• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 276
  • 149
  • 74
  • 28
  • 27
  • 24
  • 13
  • 9
  • 9
  • 8
  • 8
  • 7
  • 5
  • 5
  • 5
  • Tagged with
  • 741
  • 112
  • 94
  • 93
  • 70
  • 64
  • 61
  • 58
  • 55
  • 50
  • 41
  • 40
  • 40
  • 40
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
351

Mécanismes de régulation de l'ATP synthase mitochondriale de S.cerevisiae par son peptide endogène IF1 et étude de l'oligomérisation d'IF1 de S.cerevisiae.

Andrianaivomananjaona, Tiona 07 October 2011 (has links) (PDF)
L'ATP synthase ou ATPase de type F, ancrée aux membranes internes des mitochondries, est un complexe macromoléculaire qui utilise le gradient électrochimique généré par l'oxydation de petites molécules (NADH2, FADH2) dans les différents complexes de la chaîne respiratoire pour former l'ATP, vecteur énergétique universel. Le gradient électrochimique ou pmf est transformé en une énergie mécanique qui se traduit par le mouvement du rotor de l'ATP synthase dans un sens horaire vu depuis la membrane. La rotation de la sous-unité déforme successivement les trois sites catalytiques et permet ainsi la synthèse d'ATP. Dans certains cas, comme ceux de l'anoxie ou de l'hypoxie, le gradient électrochimique peut s'effondrer et l'ATP synthase hydrolyse alors l'ATP. Pour éviter cette hydrolyse futile, un petit peptide nommé IF1, régulateur spécifique des ATP synthases mitochondriales, vient s'insérer entre les sous-unités d'une interface catalytique et bloque instantanément le fonctionnement de l'ATPase. Cette inhibition est réversible puisque le peptide se décroche lorsque la membrane interne mitochondriale se réénergise. Dans ce travail de thèse, nous nous sommes intéressés à caractériser le mécanisme d'inhibition de l'ATPase de S.cerevisiae par son peptide endogène IF1 en s'appuyant essentiellement sur les quelques données structurales qui ont été publiées sur le peptide et sur le complexe inhibé IF1-F1-ATPase de B.taurus. Constitué de 63 acides aminés chez S.cerevisiae et 84 acides aminés chez B.taurus, IF1 est majoritairement structuré en hélice α. Les études menées par Elena Cabezón ont montré qu'IF1 possédait différentes formes dont la prédominance et l'activité dépendait essentiellement du pH. Chez B.taurus, il existe une forme inhibitrice dimérique prédominante à pH inférieurs à 6,5 et une forme tétramérique dont nous connaissons la structure 3D qui est non inhibitrice et prépondérante à pH supérieurs à 6,5. Chez S.cerevisiae, il existe une forme monomérique inhibitrice prépondérante à pH supérieur à 6,5 et une forme dimérique prédominante à pH inférieurs à 6,5 et dont le caractère inhibiteur ou non n'a pas encore été déterminé. Sur la base de la structure 3D de l'IF1 bovin, nous avons voulu identifier les régions de dimérisation du peptide de levure en utilisant la technique de marquage de spin couplée à de la spectroscopie RPE. En plaçant des marqueurs de spin (MTSL) en partie médiane (E33C) ou en C-terminale (L54C), nous avons pu favoriser l'interface de dimérisation plutôt en partie médiane du peptide. Ce travail est encore au stade embryonnaire et ne nous permet pas, à ce jour, d'identifier la zone exacte de dimérisation. Dans un deuxième volet, nous avons voulu caractériser le mécanisme d'inhibition d'un point de vue dynamique et nous avons pu en préciser les différentes étapes : reconnaissance, verrouillage et stabilisation. Pour cela, nous avons associé la mutagenèse sur le peptide et sur l'enzyme aux cinétiques d'inhibition. Nous avons tout d'abord évalué le rôle de plusieurs résidus situés en Cterminal de la sous-unité β, dans la région de l'interface α/ β qui se referme sur le peptide IF1, dans la reconnaissance moléculaire spécifique d'IF1 par l'ATPase mitochondriale. Nous avons ensuite montré que la partie N-terminale d'IF1 joue un rôle mineur dans la reconnaissance moléculaire mais son enroulement autour de la sous-unité constitue un loquet important dans la stabilisation du complexe inhibé. Enfin, la fermeture de l'interface catalytique sur IF1 crée une zone de contact entre la "bosse" de la sous-unité γ et la partie C-terminale de la sous-unité α qui constitue la dernière clef de blocage du peptide au sein de la F1-ATPase. Ce dernier point de fermeture est le seul qui n'implique aucun résidu du peptide IF1.
352

