundaries. The model yields an equation for total triple phase boundary length per unit volume (LTPB) that explicitly captures the dependence of LTPB on relative proportion of electrolyte and electronic conductor phases; volume fraction of porosity; and mean size, coefficient of variation, and skewness of electrolyte and electronic conductor particle populations in the initial powder mix. The equation is applicable to electrolyte and electronic conductor particles of any convex shapes and size distributions. The model is validated using experimental measurements performed in this research as well as the measurements performed by other researchers. Computer simulations of 3D composite electrode microstructures have been performed to further validate the microstructure model and to study topological connectivity of the triple phase boundaries in 3D microstructural space. A detailed parametric analysis reveals that (1) non-equiaxed plate-like, flake-like, and needle-like electrolyte and electronic conductor particle shapes can yield substantially higher LTPB; (2) mono-sized electrolyte and electronic conductor powders lead to higher LTPB as compared to the powders having size distributions with large coefficients of variation; (3) LTPB is inversely proportional to the mean sizes of electrolyte and electronic conductor particles; (4) a high value of LTPB is obtained at the lowest porosity volume fraction that permits sufficient connectivity of the pores for gas permeability; and (5) LTPB is not sensitive to the relative proportion of electrolyte and electronic conductor phases in the composition regime of interest in composite electrode applications.
|
616 |
Colloidal particle-surface interactions in atmospheric and aquatic systemsChung, Eunhyea 04 April 2011 (has links)
Colloidal particles suspended in a liquid or gas phase often interact with a solid-liquid or solid-gas interface. In this study, experimental data through atomic force microscopy and neutron reflectometry and theoretical results of colloidal particle-surface interactions were obtained and compared. Atmospheric and aquatic environments were considered for the interactions of microbial colloidal particles and nano-sized silica particles with planar surfaces. Spores of Bacillus thuringiensis, members of the Bacillus cereus group, were examined as the microbial particles, simulating the pathogens Bacillus cereus and Bacillus anthracis which are potentially dangerous to human health. Model planar surfaces used in this study include gold which is an electrically conductive surface, mica which is a highly charged, nonconductive surface, and silica.
In atmospheric systems, the interaction forces were found to be strongly affected by the relative humidity, and the total adhesion force of a particle onto a surface was modeled as the addition of the capillary, van der Waals, and electrostatic forces. Each component is influenced by the properties of the particle and surface materials, including hydrophobicity and surface roughness, as well as the humidity of the surrounding atmosphere. In aquatic systems, the interaction forces are mainly affected by the solution chemistry, including pH and ionic strength. The main components of the interaction force between a microbial colloidal particle and a planar surface were found to be the van der Waals and electrostatic forces.
The results obtained in this research provide insights into the fundamental mechanisms of colloidal particle interactions with environmental surfaces in both atmospheric and aquatic systems, contributing to the understanding of the phenomena driving such interfacial processes as deposition, aggregation, and sedimentation. Thus, the results can help us describe the behavior of contaminant colloidal particles in environmental systems and subsequently devise better means for their removal from environmental surfaces.
