• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 168
  • 53
  • 19
  • 12
  • 9
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 335
  • 49
  • 47
  • 43
  • 40
  • 39
  • 36
  • 28
  • 26
  • 26
  • 26
  • 24
  • 21
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Host recognition strategies and evolution in phages infecting the marine bacterium Alteromonas sp.

Gonzalez-Serrano, Rafael 22 March 2021 (has links)
Viruses constitute the vast majority of all biological entities in the biosphere and represent one of the biggest reservoirs of undetected genetic diversity on Earth. Of all the viral particles inhabiting the ocean, phages are the most abundant and can affect the overall microbial composition of marine ecosystems and the dynamics of global biogeochemical cycles. The interaction between prokaryotic cells and their phages is among the oldest and most intertwined host-parasite relationships on the planet. It has been extensively studied by culture, molecular biology, and experimental evolution. However, due to the difficulties of culture with environmental samples, only a few studies have analyzed the mechanisms of phage-host interaction in the marine environment. Here, we have studied the genes involved in viral host recognition and their evolutionary dynamics by focusing on two species of the marine copiotrophic bacterium Alteromonas and several phages infecting them. We described the genomic and morphological characterization of the first Alteromonas phage belonging to the Myoviridae family (Alteromonas myovirus V22) that was isolated in coastal waters of the Mediterranean Sea, and we identified its receptor-binding protein (RBP) used for host recognition by combining fluorescence microscopy and spectrometry. In addition, using size-exclusion chromatography, we showed how this protein required co-expression with a downstream protein to be functional, which later was identified as a new type of intermolecular chaperone crucial for RBP maturation. We also identified a conserved host recognition module in V22 and other unrelated alterophages belonging to different viral families and with completely different morphologies, suggesting horizontal gene transfer between the ancestors of these phages. Furthermore, we described the first coevolution study of a host-parasite system performed with Alteromonas using a metagenomics-like approach. Finally, we analyzed the micro- and macrodiversity of an alterophage population that was able to survive over a long period of time and showed remarkable genomic stability, indicating stable interactions over time between phage-host recognition structures. Overall, this study has contributed to extend the knowledge of known phage-host recognition mechanisms present in the marine ecosystem and has provided a first glimpse of the evolutionary dynamics in phages infecting Alteromonas.
322

Bacteriophages in the honey bee gut and amphibian skin microbiomes: investigating the interactions between phages and their bacterial hosts

