• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 112
  • 54
  • 16
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 198
  • 44
  • 41
  • 38
  • 33
  • 26
  • 24
  • 24
  • 24
  • 23
  • 22
  • 21
  • 20
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Topological Conjugacies Between Cellular Automata

Epperlein, Jeremias 21 April 2017 (has links)
We study cellular automata as discrete dynamical systems and in particular investigate under which conditions two cellular automata are topologically conjugate. Based on work of McKinsey, Tarski, Pierce and Head we introduce derivative algebras to study the topological structure of sofic shifts in dimension one. This allows us to classify periodic cellular automata on sofic shifts up to topological conjugacy based on the structure of their periodic points. We also get new conjugacy invariants in the general case. Based on a construction by Hanf and Halmos, we construct a pair of non-homeomorphic subshifts whose disjoint sums with themselves are homeomorphic. From this we can construct two cellular automata on homeomorphic state spaces for which all points have minimal period two, which are, however, not topologically conjugate. We apply our methods to classify the 256 elementary cellular automata with radius one over the binary alphabet up to topological conjugacy. By means of linear algebra over the field with two elements and identities between Fibonacci-polynomials we show that every conjugacy between rule 90 and rule 150 cannot have only a finite number of local rules. Finally, we look at the sequences of finite dynamical systems obtained by restricting cellular automata to spatially periodic points. If these sequences are termwise conjugate, we call the cellular automata conjugate on all tori. We then study the invariants under this notion of isomorphism. By means of an appropriately defined entropy, we can show that surjectivity is such an invariant.
182

Model-based Comparison of Cell Density-dependent Cell Migration Strategies

Hatzikirou, H., Böttger, K., Deutsch, A. 17 April 2020 (has links)
Here, we investigate different cell density-dependent migration strategies. In particular, we consider strategies which differ in the precise regulation of transitions between resting and motile phenotypes. We develop a lattice-gas cellular automaton (LGCA) model for each migration strategy. Using a mean-field approximation we quantify the corresponding spreading dynamics at the cell population level. Our results allow for the prediction of cell population spreading based on experimentally accessible single cell migration parameters.
183