Relations structure - fonction des transporteurs mitochondriaux

Blesneac, Iulia 07 July 2010 (has links) (PDF)
Le passage sélectif d'ions et de métabolites à travers les membranes biologiques est essentiel à de nombreux processus cellulaires fondamentaux. Au niveau de la membrane interne de la mitochondrie, la communication cellulaire et les processus d'échanges sont principalement assurés par les transporteurs mitochondriaux. Ces protéines membranaires jouent un rôle clef dans les fonctions métaboliques des cellules eucaryotes et leur dysfonctionnement est à l'origine d'un certain nombre de maladies graves chez l'homme Parmi les transporteurs mitochondriaux, deux familles ont été étudiées au cours de ce travail : les AACs (ADP/ATP Carriers) et les UCPs (UnCoupling Proteins). Deux systèmes de production hétérologue de ces transporteurs ont été mis en place : la synthèse in vitro et l'expression chez E. coli de protéines de fusion. Le premier a permis la production et la purification d'environ 0,6 mg de protéine par mL de réaction et le deuxième a été exploité afin de réaliser des caractérisations fonctionnelles des transporteurs ADP/ATP. Un test fonctionnel pour la protéine découplante a également été mis au point. Ce test, basé sur la mesure directe des courants électriques associés à l'activité de transport de l'UCP, à permis la caractérisation fonctionnelle de la protéine UCP1 native.
353

Bioénergétique systémique moléculaire dans les cellules nerveuses et musculaires: Compartimentation et hétérogénéité de la diffusion de l'ATP, Interactosome Mitochondrial

Monge, Claire 18 December 2009 (has links) (PDF)
La bioénergétique moléculaire des systèmes est une nouvelle direction de recherche scientifique qui s'inscrit dans la Biologie des Systèmes. Elle étudie et décrit le métabolisme énergétique intégré cellulaire non seulement comme un réseau de réactions mais aussi décrit ses aspects spatiaux (organisation) et temporels (dynamique). La bioénergétique moléculaire des systèmes considère l'organisation spatiale intracellulaire comme un processus dynamique dont la topologie elle-même renferme des informations. Ce projet tend à mettre l'accent sur une approche expérimentale décrivant les réseaux de phospho-transferts intracellulaire. Le principal objectif de ce travail fut la description comparative de l'hétérogénéité de la compartimentation des nucléotides adényliques et la complexité structurale et fonctionnelle des communications entre la mitochondrie et d'autres structures ou processus intracellulaire (cytosquelette, glycolyse) dans les cellules nerveuses (synaptosomes) et cardiaques (cardiomyocytes adultes et lignée cancéreuse de cellules HL-1). Les résultats de ce projet ont démontré 1/ la régulation de la perméabilité de la membrane externe mitochondriale par le facteur X (association de la tubuline hétérodimérique avec la porine voltage dependent anion channel), 2/ le couplage fonctionnel entre la creatine kinase mitochondriale et l'adénine nucléotide translocase , 3/ les mécanismes de régulation de la respiration mitochondriale in vivo qui ont permis d'établir un schéma de l'Interactosome Mitochondrial, 4/ les variations de régulation métabolique associées au cancer et 5/ l'hétérogénéité de la diffusion des nucléotides adényliques et leur micro- voire nano-compartimentation après activation des créatines kinases (par spectroscopie à corrélation de fluorescence).
354