Bueren, Emma Kathryn Rose 14 June 2024 (has links)
The bacteria in host-associated microbial communities influence host health through various mechanisms, such as immune stimulation or the release of metabolites. However, viruses that target bacteria, called bacteriophages (phages), may also shape the animal microbiome. Most phage lifecycles can be classified as either lytic or temperate. Lytic phages infect and directly kill bacterial hosts and can directly regulate bacterial population size. Temperate phages, in contrast, have the potential to undergo either a lytic cycle or integrate into the bacterial genome as a prophage. As a prophage, the phage may alter bacterial host phenotypes by carrying novel genes associated with auxiliary metabolic functions, virulence-enhancing toxins, or resistance to other phage infections. Lytic phages may also carry certain auxiliary metabolic genes, which are instead used to takeover bacterial host functions to better accommodate the lytic lifecycle. In either case, the ability to alter bacterial phenotypes may have important ramifications on host-associated communities. This dissertation focused on the genetic contributions that phages, and particularly prophages, provide to the bacterial members of two separate host-associated communities: the honey bee (Apis mellifera) gut microbiome and the amphibian skin microbiome. My second chapter surveyed publicly available whole genome sequences of common honey bee gut bacterial species for prophages. It revealed that prophage distribution varied by bacterial host, and that the most common auxiliary metabolic genes were associated with carbohydrate metabolism. In chapter three, this bioinformatic pipeline was applied to the amphibian skin microbiome. Prophages were identified in whole genome bacterial sequences of bacteria isolated from the skin of American bullfrogs (Lithobates catesbeianus), eastern newts (Notophthalmus viridescens), Spring peepers (Pseudacris crucifer) and American toads (Anaxyrus americanus). Prophages were additionally identified in publicly available genomes of non-amphibian isolates of Janthinobacterium lividum, a bacteria found both on amphibian skin and broadly in the environment. In addition to a diverse set of predicted prophages across amphibian bacterial isolates, several Janthinobacterium lividum prophages from both amphibian and environmental isolates appear to encode a chitinase-like gene undergoing strong purifying selection within the bacterial host. While identifying the specific function of this gene would require in vitro isolation and testing, its high homology to chitinase and endolysins suggest it may be involved in the breakdown of either fungal or bacterial cellular wall components. Finally, my fourth chapter revisits the honey bee gut system by investigating the role of geographic distance in bacteriophage community similarity. A total of 12 apiaries across a transect of the United States, from Virginia to Washington, were sampled and honey bee viromes were sequenced, focusing on the lytic and actively lysing temperate community of phages. Although each apiary possessed many unique bacteriophages, apiaries that were closer together did have more similar communities. Each bacteriophage community also carried auxiliary carbohydrate genes, especially those associated with sucrose degradation, and antimicrobial resistance genes. Combined, the results of these three studies suggest that bacteriophages, and particularly prophages, may be contributing to the genetic diversity of the bacterial community through nuanced relationships with their bacterial hosts. / Doctor of Philosophy / The microbial communities of animals, called "microbiomes", play important roles in the health of animals. The bacteria in these microbiomes can help strengthen the immune system, provide resistance to dangerous pathogens, and break down nutrients. However, bacteria are not alone in the microbiome; viruses are also present. Surprisingly, the vast majority of the world's viruses, even those living inside animals, infect bacteria. These viruses, called "bacteriophages" or "phages", can impact the bacterial communities in a microbiome. Phages can be grouped in to two broad categories based on lifecycle. Lytic phages kill the bacterial host directly after infection. Temperate phages, on the other hand, can either immediately kill the host like lytic phages or alternatively, become a part of the bacterial genome and live as prophages. Phages with both lifecycles can sometimes carry genes that, although not essential to the phage, may change the traits of the bacteria during infection. For example, some phages carry toxin genes, which bacteria use to cause disease in animals. Other phages might carry genes that provide antibiotic resistance or alter the metabolism of the infected bacteria. If a phage gene benefits the infected bacteria, the bacteria may begin interacting with its environment in a new way or may even become more abundant. Alternatively, phages that directly kill infected bacteria may have a negative effect on bacterial population sizes. To begin unraveling how phages influence bacterial species in microbiomes, I investigated two different animal systems: the Western honey bee (Apis mellifera) gut microbiome and the amphibian skin microbiome. I first identified prophages of several common bacterial species that reside in the honey bee gut (Chapter 2). Prophages were more common in certain bacterial species than others, and some possessed genes associated with the breakdown of sugars or pollen, suggesting they help honey bees process their food. Using similar techniques, I then identified prophages in bacteria isolated from the skin microbiomes of several amphibian species common in the eastern United States (American bullfrogs, Eastern newts, Spring peepers, and American toads) (Chapter 3). Most notably, the bacteria Janthinobacterium lividum may benefit from prophages that carry genes for potentially antifungal chitinase enzymes that destroy the fungal cell wall. Finally, I returned to the honey bee gut microbiome system by investigating how honey bee bacteriophage communities change over large geographic distances (Chapter 4). This study, which examined honey bees from 12 apiaries sampled from the east to west coast of the United States, looks primarily at lytic phage and temperate phage that are not integrated as prophage, but are instead seeking a bacterial host to infect. I found that nearby apiaries tended to have more similar communities of bacteriophages, compared to apiaries far away. Additionally, most bacteriophage communities carry genes associated with the breakdown of sugars like sucrose. Overall, these three studies show that phages, and especially prophages, contribute to the genetic landscape of the microbiome by broadly providing bacterial hosts with access to a diverse set of genes.
323

