• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Query By Example Keyword Spotting

Sunde Valfridsson, Jonas January 2021 (has links)
Voice user interfaces have been growing in popularity and with them an interest for open vocabulary keyword spotting. In this thesis we focus on one particular approach to open vocabulary keyword spotting, query by example keyword spotting. Three types of query by example keyword spotting approaches are described and evaluated: sequence distances, speech to phonemes and deep distance learning. Evaluation is done on a series of custom tasks designed to measure a variety of aspects. The Google Speech Commands benchmark is used for evaluation as well, this to make it more comparable to existing works. From the results, the deep distance learning approach seem most promising in most environments except when memory is very constrained; in which sequence distances might be considered. The speech to phonemes methods is lacking in the usability evaluation. / Röstgränssnitt har växt i populäritet och med dem ett intresse för öppenvokabulärnyckelordsigenkänning. I den här uppsatsen fokuserar vi på en specifik form av öppenvokabulärnyckelordsigenkänning, den s.k nyckelordsigenkänning- genom- exempel. Tre typer av nyckelordsigenkänning- genom- exempel metoder beskrivs och utvärderas: sekvensavstånd, tal till fonem samt djupavståndsinlärning. Utvärdering görs på konstruerade uppgifter designade att mäta en mängd olika aspekter hos metoderna. Google Speech Commands data används för utvärderingen också, detta för att göra det mer jämförbart mot existerade arbeten. Från resultaten framgår det att djupavståndsinlärning verkar mest lovande förutom i miljöer där resurser är väldigt begränsade; i dessa kan sekvensavstånd vara av intresse. Tal till fonem metoderna visar brister i användningsuvärderingen.
2

Repairing Swedish Automatic Speech Recognition / Korrigering av Automatisk Taligenkänning för Svenska

Rehn, Karla January 2021 (has links)
The quality of automatic speech recognition has increased dramatically the last few years, but the performance for low and middle resource languages such as Swedish is still far from optimal. In this project a language model trained on large written corpora called KB-BERT is utilized to improve the quality of transcriptions for Swedish. The large language model is inserted as a repairing module after the automatic speech recognition, aiming to repair the original output into a transcription more closely resembling the ground truth by using a sequence to sequence translating approach. Two automatic speech recognition models are used to transcribe the speech, one of the models are developed in this project using the Kaldi framework, the other model is Microsoft’s Azure Speech to text platform. The performance of the translator is evaluated with four different datasets, three consisting of read speech and one of spontaneous speech. The spontaneous speech and one of the read datasets include both native and non-native speakers. The performance is measured by three different metrics, word error rate, a weighted word error rate and a semantic similarity. The repairs improve the transcriptions of two of the read speech datasets significantly, decreasing the word error rate from 13.69% to 3.05% and from 36.23% to 21.17%. The repairs improve the word error rate from 44.38% to 44.06% on the data with spontaneous speech, and fail on the last read dataset, instead increasing the word error rate. The lower performance on the latter is likely due to lack of data. / Automatisk taligenkänning har förbättrats de senaste åren, men för små språk såsom svenska är prestandan fortfarande långt ifrån optimal. Det här projektet använder KB-BERT, en neural språkmodell tränad på stora mängder skriven text, för att förbättra kvalitén på transkriptioner av svenskt tal. Transkriptionerna kommer från två olika taligenkänningsmodeller, dels en utvecklad i det här projektet med hjälp av mjukvarubiblioteket Kaldi, dels Microsoft Azures plattform för tal till text. Transkriptionerna repareras med hjälp av en sequence-to-sequence översättningsmodell, och KB-BERT används för att initiera modellen. Översättningen sker från den urpsrungliga transkriptionen från en av tal-till-text-modellerna till en transkription som är mer lik den korrekta, faktiska transkriptionen. Kvalitéen på reparationerna evalueras med tre olika metriker, på fyra olika dataset. Tre av dataseten är läst tal och det fjärde spontant, och det spontana talet samt ett av de lästa dataseten kommer både från talare som har svenska som modersmål, och talare som har det som andraspråk. De tre metrikerna är word error rate, en viktad word error rate, samt ett mått på semantisk likhet. Reparationerna förbättrar transkriptionerna från två av de lästa dataseten markant, och sänker word error rate från 13.69% till 3.05% och från 36.23% till 21.17%. På det spontana talet sänks word error rate från 44.38% till 44.06%. Reparationerna misslyckas på det fjärde datasetet, troligen på grund av dess lilla storlek.
3