Evaluation and Simulation of Black-box Arc Models for High-Voltage Circuit-Breakers / Utvärdering och simulering av black-box ljusbågsmodeller för högspänningsbrytare

Gustavsson, Niklas January 2004 (has links)
<p>The task for this Master thesis was to evaluate different black-box arc models for circuit-breakers with the purpose of finding criteria for the breaking ability. A black-box model is a model that requires no knowledge from the user of the underlying physical processes. Black-box arc models have been used in circuit-breaker development for many years. Arc voltages from tests made in the High Power Laboratory in Ludvika were used for validation, along with the resistance calculated at current zero, R0, and 500 ns before current zero, R500. </p><p>Three different arc models were evaluated: Cassie-Mayr, KEMA and an arc model based on power calculations. The third model gave very good results and if the model is developed further, the breaking ability could easily be estimated. </p><p>The arc model based on power calculations could be improved by using better approximations of the quantities in the model, and by representing the current better. A further suggestion for the following work is to combine the second arc model tested, the KEMA model, with the model based on power calculations in order to estimate the KEMA model parameters. </p><p>The R0 and R500 values should also be calculated from more tests, in order to find a clear limit of the breaking ability.</p>
355

Caractérisation génétique, biochimique et structurale de l'ATP synthase des mycobactéries, la cible d'un nouvel antituberculeux de la famille des diarylquinolines

Segala, Elena 11 January 2012 (has links) (PDF)
Le TMC207 est un nouvel antituberculeux appartenant à la famille des diarylquinolines qui inhibe très efficacement l'ATP synthase des mycobactéries. Dans le but de cartographier les interactions entre le TMC207 et sa cible et de comprendre le mécanisme d'action exact de cette nouvelle drogue, nous avons sélectionné in vitro des mutants résistants au TMC207 à partir de plusieurs espèces mycobactériennes. Six mutations distinctes ont été identifiées dans l'anneau c de l'ATP synthase: D28G, D28A, L59V, E61D, A63P et I66M. L'effet de ces mutations dans la résistance a été évalué en mesurant le niveau de résistance conféré dans les clones résistants, ainsi que dans un système de complémentation chez M. smegmatis. Les résultats ont été interprétés grâce à la construction d'un modèle structural de l'anneau c, utilisé pour faire des expériences de docking avec le TMC207. Nos résultats montrent que les résidus substitués dans les clones résistants définissent une poche localisée entre deux sous-unités c adjacentes dans l'anneau, englobant le site de fixation du proton, qui permet la stabilisation du TMC207. La drogue bloque ainsi le transfert des protons et la synthèse d'ATP. Pour finir, nous avons mis au point l'expression et la purification de l'ATP synthase mycobactérienne afin d'initier l'étude structurale de ce macro-complexe en microscopie électronique et en cristallographie des protéines. Les résultats obtenus en microscopie électronique en coloration négative nous ont permis d'obtenir les premières images de l'ATP synthase de M. smegmatis
356

Investigation of the Effect of Changes in Lipid Bilayer Properties on the Activity of the Bacterial Cell Division Regulator Protein MinD