Mechanism Of Interaction Of Escherichia Coli σ70 With Anti-Sigma Factors

Sharma, Umender K 07 1900 (has links)
In bacteria, the RNA polymerase (RNAP) consists of the following subunits: α2, β, β’, ω and σ. The core RNAP (α2ββ’ω) possesses the polymerising activity and it associates with one of the sigma factors to initiate transcription from a promoter region on the DNA template. All bacteria carry an essential housekeeping sigma factor and a number of extra cytoplasmic function (ECF) sigma factors. During alternate physiological states, a major part of transcriptional regulation is carried out by sigma factors, which act as transcriptional switches, thus, making it possible for bacteria to adapt to varied environmental signals by transcribing the necessary set of genes. Bacteriophages utilise various mechanisms for subverting the bacterial biochemical machinery for their advantage. One such example in E. coli is AsiA protein encoded by an early gene of T4 bacteriophage. Because of its property of binding to σ70, AsiA can inhibit transcription from E. coli promoters bearing –10 and –35 DNA sequences leading to inhibition of growth. σ70 of E. coli is also regulated by a stationary phase specific protein, Rsd, whose major function seems to be helping the cell in switching the transcription in favour of stationary phase genes. In this study we have investigated the mechanism of interaction of T4 AsiA and E. coli Rsd to σ70 of E. coli and also tried to determine the basis of differential inhibition of E. coli growth by AsiA and Rsd. In chapter one we have reviewed the published literature on regulation of transcription in bacteria. Some of the well known mechanisms of regulating gene expression are: DNA supercoiling, two component signal transduction system (TCS), regulation by alarmone ppGpp and 6S RNA, and sigma-antisigma interactions. Most bacteria carry a number of sigma factors and each of them is dedicated to transcribing genes in response to environmental signals. Intracellular levels of sigma factors and their binding affinity to core RNAP are deciding factors for initiating transcription from specific subsets of genes. In addition, sigma factor activity is also controlled by specific proteins, which bind to sigma factors (anti-sigma factors) under certain environmental conditions. A number of anti-sigma factors have been isolated from a variety of bacteria and the mechanisms of action of binding to cognate sigma factors have been worked out by using genetic, biochemical and structural tools. In chapter two, using yeast two hybrid assay (YTH), we have identified the regions of σ70 which interact with AsiA, and it was observed that amino acid residues from 547-603, encompassing region 4.1 and 4.2 are involved in binding to σ70. Interestingly, we found that truncated σ70 fragments lacking the N-terminal regions, apparently bound to AsiA with higher affinity compared to full length σ70. As AsiA expression, because of its transcription inhibitory activity, is inhibitory to E.coli growth, co-expression of the truncated C-terminal σ70 fragments (e.g. residues 493-613, σ70C121), which bind to σ70 with high affinity, could relieve growth inhibition. The complex of GST:AsiA-σ70C121 could be purified from E. coli cells. GST:AsiA purified from E .coli cells was found to be associated with RNAP subunits. Since further studies on this interaction required GST:AsiA preparation devoid of RNAP subunits, we decided to express this protein in S. cerevisiae. Bioinformatics analysis indicated the absence of a σ70 homologue in S.cerevisiae. As expected, GST:AsiA purified from the yeast was found to be free from any RNAP like proteins. The protein purified from yeast was used for in-vitro binding experiments. Our YTH analysis had indicated that deletion a part of region 4.1 or 4.2 of σ70 leads to loss of binding to AsiA. However, the published NMR structure of AsiA in complex with peptides corresponding to region 4 of σ70, showed that either region 4.1 or 4.2 alone can bind to AsiA indicating at the possible existence of two binding sites for AsiA. In order to confirm the physiological significance of this finding, we studied the interaction