• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 276
  • 149
  • 74
  • 28
  • 27
  • 24
  • 13
  • 9
  • 9
  • 8
  • 8
  • 7
  • 5
  • 5
  • 5
  • Tagged with
  • 741
  • 112
  • 94
  • 93
  • 70
  • 64
  • 61
  • 58
  • 55
  • 50
  • 41
  • 40
  • 40
  • 40
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Studies on molecular mechanisms in calcium signaling and cellular energy consumption

Krishnan, Kalaiselvan January 2017 (has links)
Ion signaling plays fundamental role in cell survival. Na+ and Ca2+ are critical players in ion signaling. Cells spend the major amount of energy to maintain and regulate Na+ and Ca2+ gradients across the cell membrane. Any disruption in cellular energy consumption by plasma membrane ATPases affects ion signaling and vice versa. This thesis is a combination of four separate research studies. In the first study, We measured ATP consumption dynamics of Na+/K+-ATPase using a genetically encoded fluorescent indicator called Perceval HR. we demonstrate that PercevalHR is an excellent tool to visualize ATP:ADP in mammalian cells. In the second study, We studied the role of calcium signaling and TRP channels in angiotensin II type 1 receptor  signaling cascade. We prove that low inhibition of CaV1.2 with physiological and therapeutically relevant concentration of Angiotensin II up regulate AT1R signaling. In the third study, We studied the role of the TRPM5 channel in regulating insulin secretion, and cytoplasmic free calcium concentration in the rat β-cells by usingtriphenyl phosphine oxide, a selective inhibitor of the channel. In the fourth study, We tested whether, the genetically engineered human β-cell line (EndoC-BH1) could be used as models for studying Ca2+signaling in the context of Type II Diabetes. We found that the EndoC-BH1 cells could be a relevant model to study stimulus-secretion coupling and Ca2+ signaling in the human β-cells. / <p>QC 20170328</p>
332

Interaction entre cellules gliales et neurones au niveau du système nerveux central : rôle dans la modulation synaptique et mécanismes d'activation des astrocytes par les récepteurs NMDA

Serrano, Alexandre January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
333

Hydrogen Sulfide as an allosteric modulator of ATP sensitive potassium channels in colonic inflammation.

Gade, Aravind 18 April 2012 (has links)
The ATP sensitive potassium channel (KATP) in mouse colonic smooth muscle cell is a complex containing a pore forming subunit (Kir6.1) and a sulfonyl urea receptor subunit (SUR2B). These channels are responsible for maintaining the cellular excitability of the smooth muscle cell which in turn regulates the motility patterns in the colon. We used whole-cell voltage-clamp techniques to study the alterations in these channels in smooth muscle cells in experimental model of colitis (colonic inflammation). Colitis was induced in BALB/C mice following an intracolonic administration of trinitrobenzene sulfonic acid (TNBS). KATP currents were measured at Vh -60 mV in high K+ external solution. The dose-response to levcromakalim (LEVC), a KATP channel opener, was significantly shifted to the left in the inflamed smooth muscle cells. Both the affinity and maximal currents induced by LEV were enhanced in inflammation. The EC50 in control was 6259 nM (n=10) and 422 nM (n=8) in inflamed colon while the maximal currents were 9.9 ± 0.71 pA/pF (60 μM) in control and 39.7 ± 8.8 pA/pF (3 μM) following inflammation. Similar to LEVC, KATP currents activated by sodium hydrogen sulfide (NaHS) (10-1000 μM) were significantly greater in inflamed compared to controls. In control cells, pretreatment with 100 µM NaHS shifted the EC50 for LEV-induced currents from 2838 nM (n=6) to 154 nM (n=8). These data suggest that NaHS can act as an allosteric modulator for LEV-induced KATP currents. Decreased colonic motility may result from enhanced KATP activation by increased release of H2S in colitis.
334

Conformational Studies of Myosin and Actin with Calibrated Resonance Energy Transfer

Xu, Jin 05 1900 (has links)
Resonance energy transfer was employed to study the conformational changes of actomyosin during ATP hydrolysis. To calibrate the technique, the parameters for resonance energy transfer were defined. With conformational searching algorithms to predict probe orientation, the distances measured by resonance energy transfer are highly consistent with the atomic models, which verified the accuracy and feasibility of resonance energy transfer for structural studies of proteins and oligonucleotides. To study intramyosin distances, resonance energy transfer probes were attached to skeletal myosin's nucleotide site, subfragment-2, and regulatory light chain to examine nucleotide analog-induced structural transitions. The distances between the three positions were measured in the presence of different nucleotide analogs. No distance change was considered to be statistically significant. The measured distance between the regulatory light chain and nucleotide site was consistent with either the atomic model of skeletal myosin subfragment-1 or an average of the three models claimed for different ATP hydrolysis states, which suggested that the neck region was flexible in solution. To examine the participation of actin in the powerstroke process, resonance energy transfer between different sites on actin and myosin was measured in the presence of nucleotide analogs. The efficiencies of energy transfer between myosin catalytic domain and actin were consistent with the actoS1 docking model. However, the neck region was much closer to the actin filament than predicted by static atomic models. The efficiency of energy transfer between Cys 374 and the regulatory light chain was much greater in the presence of ADP-AlF4, ADP-BeFx, and ADP-vanadate than in the presence of ADP or no nucleotide. These data detect profound differences in the conformations of the weakly and strongly attached crossbridges which appear to result from a conformational selection that occurs during the weak binding of the myosin head to actin. The resonance energy transfer data exclude a number of versions of the swinging lever arm model, and indicate that actin participation is indispensable for conformational changes leading to force generation. The conformational selection during weak binding at the actomyosin interface may precock the myosin head for the ensuing powerstroke.
335