Ayed, Saud 13 September 2012 (has links)
Bacterial cell division requires formation of the cytokinetic cell division septum at the mid-cell position, a process that is determined by three Min proteins; MinC, MinD and MinE. Regulation of cell division by Min proteins occurs via a multi-step process involving interactions between various Min proteins, as well as the membrane. In this cycle, ATP-bound MinD binds to the membrane surface where it can recruit MinC to inhibit formation of the cell division septum. MinE binding to this complex displaces MinC and stimulates ATP hydrolysis, leading to the dissociation of MinD from the membrane. These interactions give rise to a dynamic pattern of Min protein localization that appears to involve a polymeric state that is designed to create a zone that is permissive to cell division at the mid-point of the cell. The interaction between MinD and the membrane is a critical aspect of this cycle, yet the role of the lipid bilayer in MinD activation, localization and polymerization is not well understood. To probe the role of membrane charge and fluidity on MinD activation and polymerization, we developed a kinetic assay of MinE-stimulated MinD ATPase activity. We found that membrane charge is essential for MinD activation and that differences in membrane fluidity give rise to changes in its activity. Moreover, a burst phase was also observed during the first few minutes of reaction, but only on the most fluid anionic lipid tested. To help determine if the observed membrane-dependent changes in MinD activity are linked to any changes in MinD polymer structure, we have begun to develop a method to identify surface exposed regions of MinD through a combination of covalent labeling and mass spectrometry. Optimization of various steps for the assay has been done, and the assay can be applied to the future characterization of MinD polymer structure. Results from this assay, in combination with those from the kinetic measurements described here, will help to improve understanding about how membrane properties modulate MinD ATPase activity, and how this can influence the Min protein oscillation that is required to ensure normal bacterial cell division.
357

Biophysical Studies of the First Nucleotide Binding Domain of SUR2A

de Araujo, Elvin Dominic 23 August 2011 (has links)
ATP-sensitive potassium (KATP) channels have crucial roles in several biological processes. KATP channels possess four regulatory sulfonylurea receptors. The SUR proteins are members of the ubiquitous ATP-binding cassette (ABC) superfamily. However, unlike most ABC proteins, SURs do not transport substrates but function strictly as regulators of KATP channel activity. Currently, studies into the molecular basis by which various mutations in SUR2A cause disease are highly limited. This is primarily a consequence of poor solubility of isolated SUR2A NBDs, as is typical for many eukaryotic NBDs. By employing structure-based sequence alignments and biophysical studies, we determined domain boundaries for SUR2A NBD1 that enabled, for the first time, NMR studies of NBD1. Our biophysical studies demonstrate that the isolated SUR2A NBD1 is folded and exhibits differential dynamics upon ATP binding activity. Additional studies are now possible to examine the effects of disease-causing mutations on structure, dynamics, and interactions of NBD1.
358

Biophysical Studies of the First Nucleotide Binding Domain of SUR2A

de Araujo, Elvin Dominic 23 August 2011 (has links)
ATP-sensitive potassium (KATP) channels have crucial roles in several biological processes. KATP channels possess four regulatory sulfonylurea receptors. The SUR proteins are members of the ubiquitous ATP-binding cassette (ABC) superfamily. However, unlike most ABC proteins, SURs do not transport substrates but function strictly as regulators of KATP channel activity. Currently, studies into the molecular basis by which various mutations in SUR2A cause disease are highly limited. This is primarily a consequence of poor solubility of isolated SUR2A NBDs, as is typical for many eukaryotic NBDs. By employing structure-based sequence alignments and biophysical studies, we determined domain boundaries for SUR2A NBD1 that enabled, for the first time, NMR studies of NBD1. Our biophysical studies demonstrate that the isolated SUR2A NBD1 is folded and exhibits differential dynamics upon ATP binding activity. Additional studies are now possible to examine the effects of disease-causing mutations on structure, dynamics, and interactions of NBD1.
359

Structure and Function of Escherichia Coli Seca: An Essential Component of the Sec Translocase

