1 |
Extension of the Benchmark Simulation Model no. 2 with a model for chemical precipitation of phosphorus / Utvidgning av Benchmark Simulation Modell No. 2 med en modell för kemisk fällning av fosforBydell, Sofie January 2013 (has links)
At present, there are more than 2000 wastewater treatments plants (WWTPs) in Sweden. Emissions of nitrogen and phosphorus from these, do contribute to the eutrophication of the Baltic Sea and watercourses on a daily basis. To reduce emissions of phosphorus, the Swedish approach has for the last 50 years been to use chemical precipitation. Today, software is used to test and evaluate different strategies in WWTPs, this in order to improve the operation and get a holistic view over the process. One model that can be used to achieve a holistic view is the Benchmark Simulation Model No. 2 (BSM2). In order to get a software like BSM2 to best mirror the reality, it is important that the model well describes the actual process. Today, BSM2 does not take the load of phosphorus into account, which, if it was included in the model, would describe the process better. In this master thesis, the author has investigated the possibility of extending the BSM2 model, to include phosphorus and chemical precipitation. Thereafter the results from simulations in BSM2 were compared with measurements from Henriksdals WWTP in Stockholm. The results showed that a model, after some simplifications, for phosphorus and chemical precipitation could be included in BSM2. The model uses primary precipitation. Precipitation chemical was added with assistance of a PI controller. Generally the results showed that the model had potential to describe the total flow of phosphorus in the WWTP. In measurements from Henriksdal the average total phosphorus effluent from primary and secondary sedimentation were 3.97 and 0.43 mg/l, respectively. From a steady state simulation in BSM2 the values were 4.26 and 0.44 mg/l and the average values of a dynamic simulation 3.96 and 0.46 mg/l. Although the average values of total phosphorus matches quite well, it was found difficult to simulate the different fractions of phosphorus effluent from the secondary sedimentation. In order to better evaluate the results and how the simplifications of the model affects them, more measurements need to be done and a comparison with the results received from the BSM2 needs to be carried out. Also an adjustment of parameters in BSM2 must be done, this to achieve a better compliance with the given plant. / Sverige har idag drygt 2000 reningsverk. Reningsverkens utsläpp av kväve och fosfor bidrar dagligen till övergödning i Östersjön och därtill anslutna vattendrag. För att minska utsläpp av fosfor har i Sverige sedan mitten på 1960-talet kemisk fällning använts. Idag används programvara för att testa och utvärdera olika strategier i reningsverken, detta med syftet att förbättra driften och få en helhetsbild över processen. En av dessa modeller är Benchmark Simulation Model No. 2 (BSM2). För att simuleringsprogram ska ge en så bra bild som möjligt av verkligheten är det viktigt att de beskriver processen, i detta fall avloppsvattenrening, på ett bra sätt. BSM2 tar i dagsläget inte hänsyn till belastningen av fosfor, om fosfor inkluderades i modellen skulle det beskriva processen bättre. I detta examensarbete, har författaren undersökt möjligheten att utvidga BSM2, till att inkludera fosfor och kemisk fällning i modellen. Resultaten erhållna från modellen har därefter jämförts med mätdata från Henriksdals reningsverk i Stockholm. Resultatet visade att en modell för fosfor och kemisk fällning kunde, efter vissa förenklingar, inkluderas i BSM2. I modellen användes förfällning och fällningskemikalier tillsattes med hjälp av en PI regulator. Generellt visade resultaten att modellen hade förmåga att beskriva det totala flödet av fosfor i reningsverket. I mätningarna från Henriksdal var medelvärdet på total fosfor ut från försedimenteringen 3,97 mg/l och från eftersedimenteringen 0,43 mg/l. Från en steady state simulering i BSM2 blev värdena 4,26 och 0,44 mg/l och medelvärdena från en dynamisk simulering 3,96 och 0,46 mg/l. Även om medelvärdena på totalfosfor stämmer relativt bra överens, fann man det svårt att simulera olika fraktioner av fosfor ut från eftersedimenteringen. För att bättre kunna bedöma resultatet och hur förenklingar i modellen påverkar resultatet behöver flera mätningar göras och jämföras med modellens resultat. En justering av parametrar i BSM2 måste även göras, detta för att anpassa modellen till det givna avloppsreningsverket bättre. / Development and dynamic analysis of operational strategies for enhanced energy efficiency of wastewater treatment systems