Lattice-gas cellular automata for the analysis of cancer invasion

Hatzikirou, Haralambos 10 July 2009 (has links)
Cancer cells display characteristic traits acquired in a step-wise manner during carcinogenesis. Some of these traits are autonomous growth, induction of angiogenesis, invasion and metastasis. In this thesis, the focus is on one of the latest stages of tumor progression, tumor invasion. Tumor invasion emerges from the combined effect of tumor cell-cell and cell-microenvironment interactions, which can be studied with the help of mathematical analysis. Cellular automata (CA) can be viewed as simple models of self-organizing complex systems in which collective behavior can emerge out of an ensemble of many interacting "simple" components. In particular, we focus on an important class of CA, the so-called lattice-gas cellular automata (LGCA). In contrast to traditional CA, LGCA provide a straightforward and intuitive implementation of particle transport and interactions. Additionally, the structure of LGCA facilitates the mathematical analysis of their behavior. Here, the principal tools of mathematical analysis of LGCA are the mean-field approximation and the corresponding Lattice Boltzmann equation. The main objective of this thesis is to investigate important aspects of tumor invasion, under the microscope of mathematical modeling and analysis: Impact of the tumor environment: We introduce a LGCA as a microscopic model of tumor cell migration together with a mathematical description of different tumor environments. We study the impact of the various tumor environments (such as extracellular matrix) on tumor cell migration by estimating the tumor cell dispersion speed for a given environment. Effect of tumor cell proliferation and migration: We study the effect of tumor cell proliferation and migration on the tumor’s invasive behavior by developing a simplified LGCA model of tumor growth. In particular, we derive the corresponding macroscopic dynamics and we calculate the tumor’s invasion speed in terms of tumor cell proliferation and migration rates. Moreover, we calculate the width of the invasive zone, where the majority of mitotic activity is concentrated, and it is found to be proportional to the invasion speed. Mechanisms of tumor invasion emergence: We investigate the mechanisms for the emergence of tumor invasion in the course of cancer progression. We conclude that the response of a microscopic intracellular mechanism (migration/proliferation dichotomy) to oxygen shortage, i.e. hypoxia, maybe responsible for the transition from a benign (proliferative) to a malignant (invasive) tumor. Computing in vivo tumor invasion: Finally, we propose an evolutionary algorithm that estimates the parameters of a tumor growth LGCA model based on time-series of patient medical data (in particular Magnetic Resonance and Diffusion Tensor Imaging data). These parameters may allow to reproduce clinically relevant tumor growth scenarios for a specific patient, providing a prediction of the tumor growth at a later time stage. / Krebszellen zeigen charakteristische Merkmale, die sie in einem schrittweisen Vorgang während der Karzinogenese erworben haben. Einige dieser Merkmale sind autonomes Wachstum, die Induktion von Angiogenese, Invasion und Metastasis. Der Schwerpunkt dieser Arbeit liegt auf der Tumorinvasion, einer der letzten Phasen der Tumorprogression. Die Tumorinvasion ensteht aus der kombinierten Wirkung von den Wechselwirkungen Tumorzelle-Zelle und Zelle-Mikroumgebung, die mit die Hilfe von mathematischer Analyse untersucht werden können. Zelluläre Automaten (CA) können als einfache Modelle von selbst-organisierenden komplexen Systemen betrachtet werden, in denen kollektives Verhalten aus einer Kombination von vielen interagierenden "einfachen" Komponenten entstehen kann. Insbesondere konzentrieren wir uns auf eine wichtige CA-Klasse, die sogenannten Zelluläre Gitter-Gas Automaten (LGCA). Im Gegensatz zu traditionellen CA bieten LGCA eine einfache und intuitive Umsetzung der Teilchen und Wechselwirkungen. Zusätzlich erleichtert die Struktur der LGCA die mathematische Analyse ihres Verhaltens. Die wichtigsten Werkzeuge der mathematischen Analyse der LGCA sind hier die Mean-field Approximation und die entsprechende Lattice - Boltzmann - Gleichung. Das wichtigste Ziel dieser Arbeit ist es, wichtige Aspekte der Tumorinvasion unter dem Mikroskop der mathematischen Modellierung und Analyse zu erforschen: Auswirkungen der Tumorumgebung: Wir stellen einen LGCA als mikroskopisches Modell der Tumorzellen-Migration in Verbindung mit einer mathematischen Beschreibung der verschiedenen Tumorumgebungen vor. Wir untersuchen die Auswirkungen der verschiedenen Tumorumgebungen (z. B. extrazellulären Matrix) auf die Migration von Tumorzellen dürch Schätzung der Tumorzellen-Dispersionsgeschwindigkeit in einem gegebenen Umfeld. Wirkung von Tumor-Zellenproliferation und Migration: Wir untersuchen die Wirkung von Tumorzellenproliferation und Migration auf das invasive Verhalten der Tumorzellen durch die Entwicklung eines vereinfachten LGCA Tumorwachstumsmodells. Wir leiten die entsprechende makroskopische Dynamik und berechnen die Tumorinvasionsgeschwindigkeit im Hinblick auf die Tumorzellenproliferation- und Migrationswerte. Darüber hinaus berechnen wir die Breite der invasiven Zone, wo die Mehrheit der mitotischer Aktivität konzentriert ist, und es wird festgestellt, dass diese proportional zu den Invasionsgeschwindigkeit ist. Mechanismen der Tumorinvasion Entstehung: Wir untersuchen Mechanismen, die für die Entstehung von Tumorinvasion im Verlauf des Krebs zuständig sind. Wir kommen zu dem Schluss, dass die Reaktion eines mikroskopischen intrazellulären Mechanismus (Migration/Proliferation Dichotomie) zu Sauerstoffmangel, d.h. Hypoxie, möglicheweise für den Übergang von einem gutartigen (proliferative) zu einer bösartigen (invasive) Tumor verantwortlich ist. Berechnung der in-vivo Tumorinvasion: Schließlich schlagen wir einen evolutionären Algorithmus vor, der die Parameter eines LGCA Modells von Tumorwachstum auf der Grundlage von medizinischen Daten des Patienten für mehrere Zeitpunkte (insbesondere die Magnet-Resonanz-und Diffusion Tensor Imaging Daten) ermöglicht. Diese Parameter erlauben Szenarien für einen klinisch relevanten Tumorwachstum für einen bestimmten Patienten zu reproduzieren, die eine Vorhersage des Tumorwachstums zu einem späteren Zeitpunkt möglich machen.
184

Syntaktická analýza založená na multigenerování / Parsing Based on Multigeneration

Kyjovská, Linda January 2008 (has links)
This work deals with syntax analysis problems based on multi-generation. The basic idea is to create computer program, which transforms one input string to n -1 output strings. An Input of this program is some plain text file created by user, which contains n grammar rules. Just one grammar from the input file is marked as an input grammar and others n -1 grammars are output grammars. This program creates list of used input grammar rules for an input string and uses corresponding output grammar rules for the creation of n -1 output strings. The program is written in C++ and Bison
185