Conséquence du choc hypotonique sur le transport sodique des cellules épithéliales alvéolaires de type II

Tessier, Marie-Claude January 2003 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
336

Bakom socialdemokraternas beslut. : - från 1950-talets ATP-strid till 1990-talets pensionsuppgörelse

Loxbo, Karl January 2007 (has links)
In 1959, the Swedish Social Democratic Party prevailed over the bourgeois parties in the great battle for supplementary pensions (ATP). In the 1990’s, however, the party leadership decided to abolish the ATP in close cooperation with the bourgeois parties. The thesis poses the following question: “What prospects did the Social Democratic leadership have to gain support for the ATP-reform in the 1950’s, and then for the quite dissimilar pension reform in the 1990’s, and how can differences between these prospects be explained?” In order to explain the kind of party change pointed out in the problem statement, this thesis proposes a theoretical perspective that focuses on the tension between different roles played by the party leadership on different arenas. The hypothesis, that is tested in the thesis, is that early decisions create different constrains for future decisions on different arenas. The thesis has two main conclusions. The first conclusion is that the decision to implement the generous ATP-system in the 1950’s in practice laid the ground for the subsequent abolishment of that same system in the 1990’s. The second conclusion is that the pragmatism, always displayed on the parliamentary arena, has not been visible on the electoral arena or on the party arena. The party leadership plays different roles on different arenas, and over time these different roles have become hard, if not impossible, to combine. The result of this was that decisions on the parliamentary arena were decoupled from messages and rhetoric about these decisions on the party arena, and on the electoral arena. The pension reform in the 1990’s was quite a different decision compared to the popular introduction of the ATP-system. Both of these decisions, however, were attempts by the party leadership to maximize support on each arena. The possibilities for succeeding in this venture were greatly reduced in the 1990’s. Instead of one party striving for one goal, Swedish Social Democracy in the 1990’s appeared as two or three parties, with different objectives and goals.
337

ENGINEERING FLUORESCENT PROTEIN BIOSENSORS FOR INTERROGATING BIOLOGICALLY RELEVANT CHEMICAL SPECIES

Keelan J Trull (6900062) 16 August 2019 (has links)
<div> <p>Fluorescent proteins and the biosensors created with them have been used extensively to monitor chemical species inside and outside of the cell. They have been used to increase our knowledge of cellular function in normal and diseased states. Fluorescent biosensors are advantageous because they can be genetically encoded, do not require exogenous reagents, and can be quantitative. Fluorescent biosensors are also able to measure analytes with high spatial and temporal resolutions, enabling measurements at the scale of physiological events. In this thesis efforts have made to increase the available fluorescent biosensor tools for imaging cellular events. This work includes creation of new sensors for two molecules not yet detectable via fluorescent protein biosensor, acetylcholine and adenosine diphosphate. Efforts were also made to improve the current available biosensors for adenosine triphosphate and cellular redox, to make them more compatible with multiplex and deep tissue imaging. Here I present my work to design, characterize and utilize these fluorescent biosensors.</p> </div> <br>
338