|
2 |
Modellering av koldioxidavtrycket för Käppalaverket med framtida processlösning för skärpta reningskrav : Modeling the carbon footprint of Käppala WWTP due to more stringent discharge limitsErikstam, Stefan January 2013 (has links)
I och med Sveriges åtaganden i Baltic Sea Action Plan (BSAP) och de miljökvalitetsnormer (MKN) som beskrivs i ramdirektivet för vatten kommer Käppalaverket sannolikt ställas inför strängare kväve- och fosforreningskrav. Käppala kan då bli tvungna att införa en ny processlösning t.ex. efterdenitrifikation och förfällning. Hur detta kommer att påverka det totala koldioxidavtrycket utreds i denna rapport. Tidigare har stora energiutredningar utförts på verket men aldrig har ett samlat koldioxidavtryck dokumenterats. En kartläggning över Käppalaverkets totala koldioxidavtryck 2011 gjordes för att skapa en referens för framtida modellering. Utvärderingen visade att Käppalaverkets totala koldioxidavtryck var 16 kg CO2,ek/pe, år. Ryaverket, som gjort en liknande utredning, hade ett totalt koldioxidavtryck runt noll. Det höga koldioxidavtrycket för Käppalaverket, jämfört med Ryaverket, beror framförallt på den höga lustgasemissionen från aktivslambassängen. Under hösten 2012 utfördes mätningar av lustgas för att få fram ett nyckeltal på bildad lustgas per reducerad kväve. Mätningarna visade på en relativt hög lusgasbildning 1,7 % bildad lustgas per reducerad kväve. För att ge svar på vad den nya processlösningen med strängare reningskrav skulle innebära för koldioxidavtrycket, kalibrerades och utvidgades den befintliga reningsverksmodellen Benchmark Simulation Model no.2 (BSM2). I utvidgningen av BSM2 inkluderades beskrivningar över hur Käppalas processer bidrar till koldioxidavtrycket. För att uppnå de nya reningskraven kan dagens fördenitrifikation kompletteras med en efterdenitrifikation och dagens simultanfällning ersättas med förfällning. Modellens biologi kalibrerades med två perioder, ett sommarflöde och ett höstflöde. Sedan simulerades 2011 för att ha ett referensvärde att jämföra framtida simuleringar med. Förfällning visade sig ge en ökad biogasproduktion som bidrog starkt till ett minskat avtryck. Däremot bidrog den ökade energiförbrukningen och lustgasemissionen i den biologiska reningen till ett ökat avtryck. Simuleringen med dagens rening gav ett koldioxidavtryck på cirka 14 kg CO2/pe, år och framtidens processlösning för ökad kväve- och fosforrening gav ett nästan dubbelt så stort avtryck, 26 kg CO2/pe, år. Kostnaden för den totala reningen uttryckt i koldioxidekvivalenter blir i framtiden 4,2 kg CO2/NRED mot dagens 2,5 kg CO2/NRED. En simulering av strängare reningskrav samt ökad flödesbelastning från dagens 440 000 pe till 700 000 pe visade på svårigheter att uppnå de nya reningskraven. Reningskraven kunde inte hållas under de högflödesperioder som uppkom under året på grund av slamflykt från eftersedimenteringarna. Utformningen av reningskraven är betydelsefull för branschen som helhet. Samtliga simuleringar visar svårigheter att hålla kvävekravet vid vårfloden. Det är därför av stor betydelse om kraven formuleras på årsbasis eller om de formuleras månadsvis för att reningsverken ska klara de nya kraven. / In accordance with the Baltic Sea Action Plan (BSAP) and the EU water framework directive the Käppala waste water treatment plant (WWTP) could face more stringent discharge limits for phosphorous and nitrogen. To meet these limits Käppala has to change the treatment process, for example implement pre-precipitation and post-denitrification. The effect of more stringent discharge limits on the carbon footprint has not been