|
617 |
Generation and Characterisation of Nanostructures from Single Adsorbed Polyelectrolyte Molecules / Herstellung und Charakterisierung von Nanostrukturen aus einzelnen adsorbierten Polyelektrolyt-MolekülenGorodyska, Ganna 20 September 2005 (has links) (PDF)
Visualization and study of reconformation of polyelectrolytes (PEs) of different architecture is of great fundamental and practical interest. Verification of theoretical predictions with experiment is of essential importance. On the other hand, a wide range of bottom-up techniques based on patterning of matter on the length scale of a few nanometers have been recently developed. Particularly interesting is the possibility of using self-assembled single molecule structures as templates for the deposition of inorganic matter, in particular metals. Synthetic &quot;normal-sized&quot; polymers of various architecture, like poly-2-vinylpyridine (P2VP) or polystyrene-poly(2-vynil pyridine) P2VP7-PS7 star-like block copolymer, adsorbed on solid substrates have been visualized for the first time with molecular resolution by AFM in different conformation. This finding allowed us to study largely discussed problem, a coil-to-globule transition of PEs. It was found that PE molecules undergo conformational transitions from stretched worm-like coil to compact globule via set of necklace-like globules, as the fraction of charged monomers decreases with an increase of pH and ionic strength. These results are in good agreement with recently developed DRO theory for weakly charged flexible PEs in poor solvent. The size of the deposited single molecules correlates very well with molecular dimensions in solution obtained in light scattering experiments. PE single molecules of various architectures was mineralized in different conformations that constitutes the route to nanoparticles with desired shape (including wire-shape and star-shaped), size, and composition (including metallic, magnetic and semiconductive nanoparticles). It was shown that molecular details of the adsorbed linear flexible PE molecules determine the dimensions of the nanostructures after metallization and that observed sizes are consistent with the decoration of single molecules with nanoclusters. Thus those metallized nanoparticles (cluster assembles) reflect the conformation of original adsorbed PE molecules. The dimensions of the obtained nanowires are significantly smaller than those previously reported. All of these features are of the potential benefit in applications for nanodevices. Metallization of the PS7-P2VP7 improves AFM resolution due to the selective deposition of Pd clusters along the P2VP chains. For the first time, the number of the P2VP second generation arms of the heteroarm block-copolymer was directly counted in the single molecule AFM experiment. Simple contrasting procedure was developed to improve AFM visualization of positively charged polymer chains deposited on the substrates of relatively high roughness. This method allows increasing the thickness of the resulting structures up to 10 nm, and, consequently, provide visualization of polymer chains on rough surfaces. This innovation is important for the development of single molecule experiments with polymer chains. The reaction of HCF-anion could be used for recognition of polycation molecules, when polycations, polyanions and neutral molecules coexist on the surface. Recently, the study was strongly restricted to atomically smooth surfaces. The contrasting procedure extends the range of substrates (Si-wafers, chemically modified or patterned Si-wafers, polished glasses, polymer films, etc) appropriate for the experiments. Thus, polymer single molecules can be considered not only as representative of the ensemble molecules, but also as individual nanoscale objects which can be used for future nanotechnology for the fabrication of single molecule electronic devices. Also these findings are important from fundamental point of view, since developed approach can be successfully applied for investigation of various &quot;classical&quot; problems in polymer science, such as polymer reconformation, interpolyelectrolyte complex formation, polymer diffusion, adsorption, etc.
|
618 |
Analyzing Interactions Between Cells And Extracellular Matrix By Atomic Force MicroscopyFriedrichs, Jens 10 December 2009 (has links) (PDF)
Interactions of cells with the extracellular matrix (ECM) have important roles in various physiological and pathological processes, including tissue morphogenesis during embryonic development, wound healing and tumor invasion. Although most of the proteins involved in cell-ECM interactions have been identified, the underlying mechanisms and involved signaling pathways are incompletely understood. Here, atomic force microscope-based imaging and single-cell force measurements were used to characterize the interactions of different cell types with ECM proteins.
The interplay between cells and ECM is complex. However, two interaction types, protein-protein and protein-carbohydrate, predominate. Integrins, adhesion receptors for ECM, mediate the former, galectins, a family of animal lectins, the latter. In the second chapter of this thesis, the contributions of both receptor families to the interactions of epithelial MDCK cells with ECM proteins are presented. It was found that galectins-3 and 9 are highly expressed in MDCK cells and required for optimal long-term adhesion (90 minutes) to ECM proteins collagen-I and laminin-111. Interestingly, early adhesion (&lt; 2 minutes) to laminin-111, was integrin-independent and instead mediated by carbohydrate interactions and galectins. In contrast, early adhesion to collagen-I was exclusively mediated by integrins. Moreover, cells frequently entered an enhanced adhesion state, marked by a significant increase in the force required for cell detachment. Although adhesion was mediated by integrins, adhesion enhancement was especially observed in cells depleted for galectin-3. It was proposed that galectin-3 influences integrin-mediated adhesion complex formation by altering receptor clustering.