Systémy kombinující automaty a gramatiky / Systems that Combine Automata and Grammars

Petřík, Patrik January 2009 (has links)
This work deals with Systems that combine automata and grammars. We investigate their properties compared with grammar systems and automaton systems. Work is focused on systems, which components are finite state automata, right linear grammars, pushdown automata or context free grammars. We also investigate usage of these systems in compilers.
186

Převody mezi CF gramatikami a zásobníkovými automaty / Conversions between CF Grammars and Pushdown Automata

Makovský, Benjamin Unknown Date (has links)
This work suggests and solves the implementation of the transformation of context-free grammars and the conversions between context-free grammars and pushdown automata. It makes acquainted with the models used in modern theory of formal languages. In the work are indicated all algorithms necessary for transformations and mutual conversions between context-free grammars and pushdown automata. Proposed is an object representing the grammar and the automaton in the programme. Described is the assigning of definitions of grammar and of the automaton, the solution of drawing the automaton on the screen and the creation of graphical user interface of the application. The resulting programme is developed as Jawa applet which is available on public internet pages www.convertcfg.php5.cz.
187

Diplomová práca / Diploma work

Němec, Jakub January 2018 (has links)
The aim of my work is to reflect expression coincidence that reflects the theoretical basis of cellular automata and quantum mechanics. I think that art should point to examples of accurate knowledge and in this way spread among potential viewers. This is how I try to get closer to the subjective utopian society WERP-VEGA. I am not entirely convinced that fine arts can change the political situation or address fundamental civilization complications, but I believe that art is able to predict freely one of the possible scenarios of the future because one is only able to do what he can imagine.
188

Spatio-temporal dynamics of fluids and tissues: discrete versus continuous modeling