Tal till text för relevant metadatataggning av ljudarkiv hos Sveriges Radio / Speech to text for relevant metadata tagging of audio archive at Sveriges Radio

Jansson, Annika January 2015 (has links)
Tal till text för relevant metadatataggning av ljudarkiv hos Sveriges Radio Sammanfattning Under åren 2009-2013 har Sveriges Radio digitaliserat sitt programarkiv. Sveriges Radios ambition är att mer material från de 175 000 timmar radio som sänds varje år ska arkiveras. Det är en relativt tidsödande process att göra allt material sökbart och det är långt ifrån säkert att kvaliteten på dessa data är lika hög hos alla objekt.         Frågeställningen som har behandlats för detta examensarbete är: Vilka tekniska lösningar finns för att utveckla ett system åt Sveriges Radio för automatisk igenkänning av svenskt tal till text utifrån deras ljudarkiv?         System inom tal till text har analyserats och undersökts för att ge Sveriges Radio en aktuell sammanställning inom området.         Intervjuer med andra liknande organisationer som arbetar inom området har utförts för att se hur långt de har kommit i sin utveckling av det berörda ämnet.         En litteraturstudie har genomförts på de senare forskningsrapporterna inom taligenkänning för att jämföra vilket system som skulle passa Sveriges Radio behov och krav bäst att gå vidare med.         Det Sveriges Radio bör koncentrera sig på först för att kunna bygga en ASR, Automatic Speech Recognition, är att transkribera sitt ljudmaterial. Där finns det tre alternativ, antingen transkribera själva genom att välja ut ett antal program med olika inriktning för att få en så stor bredd som möjligt på innehållet, gärna med olika talare för att sedan även kunna utveckla vidare för igenkänning av talare. Enklaste sättet är att låta olika yrkeskategorier som lägger in inslagen/programmen i systemet göra det. Andra alternativet är att starta ett liknade projekt som BBC har gjort och ta hjälp av allmänheten. Tredje alternativet är att köpa tjänsten för transkribering.         Mitt råd är att fortsätta utvärdera systemet Kaldi, eftersom det har utvecklats mycket på senaste tiden och verkar vara relativt lätt att utvidga. Även den öppna källkod som Lingsoft använder sig av är intressant att studera vidare. / Speech to text for relevant metadata tagging of audio archive at Sveriges Radio Abstract In the years 2009-2013, Sveriges Radio digitized its program archive. Sveriges Radio's ambition is that more material from the 175 000 hours of radio they broadcast every year should be archived. This is a relatively time-consuming process to make all materials to be searchable and it's far from certain that the quality of the data is equally high on all items.         The issue that has been treated for this thesis is: What opportunities exist to develop a system to Sveriges Radio for Swedish speech to text?         Systems for speech to text has been analyzed and examined to give Sveriges Radio a current overview in this subject.         Interviews with other similar organizations working in the field have been performed to see how far they have come in their development of the concerned subject.         A literature study has been conducted on the recent research reports in speech recognition to compare which system would match Sveriges Radio's needs and requirements best to get on with.         What Sveriges Radio should concentrate at first, in order to build an ASR, Automatic Speech Recognition, is to transcribe their audio material. Where there are three alternatives, either transcribe themselves by selecting a number of programs with different orientations to get such a large width as possible on the content, preferably with different speakers and then also be able to develop further recognition of the speaker. The easiest way is to let different professions who make the features/programs in the system do it. Other option is to start a similar project that the BBC has done and take help of the public. The third option is to buy the service for transcription.         My advice is to continue evaluate the Kaldi system, because it has evolved significantly in recent years and seems to be relatively easy to extend. Also the open-source that Lingsoft uses is interesting to study further.
4

Mispronunciation Detection with SpeechBlender Data Augmentation Pipeline / Uttalsfelsdetektering med SpeechBlender data-förstärkning