To control their attachment to ECM proteins, cells regulate integrin receptors. One regulatory process is integrin crosstalk, where the binding of one type of integrin influences the activity of another type. In the third chapter, the implementation of a single-cell force spectroscopy assay to identify such crosstalks and gain insight into their mechanisms is described. In this assay the interactions of integrin receptors being specifically attached to one ligand are characterized in dependence of another ligand-bond receptor pair. With this assay a crosstalk between collagen-binding integrin α1β1 and fibronectin-binding integrin α5β1 was identified in HeLa cells. This crosstalk was directional from integrin α1β1 to integrin α5β1 and appeared to regulate integrin α5β1 by inducing its endocytosis.
In the fourth and final chapter, mechanisms of matrix-induced cell alignment were studied by imaging cells on two-dimensional matrices assembled of highly aligned collagen fibrils. Integrin α2β1 was identified as the predominant receptor mediating cell polarization. Time-lapse AFM demonstrated that during alignment cells deform the matrix by reorienting individual collagen fibrils. Cells deformed the collagen matrix asymmetrically, revealing an anisotropy in matrix rigidity. When matrix rigidity was rendered uniform by chemical cross-linking or when the matrix was formed from collagen fibrils of reduced tensile strength, cell polarization did not occur. This suggested that both the high tensile strength and pliability of collagen fibrils contribute to the anisotropic rigidity of the matrix and lead to directional cellular traction and cell polarization. During alignment, cellular protrusions contacted the collagen matrix from below and above. This complex entanglement of cellular protrusions and collagen fibrils may further promote cell alignment by maximizing cellular traction.
The work presented here adds to the understanding of cell-ECM interactions. Atomic force microscopy imaging allowed characterizing the behavior of cells on nanopatterned collagen matrices whereas single-cell force spectroscopy revealed insights into the regulation of cell adhesion by galectins. Furthermore, methodological advances in the single-cell force spectroscopy assay allowed the intracellular regulation of receptor molecules to be studied. The work demonstrates that atomic force microscopy is a versatile tool to study cell-ECM interactions.
|
619 |
Rasterkraftmikroskopische Untersuchungen der elektrischen und magnetischen Eigenschaften multiferroischer SystemeKöhler, Denny 20 January 2011 (has links) (PDF)
Multiferroika, also Materialien, die gleichzeitig ferroelektrische und ferromagnetische Eigenschaften besitzen, sind sowohl für die Forschung um das Verständnis dieser Eigenschaften als auch für potentielle Anwendungen in neuartigen Speichern von großem Interesse. Die Rasterkraftmikroskopie spielt hierbei eine entscheidende Rolle, da mit ihrer Hilfe die Eigenschaften solcher Probensysteme auf der Nanometerlängenskala untersucht werden können.
In der vorliegenden Arbeit werden drei unterschiedliche multiferroische Systeme auf ihre ferroelektrischen und ferromagnetischen Eigenschaften sowie auf deren Kopplung hin mit Hilfe verschiedener Methoden der Rasterkraftmikroskopie untersucht. Im Grundlagenteil dieser Arbeit wird dazu zunächst eine Methode vorgestellt, mit der magnetische Spitzen für die Rasterkraftmikroskopie charakterisiert werden können, so dass in experimentellen Untersuchungen die Wechselwirkung zwischen der untersuchenden Spitze und der untersuchten Probe besser abgeschätzt werden kann. Des Weiteren wird eine Möglichkeit vorgestellt, Kelvin-Sonden-Rasterkraftmikroskopie mit der magnetischen Rasterkraftmikroskopie zu kombinieren, um elektrostatische Artefakte bei den Untersuchungen der magnetischen Eigenschaften auszuschließen.