of truncated σ70 fragments lacking either region 4.1 or 4.2 with AsiA in-vivo in E. coli and in-vitro by affinity pull down assays. It was observed that σ70 fragments lacking either region 4.1 (σ70∆4.1) or 4.2 (σ70∆4.2), did not neutralize the GST:AsiA toxicity, indicating lack of interaction. The affinity purified GST:AsiA from these E. coli cells did not have σ70∆4.1 or σ70∆4.2 associated with it. Similar results were obtained from pull down assays in-vitro, where we found that σ70∆4.1 or σ70∆4.2 do not show any observable interaction with AsiA. This clearly established that the minimum region of σ70 required for physiologically relevant interaction with AsiA consists of both the regions 4.1 and 4.2. Chapter 3 of this thesis has been devoted to this aspect of AsiA-σ70 interaction. Having defined the minimum region of σ70 interacting with AsiA, we sought to identify the regions and amino acid residues of AsiA, which are critical for interaction with σ70. The approach for identification of mutants and their characterisation has been discussed in chapter 4. For this purpose, we made systematic deletions in the N and C-terminal regions of the protein and also isolated random mutants of AsiA, which lack binding to σ70 and thus are non-inhibitory to E. coli growth. It was found that deletion of 5 amino acids from N-terminus and 17 amino acids from C-terminus did not alter the inhibitory activity of AsiA. In contrast, deletion of N-terminal 10 amino residues led to complete loss of activity, while in the C-terminus, a gradual loss of activity was observed when amino acid residues beyond 17 amino acids were deleted. A 34 amino acids C-terminal deletion mutant was found to be completely inactive. E10K mutant was found to be inactive, but changes of E to other amino acids such as S, Y, L, A and Q were tolerated, indicating that negative charge at E10 is not a crucial element for interaction with σ70. Inactive mutants could be overexpressed in E. coli and showed reduced binding in YTH assay and were also poor inhibitors of in-vivo transcription in E. coli. We concluded that the primary σ70 binding site of AsiA is present in the N-terminus, yet C-terminal 64-73 amino acid residues are required for effective binding in-vivo. These studies also correlate the inhibitory potential of AsiA with its σ70 binding proficiency. In chapter 5, we have made a comparative analysis of mechanism of interaction of AsiA and Rsd to E. coli RNAP. Overexpression of Rsd was found to be less inhibitory to E. coli cell growth than that of AsiA. The affinity purified GST-AsiA from E. coli was found to have all the RNAP subunits associated with it, whereas, only σ70 was found to be associated with similarly purified GST:Rsd, pointing towards differences in binding to RNAP. In affinity pull down assays, in-vitro, it was found that both AsiA and Rsd do not show any observable binding to core RNAP. Binding of AsiA to σ70 in holo RNAP led to the formation of a ternary complex, whereas no ternary complex was observed when Rsd was made to interact with holo RNAP. Analysis of protein-protein interaction by YTH showed that region 4.1 and 4.2 are critical for binding of both AsiA and Rsd to σ70. However, in the case of Rsd, the surface of interaction is not limited to this region only and other regions of σ70 make significant contribution to this binding. Possibly, the interaction of Rsd with the core binding regions of σ70 prevents its association with core RNAP. Kinetic analysis of binding by surface plasmon resonance (SPR) showed that binding affinities (Kd) of AsiA and Rsd to σ70 are in similar range. Therefore, we concluded that the ability of AsiA to trap the holo RNAP is, probably, responsible for higher inhibitory activity of this protein compared to that of Rsd. Thus, T4 AsiA and E. coli Rsd, which share regions of interaction on σ70, have evolved differences in their mechanism of binding to RNAP such that T4 AsiA, by trapping the holo RNAP subverts the complete bacterial transcription machinery to transcribe its own genes. Rsd, on the other hand, has evolved to interact primarily with σ70, which favours the utilisation of core RNAP by other sigma factors.
324