studied at Käppala WWTP and will be studied in this report. In 2011 a static summary of the carbon footprint was made and serves as a reference for modeling. The evaluation showed that the total carbon footprint of Käppala was approximately 16 kg CO2/pe, yr. At the Rya WWTP in Gothenburg a similar study indicated a carbon footprint of 0 kg CO2/pe, yr. The difference between Käppala WWTP and Rya WWTP is explained by the large nitrous oxide emission from the activated sludge process at Käppala WWTP. During autumn 2012 the nitrous oxide emission was measured in one treatment line at Käppala, in order to get a standard value to use in the model. The measurements showed that 1.7 % of the removed nitrogen was emitted as nitrous oxide gas. An existing model, Benchmark Simulation Model no.2 (BSM2), was extended to model the effect on the carbon footprint with a future process configuration due to more stringent discharge limits. Every process that affects the carbon footprint was described by equations to simulate the emissions from the different treatment processes regarding energy consumption, chemical consumption and transport. In order to meet the new demands, current biological and chemical water treatment with pre- denitrification and simultaneous precipitation was substituted with combined pre and post denitrification and pre precipitation. The calibration of the model was made for two periods in 2011. When the suggested process configuration, with post-denitrification and pre-precipitation, was implemented it showed that the pre- precipitation increased the production of biogas and therefore decreased the carbon footprint. However, the increased nitrous oxide emission and the increased energy consumption due to the more stringent limits resulted in an increased footprint. A simulation of existing and future process configuration showed that the total footprint would increase from approximately 14 kg CO2/pe, year to 26 kg CO2/pe, year. The cost for the extra nitrogen removal would increase from 2.5 kg CO2/NRED to 4.2 kg CO2/NRED. The simulations showed that more stringent limits and increased load from 440 000 pe to 700 000 pe could be met at “normal” flow. At wet weather flow however, the process became unstable with high concentrations of effluent organic nitrogen as a result. A big question for the industry is the design of these new limits for phosphorous and nitrogen. It is of great importance whether the new limits are based on a yearly or monthly average.
|
3 |
Rejektvattenbehandlingens inverkan på kvävereduktionen vid Arboga reningsverk / The effect of reject water treatment on nitrogen removal at Arboga wastewater treatment plantBergkvist, Sophie January 2012 (has links)
Under 90-talet uppdagades övergödningsproblematiken i Östersjön, varför omgivande länder enades gällande åtgärder för att minska problemen. De svenska reningsverk som genom sina utsläpp av kväve och fosfor påverkade Östersjön tvingades då införa gränsvärden för kväve- och fosforutsläppen. Vid Arboga reningsverk, vars recipient är Arbogaån som mynnar i Galten, Mälaren, har kvävereducering sedan en tid tillbaka varit i drift. Dock krävdes från och med år 2012 att totalkvävehalten i utgående avloppsvatten ej översteg 15 mg tot-N/l. Införandet av detta gränsvärde resulterade i åtgärder för att minska kväveutsläppen.Rejektvattenbehandling är en vanlig metod för att minska halterna totalkväve i utgående avloppsvatten. Normalt utgör rejektvattnet 0,5–1,0 % av totala inflödet till reningsverket men 10–20 % av inkommande totalkvävebelastningen. I Arboga resulterade det nya gränsvärdet för totalkväveutsläpp i en nybyggnation av en rejektvattenbehandling utformad med fördenitrifikation. Detta innebär att rejektvattnet pumpas genom fyra zoner, två anaeroba följt av två aeroba. Ammoniumkvävet i inkommande vatten omvandlas genom detta processupplägg via nitrat till kvävgas.Denna studie syftade till att kartlägga rejektvattenbehandlingens effekt på halterna av totalkväve i utgående avloppsvatten från Arboga reningsverk. Detta inkluderade både simuleringar i Benchmark Simulation Model no. 2 (BSM2) samt studier genom vattenprovtagning vid Arboga