Im experimentellen Teil der Arbeit werden zuerst die beiden einphasigen Multiferroika BiFeO3 und BiCrO3 untersucht. Es kann experimentell gezeigt werden, dass für die Untersuchung der ferromagnetischen Eigenschaften von Multiferroika die Kombination aus Kelvin-Sonden-Rasterkraftmikroskopie und magnetischer Rasterkraftmikroskopie notwendig ist und mit dieser Technik die magnetischen und elektrostatischen Kräfte ohne Übersprechen voneinander getrennt werden können. Mit Hilfe der Piezoantwort-Rasterkraftmikroskopie werden die ferroelektrischen Domänen dieser Systeme untersucht und lokal die Polarisationsrichtung in den einzelnen Domänen bestimmt. Weiterhin wird an einem Schichtsystem, bestehend aus einem Nickelfilm, der auf BaTiO3 aufgebracht ist, die magnetoelektrische Kopplung analysiert. Hierbei wird vor allem der Einfluss einer elektrischen Spannung auf die leichte magnetische Achse des Nickelfilms studiert, sowie die Veränderung der magnetischen Domänenstruktur in Abhängigkeit der angelegten elektrischen Spannung.
|
620 |
Investigation of the aggregation of nanoparticles in aqueous medium and their physicochemical interactions at the nano-bio InterfaceLi, Kungang 08 June 2015 (has links)
Owing to their unique physical, chemical, and mechanical properties, nanoparticles (NPs) have been used, or are being evaluated for use, in many fields (e.g., personal care and cosmetics, pharmaceutical, energy, electronics, food and textile). However, concerns regarding the environmental and biological implications of NPs are raised alongside the booming nanotechnology industry. Numerous studies on the biological effect of NPs have been done in the last decade, and many mechanisms have been proposed. In brief, mechanisms underlying the adverse biological effect caused by NPs can be summarized as: (i) indirect adverse effect induced by reactive oxygen species (ROS) generated by NPs, (ii) indirect adverse effect induced by released toxic ions, and (iii) adverse effect induced by direct interactions of NPs with biological systems. Up to now, most efforts have been focused on the first two mechanisms. In contrast, adverse biological effects induced by direct nano-bio interactions are the least researched. This is largely because of the complexity and lack of suitable techniques for characterizing the nano-bio interface.
This dissertation aims at advancing our understanding of the nano-bio interactions leading to the adverse biological effect of NPs. Specifically, it is comprised of three parts. Firstly, because the aggregation of NPs alters particle size and other physicochemical properties of NPs, the property of NPs reaching and interacting with biological cells is very likely different from that of what we feed initially. Consequently, as the first step and an essential prerequisite for understanding the biological effect of NPs, NP aggregation is investigated and models are developed for predicting the stability and the extent of aggregation of NPs. Secondly, interactions between NPs and cell membrane are studied with paramecium as the model cell. Due to the lack of cell wall, the susceptible cell membrane of paramecium is directly exposed to NPs in the medium. The extent and strength of direct nano-cell membrane interaction is evaluated and quantified by calculating the interfacial force/interaction between NPs and cell membrane. A correlation is further established between the nano-cell membrane interaction and the lethal acute toxicity of NPs. We find NPs that have strong association or interaction with the cell membrane tend to induce strong lethal effects. Lastly, we demonstrate systematic experimental approaches based on atomic force microscope (AFM), which allows us to characterize nano-bio interfaces on the single NP and single-molecular level, coupled with modeling approaches to probe the nano-DNA interaction. Using quantum dots (QDs) as a model NP, we have examined, with the novel application of AFM, the NP-to-DNA binding characteristics including binding mechanism, binding kinetics, binding isotherm, and binding specificity. We have further assessed the binding affinity of NPs for DNA by calculating their interaction energy on the basis of the DLVO models. The modeling results of binding affinity are validated by the NP-to-DNA binding images acquired by AFM. The investigation of the relationship between the binding affinity of twelve NPs for DNA with their inhibition effects on DNA replication suggests that strong nano-DNA interactions result in strong adverse genetic effects of NPs.
In summary, this dissertation has furthered our understanding of direct nano-bio interactions and their role in the biological effect of NPs. Furthermore, the models developed in this dissertation lay the basis for building an “ultimate” predictive model of biological effects of NPs that takes into account multiple mechanisms and their interactions, which would save a lot of testing costs and time in evaluating the risk of NPs.
|
Page generated in 0.0507 seconds