Growth and Survival Pathways in Normal and Malignant B-Lymphocytes

Gumina, Maria January 2009 (has links)
Thesis advisor: Thomas C. Chiles / Normal B lymphocytes require extrinsic factors to grow and proliferate. Surface receptors (e.g., B-cell antigen receptor, BCR) function, in part, to link growth factors to signal transduction/metabolic pathways and the cell cycle machinery. Accumulating evidence indicates that signal transduction-dependent changes in both glucose energy metabolism and de novo transcription of the D-type cyclin-cdk4/6 pathway are necessary for quiescent B-lymphocytes to enter G1-phase of the cell cycle and grow. B cell growth represents a critical checkpoint for subsequent proliferation and clonal expansion of antigen-specific lymphocytes. On the former, we have shown earlier that acquisition of extracellular glucose and metabolism via the glycolytic pathway is required for conventional splenic B-2 lymphocytes to grow (i.e., increase cell size and mass) in response to antigen challenge; however, the metabolic fate and biological significance of glucose-derived carbons are unknown. Here, we show that in response to BCR ligation, glucose carbon flow is directed into a de novo lipogenic pathway that is regulated, in part, via phosphoinositide-3 kinase (PI-3K)-dependent activation of ATP citrate lyase (ACL), a key rate-limiting enzyme in de novo lipogenesis. Inhibition of ACL results in a loss of B-cell growth and cell viability. Regarding the latter point, the B-1a lymphocyte subset expresses cyclins D2 and D3 that are transiently expressed in a non-overlapping manner, notably cyclin D3 expression immediately precedes the G1/S phase transition, suggesting distinct functions for these D-type cyclins in B-1a lymphocyte G0-to-S phase progression. We show herein that murine B-1a cells deficient in cyclin D3 proliferate normally in response to extracellular stimuli, in part, due to a compensatory sustained up-regulation of cyclin D2. In keeping with this, human diffuse large B-cell lymphoma (DLBCL) represents a malignant clonal expansion of B cells characterized by several subsets, including germinal center (GC) and activated B-cell (ABC) types. Here, we show that the GC-type LY18 human DLBCL exhibits constitutive expression of cyclin D3, but not cyclins D1 and D2. Targeting of cyclin D3-holoenzyme complexes with cell permeable chemical- and peptide-based cdk4 inhibitors results in G1-phase arrest and apoptosis via a pathway that involves inhibition of pRb phosphorylation. By contrast, endogenous knock down of cyclin D3 with siRNA did not induce growth arrest or apoptosis, in part, due to redundancy with cyclin E. / Thesis (PhD) — Boston College, 2009. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Biology.
339

An investigation of p-glycoprotein in plasmodium falciparum and the isolation of haemozoin

De Almeida, Maria, Rosario January 1992 (has links)
A dissertation submitted to the Faculty of Medicine University of the Witwatersrand, Johannesburg For the degree of Master of Science in Medicine / Chloroquine-resistant Plasmodium falciparum accumulate significantly less chloroquine than susceptical parasites, and this is thought to be the basis of their resistance ( Fitch, 1970 ). Martin et. al ( 1987 ), recently demonstrated that in the presence of verapamil, a calcium channel blocker, chloroquine-resistant P falciparum becomes chloroquine-sensitive, with an increase in the chloroquine accumulation.The mechanism of such reversal has yet to be elucidated / IT2018
340

Caracterização funcional do receptor P2X7 na glândula pineal de rato / Functional characterization of P2X7 receptors in the rat pineal gland

Teodoro, Luis Henrique de Souza 29 November 2013 (has links)
A sinalização purinérgica tem sido demonstrada como um um importante modulador dediversos processos fisiológicos e fisiopatológicos. Dentre os receptores purinérgicos, o receptor P2X7 distingui-se por requerir altas concentrações de ATP em sua ativação. As demonstrações prévias de que a glândula pineal responde a diferentes estímulos purinérgicose a altas concentrações de ATP sugere um papel para os receptores P2X7 nesta glândula, embora sua expressão e função não estivesse estabelecida. O objetivo deste trabalho, portanto, foi caracterizar funcionalmente o receptor P2X7 na glândula pineal de ratos. Os resultados obtidos demonstram, pela primeira vez, a expressão gênica e proteica do receptor P2X7 na glândula pineal. Os efeitos da ativação destes receptores levam a uma inibição nos níveis de melatonina induzida por isoprenalina por um mecanismo independente da via do fator de transcrição NF-kB e da fosfolipase C. Além disso, a estimulação destes receptores inibiu a síntese de TNF induzida por LPS, resultado este semelhante ao observado na presença do pré-tratamento com antagonistas do receptor P2X7. Estes dados confirmam a presença de receptores P2X7 na glândula pineal e reiteram o relevante papel da estimulação purinérgica a sobre a síntese de melatonina e sobre a capacidade da pineal em responder a PAMPs, como o LPS / Purinergic signalling has been demonstrated as an important modulator ofseveral physiological and pathophysiological processes. Among the purinergic receptors, the activation of P2X7 receptor requireshigh concentrations of ATP. The previous demonstration that the pineal gland is responsive to different purinergic stimulus and to high concentrations of ATPsuggests a role for P2X7, although its expression and function remained unclear. The aim of this study was to functionally characterize the P2X7 receptor in the rat pineal gland.The data showedthe P2X7 receptor mRNA and protein expression in the pineal gland. The effect of its activation leads toan inhibition of melatonin content induced by isoprenaline through an independent NF-kB and PLC pathways. Furthermore, the P2X7 receptor activation inhibits the LPS-induced TNF synthesis, a similar result observed in the presence of the pre-treatment with P2X7 receptors antagonists. These data demonstrate the presence of P2X7 receptors in the rat pineal gland and confirm the relevant role of the purinergic stimulation to the pineal melatonin synthesis and responsiveness to PAMPs such as LPS

Page generated in 0.047 seconds