Franke, Florian 05 August 2024 (has links)
Um das Verständnis für physikalische und biologische Dynamiken zu verbessern, werden oft stellvertretend mathematische Modelle entwickelt, implementiert,validiert und analysiert. Die Entscheidung für oder gegen einen bestimmten Modelltyp, zum Beispiel ob die Auflösung in Raum und Zeit diskret oder kontinuierlich definiert ist, kann erheblichen Einfluss auf die Ergebnisse haben. Insbesondere bei der Untersuchung und Simulation der Dynamiken von biologischen Zellen, die häufig auch als biologische Flüssigkeiten (Biofluids) bezeichnet und in der Literatur oft mit physikalischen Flüssigkeiten verglichen werden, ist die Wahl des geeigneten Modelltyps nicht immer trivial. In diesem Zusammenhang stellt die vorliegende Arbeit drei verschiedene Szenarien vor. Unter Zuhilfenahme von unterschiedlichen mathematischen Modellen werden diese Szenarien dann untersucht. Dabei wird deutlich, dass trotz des ähnlichen Kontextes von physikalischen und biologischen Dynamiken je Szenario unterschiedliche Modelltypen besser geeignet sind und mitunter verschiedene Aussagen liefern. Daher muss für jedes dieser Szenarien die Entscheidung, welches Modell genommen wird und ob dieses in Raum und Zeit diskret oder kontinuierlich ist, neu evaluiert werden. Das erste Szenario befasst sich mit einer rein physikalischen Dynamik und beschreibt das Aufsteigen einer runden Flüssigkeitsblase innerhalb einer anderen Flüssigkeit. In diesem Zusammenhang wird auch häufig von zwei Phasen gesprochen. Dieser Fall dient auch als numerischer Benchmark-Test zur Bewertung der Genauigkeit von Zwei-Phasen-Modellen. Innerhalb dieses Kontextes werden oft Modelle verwendet, die kontinuierlich in Bezug auf Ort und Zeit sind. In der vorliegenden Arbeit wird stellvertretend das Cahn-Hilliard-Navier-Stokes-Modell verwendet. Vor allem wird ein neuer einfacher Diskretisierungsansatz für dieses Modell vorgestellt. Unter Verwendung eines Standard-Benchmark-Tests wird gezeigt, dass die Genauigkeit vergleichbar zu bisherigen Methoden ist. Das zweite Szenario fokussiert sich auf eine biologische Dynamik und beschreibt das Wachstum eines Tumorsphäroiden und sein Verhalten bei der Behandlung mit Radiostrahlung. Tumorsphäroide sind spezielle 3D in-vitro Experimente, welche eine Ansammlung von mehreren tausend Zellen umfassen und Tumormikroumgebung und Mikrometastasen nachempfinden. Durch ihre 3D Struktur zeigen sie Stoffwechselgradienten von Sauerstoff, Nährstoffen und Abfallprodukten. Die Modellierung solcher Sphäroide wird häufig mit zell- oder agentenbasierten Modellen beschrieben, die in Bezug auf Ort und Zeit meist diskret sind und das Zellverhalten regelbasiert beschreiben. In dieser Arbeit wird hierfür stellvertretend ein zellulärer Automat verwendet. Dieser dient später als Vergleichsmodell zu dem neu entwickelten und hier vorgestellten Ansatz: dem 1D Radial Shell Modell, welches im Ort diskret und in der Zeit kontinuierlich ist. Dieses ermöglicht weitere Erkenntnisse und Vorhersagen zum Wachstum der Sphäroide, insbesondere für die Dynamik bei kleinem Sphäroidvolumen. Im dritten Szenario wird ein Grenzfall zwischen den physikalischen und biologischen Flüssigkeiten beschrieben: Die Entmischungsdynamik von biologischen Zellen, welche oft in der Literatur mit der Entmischung von zwei physikalischen Flüssigkeiten, wie Wasser und Öl, verglichen wird. Daher werden die beiden zuvor vorgestellten Modelle, das kontinuierliche Cahn-Hilliard-Navier-Stokes-Modell und der diskrete zelluläre Automat, für diesen Sachverhalt simuliert und analysiert. Zudem werden beide Modelle miteinander und jeweils mit biologischen Experimenten verglichen, wobei aufgrund ihrer unterschiedlichen zeitlichen und räumlichen Auflösung verschiedene Vor- und Nachteile identifizierbar sind. Am Ende zeigt sich entgegen bisherigen Versuchen in der Literatur, dass die Anpassung der Modelle an die Experimentaldaten nicht ausschließlich durch das Skalierungsverhalten machbar ist, da die Zeitskalen in den Experimenten häufig zu kurz sind. Daher sollten zusätzliche Metriken, wie zum Beispiel der durchschnittliche Clusterdurchmesser oder die Verteilung der Clustergrößen, beachtet werden. / Enhancing the understanding of physical and biological dynamics is crucial, which is why assisting mathematical models are often developed, implemented, validated, and analyzed. The decision for or against a particular model type, for example, whether the resolution in space and time is defined discretely or continuously, can considerably influence the results. Especially when investigating and simulating the dynamics of biological cells, also referred to as biological fluids and in the literature often compared to physical fluids, choosing the appropriate model type is not trivial in every case. This work presents three scenarios, which are further examined with the help of various mathematical models. Despite the similar context, dynamics of physical and biological fluids, some model types are more suited and deliver different results for each scenario. Therefore, the decision should be made new, depending on the scenarios, which model type is optimal, discrete, or continuous in space and time. The first scenario describes pure physical dynamics by the rise of a round fluid bubble within another fluid, which is often referred to as two phases. This setup also serves as a numerical benchmark test to evaluate the accuracy of physical two-phase-models. Within this context, the models used are often continuous regarding space and time. In this work, the Cahn-Hilliard-Navier-Stokes-model is chosen as a representative example. In particular, a new discretization approach for the model is introduced and evaluated by the previous benchmark test, which showcases that the new, more straightforward discretization approach leads to comparably precise results. The second scenario focuses on biological dynamics and describes the untreated growth of a tumor spheroid and further its behavior when exposed to \acl{rt}. These tumor spheroids are, in particular, 3D-assays of in-vitro experiments, which are 3D avascular aggregates of several thousand tumor cells mimicking tumor microareas or micrometastases. Due to their 3D structure, spheroids exhibit metabolic gradients of oxygen, nutrients, and waste products. These are usually simulated with cell or agent-based models, which are discrete in terms of space and time and describe the cell behavior in a rule-based manner. In this work, a cellular automaton is used as a representative. Later, this model will serve as a comparison for the new innovative approach presented here: the 1D Radial Shell model, which is space-discrete and time-continuous. This model allows further insights and predictions, for example, regarding the behavior of spheroids at small volumes, justifying the use of multiple model types. The third scenario can be seen as the in-between of physical and biological fluid dynamics: The segregation of biological cells of two distinct types, which is in the literature often referred to as similar or equal to that of two physical fluids, like oil and water. Therefore, this process is simulated and analyzed with the previously introduced continuous Cahn-Hilliard-Navier-Stokes and the discrete cellular automaton models. Thereby, both models are compared with each other and also individually with biological experiments. The comparison enables the identification of various advantages and disadvantages due to their different temporal and spatial resolution. In the end, it becomes clear that adapting the models to the experimental data is only partially feasible through the scaling behavior, as the time scale in the experiments is often too short, which stands in contrast to the current standard in the literature. Therefore, we emphasize that additional metrics should be considered, such as the average cluster diameter or cluster size distribution.
189