Virus removal in ceramic depth filters / Entfernung von Viren mittels keramischer Tiefenfilter : die elektrostatisch begünstigte Adsorption

Michen, Benjamin 05 April 2011 (has links) (PDF)
Diese Arbeit untersucht den Einsatz von keramischen Materialien in der Trinkwasseraufbereitung mittels Filtration und fokussiert dabei die Entfernung von Viren. Herkömmliche, auf Kieselgur basierende Tiefenfilter (Filterkerzen) mit Porengrößen im unteren Mikrometerbereich, werden hinsichtlich ihres Rückhaltevermögens gegenüber Kolloiden (Viren sowie Polystyrolpartikel) untersucht, um deren Einsatzfähigkeit in der Entfernung von Mikroorganismen im Allgemeinen abschätzen zu können. Ferner wird gezeigt, wie durch ein einfaches Verfahren solche Filter modifiziert werden können, um auch kleinste Viren mit ca. 30 nm Durchmessern aus dem Rohwasser zu entfernen. Die Zugabe von MgO während der Granulierungsstufe im Herstellungsprozess der Filterkerzen bewirkt eine erhebliche Verbesserung des Virenrückhalts bis zu über 99.9999%. Die experimentellen Ergebnisse wurden dabei mit theoretischen Modellen verglichen, um Aussagen über die Mechanismen der Virenentfernung treffen zu können.
325

Activité biologique et électrochimie de protéines membranes, de bactéries et de bactériophages dans un matériau sol-gel hybride / Biological activity and/or electrochemistry of membrane proteins, bacteria and bacteriophages in a hybrid-based sol-gel material

Ghach, Wissam 03 October 2013 (has links)
Le travail décrit dans cette thèse a été mené à l'interface entre trois disciplines: l'électrochimie, la science des matériaux et la microbiologie. L'objectif de cette recherche était tout d'abord d'étudier l'activité de bactéries immobilisées dans un film de silice déposé par le procédé sol-gel à la surface d'électrodes. Les applications potentielles de ce travail fondamental sont les biocapteurs, les bioréacteurs ou biopiles. L'encapsulation bactérienne assistée par électrochimie a été développée en utilisant l'électrolyse du sol de départ pour immobiliser la bactérie Escherichia Coli dans une couche mince sol-gel hybride. La combinaison de précurseurs de silice, de chitosan, de poly(ehtylène glycol) et de tréhalose permet de préserver l'intégrité membranaire et l'activité métabolique. L'électrochimie a ensuite été utilisée comme moyen analytique. Shewanella putrefaciens et Pseudomonas fluorescens ont été encapsulées dans un film à base de silice et les réactions de transfert d'électron de la bactérie à différent médiateurs rédox ont été analysées. Des nanotubes de carbone fonctionnalisés par des espèces ferrocène et la protéine rédox cytochrome c ont été utilisés pour faciliter ce transfert électronique au sein de cette matrice de silice isolante, permettant l'obtention d'un biofilm artificiel. Ces deux types de médiateurs, chimique ou biologique, ont conduit à des sensibilités différentes de la bioélectrode à l'ajout du substrat pourvoyeur d'électron en raison des mécanismes différents impliqués pour transférer ces électrons. L'immobilisation de protéines rédox membranaires a également été considérée dans ces couches minces inorganiques pour favoriser la stabilité de la réponse électrocatalytique. Les protéines considérées impliquent des mécanismes de transfert électronique différents, soit direct pour le cytochrome P450 (CYP1A2), soit médié pour la mandélate déshydrogénase. Finalement, l'influence de l'encapsulation dans une matrice sol-gel hybride sur l'infectivité du bactériophage [phi]X174 a été étudiée, montrant l'effet protecteur de la polyéthylènenimine ou du glycérol / The work reported in this thesis has been developed at the interface between three disciplines, i.e., electrochemistry, material science and microbiology. The purpose of this research was first to study the activity of bacteria immobilized in silica-based films prepared by the sol-gel process on electrode surfaces. Potential applications concern biosensors, bioreactors and biofuel cells. Electrochemically assisted bacterial encapsulation has been developed, using sol electrolysis to immobilize Escherichia coli in a hybrid sol-gel layer. The combination of silica precursors, chitosan, poly(ethylene glycol) and trehalose allowed preservation of cell membrane integrity and metabolic activity. Electrochemistry was then considered as an analytical method. Shewanella putrefaciens and Pseudomonas fluorescens have been encapsulated in silica-based films and the electron transfer reactions from bacteria to different redox mediators have been monitored. Single-walled carbon nanotubes functionalized with ferrocene moieties and bovine heart cytochrome c have been considered as redox shuttles to facilitate the electron transfer in the non-conducting silica matrix, leading to the elaboration of artificial biofilms. Interestingly, these two classes of mediator, i.e. chemical and biological, led to different substrate sensitivity because of their different mechanism of interaction with the bacteria. Immobilization of membrane associated redox proteins in sol-gel films have been then considered and applied for electrocatalysis. Direct and mediated electrochemical communication has been investigated between the electrode surface and cytochrome P450 (CYP1A2) or mandelate dehydrogenase, respectively, showing the interest of sol-gel to stabilize the bioelectrocatalytic reaction. Finally, the influence of encapsulation in a hybrid sol-gel matrix on the infectivity of bacteriophage [phi]X174 has been studied and the protective effect of polyethyleneimine or glycerol was shown
326