Elkheir, Yassine January 2023 (has links)
The rise of multilingualism has fueled the demand for computer-assisted pronunciation training (CAPT) systems for language learning, CAPT systems make use of speech technology advancements and offer features such as learner assessment and curriculum management. Mispronunciation detection (MD) is a crucial aspect of CAPT, aimed at identifying and correcting mispronunciations in second language learners’ speech. One of the significant challenges in developing MD models is the limited availability of labeled second-language speech data. To overcome this, the thesis introduces SpeechBlender - a fine-grained data augmentation pipeline designed to generate mispronunciations. The SpeechBlender targets different regions of a phonetic unit and blends raw speech signals through linear interpolation, resulting in erroneous pronunciation instances. This method provides a more effective sample generation compared to traditional cut/paste methods. The thesis explores also the use of pre-trained automatic speech recognition (ASR) systems for mispronunciation detection (MD), and examines various phone-level features that can be extracted from pre-trained ASR models and utilized for MD tasks. An deep neural model was proposed, that enhance the representations of extracted acoustic features combined with positional phoneme embeddings. The efficacy of the augmentation technique is demonstrated through a phone-level pronunciation quality assessment task using only non-native good pronunciation speech data. Our proposed technique achieves state-of-the-art results, with Speechocean762 Dataset [54], on ASR dependent MD models at phoneme level, with a 2.0% gain in Pearson Correlation Coefficient (PCC) compared to the previous state-of-the-art [17]. Additionally, we demonstrate a 5.0% improvement at the phoneme level compared to our baseline. In this thesis, we developed the first Arabic pronunciation learning corpus for Arabic AraVoiceL2 to demonstrate the generality of our proposed model and augmentation technique. We used the corpus to evaluate the effectiveness of our approach in improving mispronunciation detection for non-native Arabic speakers learning. Our experiments showed promising results, with a 4.6% increase in F1-score for the Arabic AraVoiceL2 testset, demonstrating the effectiveness of our model and augmentation technique in improving pronunciation learning for non-native speakers of Arabic. / Den ökande flerspråkigheten har ökat efterfrågan på datorstödda CAPT-system (Computer-assisted pronunciation training) för språkinlärning. CAPT-systemen utnyttjar taltekniska framsteg och erbjuder funktioner som bedömning av inlärare och läroplanshantering. Upptäckt av felaktigt uttal är en viktig aspekt av CAPT som syftar till att identifiera och korrigera felaktiga uttal i andraspråkselevernas tal. En av de stora utmaningarna när det gäller att utveckla MD-modeller är den begränsade tillgången till märkta taldata för andraspråk. För att övervinna detta introduceras SpeechBlender i avhandlingen - en finkornig dataförstärkningspipeline som är utformad för att generera feluttalningar. SpeechBlender är inriktad på olika regioner i en fonetisk enhet och blandar råa talsignaler genom linjär interpolering, vilket resulterar i felaktiga uttalsinstanser. Denna metod ger en effektivare provgenerering jämfört med traditionella cut/paste-metoder. I avhandlingen undersöks användningen av förtränade system för automatisk taligenkänning (ASR) för upptäckt av felaktigt uttal. I avhandlingen undersöks olika funktioner på fonemnivå som kan extraheras från förtränade ASR-modeller och användas för att upptäcka felaktigt uttal. En LSTM-modell föreslogs som förbättrar representationen av extraherade akustiska egenskaper i kombination med positionella foneminbäddningar. Effektiviteten hos förstärkning stekniken demonstreras genom en uppgift för bedömning av uttalskvaliteten på fonemnivå med hjälp av taldata som endast innehåller taldata som inte är av inhemskt ursprung och som ger ett bra uttal, Vår föreslagna teknik uppnår toppresultat med Speechocean762-dataset [54], på ASR-beroende modeller för upptäckt av felaktigt uttal på fonemnivå, med en ökning av Pearsonkorrelationskoefficienten (PCC) med 2,0% jämfört med den tidigare toppnivån [17]. Dessutom visar vi en förbättring på 5,0% på fonemnivå jämfört med vår baslinje. Vi observerade också en ökning av F1-poängen med 4,6% med arabiska AraVoiceL2-testset.

Page generated in 0.1114 seconds