Compartmental Models in Social Dynamics

Graf Brolund, Alice January 2021 (has links)
The dynamics of many aspects of social behaviour, such as spread of fads and fashion, collective action, group decision-making, homophily and disagreement, have been captured by mathematical models. The power of these models is that they can provide novel insight into the emergent dynamics of groups, e.g. 'epidemics' of memes, tipping points for collective action, wisdom of crowds and leadership by small numbers of individuals, segregation and polarisation. A current weakness in the scientific models is their sheer number. 'New' models are continually 'discovered' by physicists, engineers and mathematicians. The models are analysed mathematically, but very seldom provide predictions that can be tested empirically. In this work, we provide a framework of simple models, based on Lotka's original idea of using chemical reactions to describe social interactions. We show how to formulate models for social epidemics, social recovery, cycles, collective action, group decision-making, segregation and polarisation, which we argue encompass the majority of social dynamics models. We present an open-access tool, written in Python, for specifying social interactions, studying them in terms of mass action, and creating spatial simulations of model dynamics. We argue that the models in this article provide a baseline of empirically testable predictions arising from social dynamics, and that before creating new and more complicated versions of the same idea, researchers should explain how their model differs substantially from our baseline models. / Matematiska modeller kan hjälpa oss att förstå många typer av sociala fenomen, som ryktesspridning, spridning av memes, gruppbeslut, segregation och radikalisering. Det finns idag otaliga modeller för sociala beteenden hos människor och djur, och fler presenteras kontinuerligt. Det stora antalet modeller försvårar navigering inom forskningsfältet, och många av modellerna är dessutom komplicerade och svåra att verifiera genom experiment. I detta arbete föreslås ett ramverk av grundläggande modeller, som var och en modellerar en aspekt av socialt beteende; det gäller sociala epidemier, cykler, gemensamt handlande, gruppbeslut, segregation och polarisering. Vi menar att dessa modeller utgör majoriteten av de verifierbara aspekter av socialt beteende som studeras, och att de bör behandlas som en utgångspunkt när en ny modell ska introduceras. Vilka av mekanismerna från utgångspunkten finns representerade i modellen? Skiljer den sig ens nämnvärt från utgångspunkten? Genom att ha en god förståelse för grundmodellerna, och genom att förklara på vilket sätt en ny modell skiljer sig från dem, kan forskare undvika att presentera modeller som i praktiken är mer komplicerade varianter av sådana som redan finns. I detta arbete visar vi hur dessa grundläggande modeller kan formuleras och studeras. Modellerna bygger på enkla regler om vad som händer när individer i en befolkning möter varandra. Till exempel, om en person som har vetskap om ett rykte träffar någon som inte har det, kan ryktet spridas vidare. Därför har antaganden om vilka personer som kan träffa varandra stor påverkan på de resultat som modellerna ger. I detta arbete studeras varje modell med två olika metoder: i den ena har alla personer i befolkningen samma sannolikhet att träffa varandra, i den andra representeras befolkningen av ett rutnät, där varje plats motsvarar en individ. I den senare har alltså varje person ett begränsat antal grannar att interagera med. Vilken av dessa två metoder man väljer har stor betydelse för vilka beteenden modellerna förutspår. Som ett komplement till detta arbete presenteras ett verktyg i form av ett Python-program som utför analysen av modellerna. Detta kan användas för att undersöka grundmodellerna som presenteras i detta arbete, men också för att formulera och analysera nya modeller på samma sätt. På det viset kan nya modeller enkelt jämföras mot grundmodellerna. Verktyget är användbart både som introduktion för de som är nya inom social dynamik, men också för de forskare som som vill ta fram nya modeller och föra forskningsfältet vidare.
190

Adaptivní optimální regulátory s principy umělé inteligence v prostředí MATLAB - B&R / Adaptive optimal controllers with principles of artificial intelligence

Mrázek, Michal January 2008 (has links)
Master’s thesis describes adaptive optimal controller design which change parameters of algorithm based on the system information regard for optimal criterion. Generally, the optimal controller solves the problem of minimum states vector. Problems of desired value and steady-state error are solved by variation in optimization algorithm.

Page generated in 0.0503 seconds