Chip-Calorimetric Monitoring and Biothermodynamic Analysis of Biofilm Growth and Interactions with Chemical and Biological Agents

Mariana, Frida 21 July 2015 (has links)
Over the last years, varieties of technologies for biofilm analysis were developed and established. They work on different principles and deliver information about biofilms on different information levels. In this work, chip-calorimetry was applied as an analytical tool that measures heat produced from biofilms. Any change of metabolism in biofilms is reflected by a changed heat flow. The heat, which is the integral of the heat flow vs. time, is quantitatively related to the growth stoichiometry of the biofilm, as described by the Hess’ Law. The heat flow is related to the growth kinetics with the reaction heat as proportionality factor. The results from the calorimetric measurement thus, deliver general information about growth stoichiometry and kinetics. The other interpretation of calorimetric results bases on the assumed proportionality between heat flow and oxygen consumption rate (- 460 kJ/mol ). This ratio is called oxycaloric equivalent. Because in case of aerobic growth the majority of oxygen is consumed in catabolic processes during the electron transport phosphorylation, calorimetry is assumed to provide information about the catabolic side of the metabolism. The newly developed chip-calorimeter applied in this work is much more suitable for biofilm studies compared to conventional microcalorimeters due to the flow-through design of the calorimetric chamber. The measurement of undisturbed growing biofilms and the comparison with conventional biofilm analysis tools (i.e. plate counts, confocal laser scanning microscopy (CLSM), and the determination of intermediates’ concentrations (e.g. ATP)) demonstrate the proper functionality of the calorimetric method and the related cultivation procedure by delivering measurement results in the range of literature values. However, when the biofilms were challenged with antimicrobial agents i.e. antibiotics, bacteriophage, and predatory bacteria, the calorimetric results surprisingly deviated from the reference analyses. By combining the results of the calorimetric and reference analyses, additional information about the antimicrobial effects on biofilms can be acquired. Combination of heat measurement and plate counts, which is one of the most conventional approaches, demonstrated that antimicrobials (especially the bactericidal acting kanamycin) could cause the loss of culturability while the cells were still metabolically active. The measurement of ATP content resulted in values out of the typical range, which indicated that antimicrobial treatments disturbed the cellular ATP regulation and the ATP concentration was no longer linearly correlated to the cell number. ATP measurements are therefore not suitable for antimicrobial susceptibility testing. The comparison of heat profiles with the biovolume determined by quantification of microscopic images shows an elevated cell specific heat production rate after the introduction of some antimicrobials (antibiotics and bacteriophage). In case of antibiotics, this can be explained as a consequence of the bacterial defense mechanisms. Most of the described defense mechanisms against antibiotics need biological energy and therefore drive the electron transport phosphorylation (ETP). In case of biofilm treatments with bacteriophage, the trigger of increasing ETP might be the synthesis of phage proteins, hull material, and genetic information molecules. In aerobic conditions, oxygen is used as terminal electron acceptor. Elevated ETP leads therefore to an increase in oxygen consumption, which correlates to the heat production using oxycaloric equivalent as a factor. These correlations explain the increase of cell specific heat productions as biofilms were challenged by antibiotics and bacteriophage. However, also a decrease of specific heat production was observed (in case of predatory bacteria). Here, the predatory bacteria activity caused various damages in host cells, including the interruption of ETP. With these experiments, chip-calorimetry was demonstrated as a promising complementary tool in biofilm research, which provides deeper insights about metabolic activity and alterations. It benefits from the noninvasive handling and the online, real-time measurement that allow the method to be applied for monitoring purposes. Furthermore, its miniaturized dimension allows easy integration in more complex analytic systems and also reduces experiment costs with minimal media/chemical consumption. This thesis also demonstrates the potential development of chip-calorimetry to be more suitable for routine analyses. The use of superparamagnetic beads as matrix to grow biofilms allows regulated transfer of biofilm samples into and from the measurement chamber. This was an initial step towards automation and higher-throughput analysis. One further outcome of the thesis is based on the highly interesting fact about the elevated heat production rate of the host cells induced by the phage infection observed in the chip- calorimetric experiments. The volume specific detection limit of the chip-calorimeter is lower compared to a commercial microcalorimeter. Thus, the infection effect of phages was additionally measured in microcalorimeter to get better quantitative information about the thermal effect of the infection. The results showed that the immediate heat increase after the addition of phage into the solution of the host cells appeared to be quantitatively related to the infection factor, MOI (Multiplicity of Infection). Unfortunately, microcalorimetric measurements in closed ampoules are often subjected to the oxygen limitation. Thus, this problem of microcalorimetric measurement has been addressed. The combination of experimental results and mathematical modeling showed that the rate of metabolism in the static ampoules is defined by the diffusion rate of oxygen into media. This factor has to be considered while designing biological experiments in closed calorimetric measuring chambers and interpreting the calorimetric results for their biological meaning. Some possible solutions to overcome the oxygen bioavailability problem are e.g. to design the experiments with low biomass, or by using media with elevated density to float the biomass at the interface to air and thus to reduce the diffusion path.
327