Na, Bing 10 August 2007 (has links)
E. coli SecA is an essential component for protein translocaiton across membrane. SecA can be deleted from its N- and/or C-terminal ends without losing complementation activity. In this study, we determined the dispensity of both ends of SecA molecule. The minimal length at the SecA C-terminus is dependent on the length of the N-terminal region. SecA10-826 and SecA22-829 are the two minimal length SecAs. One more amino acid deleted at the C-terminal end completely abolished their complementation activity. A hydrophobic amino acid is required at the 826th amino acid in the minimal-length SecAs. Both SecA22-828 and SecA22-829 could form a dimer, and have decreased ATPase and protein translocation activities. The active truncated SecA mutants tended to have more soluble form than membrane-bound form, but were stably embedded in membrane. In contrast, the inactive truncated SecA mutants tended to have more membrane-bound form, but were not stable in membrane. Thus, the loss of complementation is not related to dimerization, ATPase and translocation activity but to certain extent related to their biased subcelluar localization and conformation in membrane. Isolated membranes of E coli strains were solubilized and fractionated by sucrose gradient fractionation. These membranes fractions were depleted of SecY and YidC, but contained SecD, SecF and GroEL. Proteoliposomes reconstituted from these fractionated membrane proteins were active in pOmpA translocation which required SecA and ATP. Membrane fractions from strain CK1801 in which the unc gene is deleted were reconstituted into liposomes and also showed translocation activities. Moreover, proteoliposomes reconstituted with Bacteriorodopsin alone were not active in translocation, while proteoliposomes reconstituted with Bacteriorodopsin and CK1801 membrane fractions showed elevated translocation efficiency. These data suggested that proton motive force is not obligatory for, but stimulatory to translocation of pOmA. Purified GroEL was reconstituted into lipsomes and the reconstituted proteoliposomes were active in pOmpA translocation although at lower efficiency. This translocation also required SecA and ATP. These results together suggested that translocation of pOmpA is active in the absence of SecY and YidC. In the absence of SecYEG, translocation of pOmpA requires SecA and ATP. GroEL, SecD and SecF may participate in the SecY-independent translocation.
360

Elucidation of secondary cell wall secretion mechanisms of Arabidopsis thaliana, Poplar (Populus deltoides x P. trichocarpa) and Pine (Pinus contorta)

Kaneda, Minako 05 1900 (has links)
Lignin is a key component of plant secondary cell walls, providing strength to the plant and allowing water transport. Lignin is a polymer of monolignols that are synthesized in the cell and transported into the cellulose rich cell wall. The primary goal of this thesis is to understand the mechanism(s) of monolignol deposition during xylogenesis. The currently accepted theory is that monolignols are exported by Golgi-mediated vesicle delivery to the secondary cell wall. When this theory was re-examined using cryofixed developing pine, quantitative autoradiography showed that monolignols did not accumulate in Golgi but were rapidly translocated from cytosol to cell wall. This suggests alternative mechanisms, such as membrane transporters, work in monolignol export. ATP binding cassette (ABC) transporters were chosen because they transport other secondary metabolites and some ABC transporter encoding genes are highly expressed in lignifying cells. Four candidate ABC transporters were selected in Arabidopsis (ABCB11, ABCB14, ABCB15 from the ABCB/MDR subfamily and ABCG33 from the ABCG/PDR subfamily) and shown to have overlapping, high vasculature expression patterns. Mutants with T-DNA insertions in single ABC transporter genes had no change in lignification of inflorescence stems. However, a reduced polar auxin transport phenotype was detected in mutants of ABCB11, ABCB14 and ABCB15. An additional approach was the use of inhibitors of ABC transporters. A new assay, which was developed to quantify lignification in primary xylem of Arabidopsis roots, demonstrated that ABC inhibitors did not change lignin deposition. Monolignols are exported and polymerized in the polysaccharide matrix of the cell wall, which includes hemicelluloses that may organize monolignols during polymerization. Since diverse lignified cell types are enriched in either G- or S-lignin, I hypothesized that this pattern could reflect different hemicellulose distributions, which was examined using antibody labeling of xylans or mannans in hybrid poplar xylem. While xylans were generally distributed in all secondary cell walls, mannans were enriched in fibers but not in the ray and vessel walls. In summary, during secondary cell wall deposition, monolignols are exported by unknown transporter(s) rather than Golgi vesicles. In developing poplar wood, the monolignols are deposited into diverse hemicellulose domains in different cell types.

Page generated in 0.0349 seconds