Virus removal in ceramic depth filters: the electrostatic enhanced adsorption approach

Michen, Benjamin 18 March 2011 (has links)
Diese Arbeit untersucht den Einsatz von keramischen Materialien in der Trinkwasseraufbereitung mittels Filtration und fokussiert dabei die Entfernung von Viren. Herkömmliche, auf Kieselgur basierende Tiefenfilter (Filterkerzen) mit Porengrößen im unteren Mikrometerbereich, werden hinsichtlich ihres Rückhaltevermögens gegenüber Kolloiden (Viren sowie Polystyrolpartikel) untersucht, um deren Einsatzfähigkeit in der Entfernung von Mikroorganismen im Allgemeinen abschätzen zu können. Ferner wird gezeigt, wie durch ein einfaches Verfahren solche Filter modifiziert werden können, um auch kleinste Viren mit ca. 30 nm Durchmessern aus dem Rohwasser zu entfernen. Die Zugabe von MgO während der Granulierungsstufe im Herstellungsprozess der Filterkerzen bewirkt eine erhebliche Verbesserung des Virenrückhalts bis zu über 99.9999%. Die experimentellen Ergebnisse wurden dabei mit theoretischen Modellen verglichen, um Aussagen über die Mechanismen der Virenentfernung treffen zu können.:Contents Chapter I Introduction 1 Chapter II Removal or inactivation of microorganisms, in particular viruses, for drinking water purposes with focus on small-scale, decentralised systems: A literature review 7 II. I Physical and chemical treatments 8 II. II Filtration processes 10 II. III Conclusions 15 Chapter III Mechanisms of adsorption in depth filtration 17 III.I Surface charge and the electrical double layer 18 III.II van der Waals interactions 22 III.III DLVO theory 23 III.IV Non-DLVO forces 25 III.V Extended DLVO Theory 27 Chapter IV Virus adsorption studies 29 IV.I A literature review 30 IV.I.I Virus concentration by adsorption-elution 33 IV.I.II Improved virus adsorption in filtration 35 IV.II The electrostatic enhanced adsorption approach 37 Chapter V Viruses 39 V.I Literature review 40 V.I.I Structure and morphology 40 V.I.II The viral life cycle 41 V.I.III Human pathogenic viruses in the aquatic environment 42 V.II Experimental 46 V.II.I The choice of viruses for adsorption studies 46 V.II.II Propagation and enumeration of the bacteriophages 48 V.II.III Characterisation of bacteriophages 51 V.III Results and discussion 54 V.III.I Production of high-titre and high-purity phage stocks 54 V.III.II Characteristics of bacteriophages 59 V.III.III Detection of a viral contaminant - the ‘Siphophage’ 64 Chapter VI The diatomaceous earth-based depth filter 69 VI.I Literature review 70 VI.I.I Diatomaceous earth 70 VI.I.II Retention of microorganisms in the DE-based depth filter 71 VI.II Experimental 73 VI.II.I Manufacturing the depth filter 73 VI.II.II Physical characterisation 74 VI.II.III Performing filter retention tests 75 VI.II.IV Latex retention test 76 VI.II.V Studying adsorption kinetics in a batch experiment 79 VI.II.VI Applying (X-)DLVO theory 80 VI.III Results and discussion 83 VI.III.I Characterisation of the depth filter 83 VI.III.II Latex removal in the depth filter 86 VI.III.III Filter performance on virus removal 94 VI.III.IV Batch-sorption experiments 99 VI.IV Summary and conclusions 102 Chapter VII The magnesium oxide modified depth filter 103 VII.I Experimental 104 VII.I.I Choice of the adsorbent material 104 VII.I.II Manufacturing the MgO-modified filter and characterisation methods 105 VII.II Results and discussion 106 VII.II.I The adsorbent: Magnesium oxide powder 106 VII.II.II Physical characterisation of modified depth filters 108 VII.II.III Virus removal in depth filters containing MgO 113 VII.II.IV Ageing behaviour of MgO modified filters 118 VII.II.V Discussion on the removal mechanisms 130 VII.III Summary and conclusions 134 Chapter VIII Summary, conclusions and outlook 135 VIII.I Summary and conclusions 136 VIII.II Outlook 137 Abbreviations, symbols and physical constants 139 Reference list 142
328

The Mechanism and Regulation of Bacteriophage DNA Packaging Motors

Hayes, Janelle A. 13 September 2019 (has links)
Many double-stranded DNA viruses use a packaging motor during maturation to recognize and transport genetic material into the capsid. In terminase motors, the TerS complex recognizes DNA, while the TerL motor packages the DNA into the capsid shell. Although there are several models for DNA recognition and translocation, how the motor components assemble and power DNA translocation is unknown. Using the thermophilic P74-26 bacteriophage model system, we discover that TerL uses a trans-activated ATP hydrolysis mechanism. Additionally, we identify critical residues for TerL ATP hydrolysis and DNA binding. With a combination of x-ray crystallography, SAXS, and molecular docking, we build a structural model for TerL pentamer assembly. Apo and ATP analog-bound TerL ATPase domain crystal structures show ligand-dependent conformational changes, which we propose power DNA translocation. Together, we assimilate these findings to build models for both motor assembly and DNA translocation. Additionally, with the P76-26 system, we identify the TerS protein as gp83. I find that P74-26 TerS is a nonameric ring that stimulates TerL ATPase activity while inhibiting TerL nuclease activity. Using cryoEM, I solve 3.8 Å and 4.8 Å resolution symmetric and asymmetric reconstructions of the TerS ring. I observe in P74-26 TerS, the conserved C-terminal beta-barrel is absent, and instead the region is flexible or unstructured. Furthermore, the helix-turn-helix motifs of P74-26 TerS are positioned differently than those of known TerS structures, suggesting P74-26 uses an alternative mechanism to recognize DNA.
329

Utilizing bacteriophage to evolve antibiotic susceptibility in multidrug-resistant Pseudomonas aeruginosa

Choudhury, Anika Nawar 15 September 2021 (has links)
No description available.
330

The Roles of Moron Genes in the Escherichia Coli Enterobacteria Phage Phi-80

Ivanov, Yury V. 23 October 2012 (has links)
No description available.

Page generated in 0.0518 seconds