reningsverk. Vid simuleringarna genomförda i BSM2 påvisades en märkbart lägre halt totalkväve i utgående avloppsvatten efter rejektvattenbehandlingens införande. Även vid den provtagningscykel som genomfördes på Arboga reningsverk under april år 2012 påvisades att markanta förändringar skett i utgående halter totalkväve och ammoniumkväve. Halterna totalkväve och ammoniumkväve i utgående avloppsvatten sjönk med ca 40 % respektive 65 % relativt samma tidsperiod år 2008–2011. Detta är dock endast resultat från det initiala skedet av rejektvattenbehandlingen som togs i drift 16 februari år 2012. Studien visade sammanfattningsvis att denna typ av processlösning för rejektvattenbehandling ledde till lägre halter av totalkväve och ammoniumkväve i utgående vatten från Arboga reningsverk. Dock krävs vidare studier för att kartläggaden slutgiltiga effekten av rejektvattenbehandlingen, då den i nuläget ännu ej nått sin slutgiltiga kapacitet. / Eutrophication problems were discovered in the Baltic Sea during the 1990s, why thesurrounding countries came to an agreement regarding measures to reduce the problem. Swedish wastewater treatment plants that influence the Baltic Sea by their emissions ofnitrogen and phosphorus have since introduced limit values for nitrogen and phosphorusconcentrations in the effluent water.At Arboga wastewater treatment plant (WWTP) a nitrogen reduction process withactive sludge was implemented a few years back. The recipient Arbogaån leading intoGalten, Mälaren, has eutrophication issues, and from the year 2012 the concentration oftotal nitrogen in treated wastewater must not exceed 15 mg tot-N/l. This limit resulted inmeasures to reduce nitrogen emissions.Reject water treatment is a common method to reduce the levels of total nitrogen intreated wastewater. Normally, the reject water contributes to 0.5–1.0 % of the totalinflow to the treatment plant but 10–20 % of the incoming total nitrogen load. In Arboga, the new limit for total nitrogen emissions resulted in a reject water treatmentfacility with predenitrification. The reject water is routed through four zones, twoanaerobic followed by two aerobic. Ammonium is by this process converted in to nitrogen gas via nitrate. This study aimed at identifying the effect from what implementing a reject watertreatment on the levels of total nitrogen in treated wastewater from Arboga WWTP.This included simulations in the Benchmark Simulation Model no. 2 (BSM2) as well aswater sampling at Arboga WWTP. The simulations that were carried out in BSM2 showed a significantly lower content of total nitrogen in treated wastewater after thereject water treatment was implemented. The sampling cycle conducted at ArbogaWWTP in April 2012 revealed that changes occurred in the levels of total nitrogen andammonium in the effluent water. The concentrations of total nitrogen and ammonia nitrogen in treated wastewater decreased by about 40 % and 65 %, compared to thesame time period in 2008–2011. This is, however, only results from the initial stage ofthe reject water treatment, which began operating on February 16th 2012.In summary, this study showed that this type of process solution for reject watertreatment resulted in lower levels of total nitrogen and ammonia in the effluent water at Arboga WWTP. Further studies are needed to determine the final efficiency of the rejectwater treatment, since it yet has to reach its full capacity.
|
4 |
Traitement en ligne des eaux pluviales en zone urbaine dense. / Online storm-water treatment in dense urban areaBouarab, Amine 22 July 2014 (has links)
Les travaux décrits dans le présent rapport concernent l’étude d’un ouvrage de traitement en ligne des eaux pluviales issues d’un bassin versant fortement urbanisé. L’ouvrage Charles Keller, d’une capacité de 7000 m3, est conçu pour traiter les eaux pluviales issues du bassin versant de Boudonville, situé dans la Communauté Urbaine du Grand Nancy. L’ouvrage est installé à l’exutoire de bassin versant en aval d’autres ouvrages de stockage temporaires. Les eaux traitées par l’ouvrage Charles Keller sont ensuite renvoyées vers la Meurthe et les boues produites sont traitées au niveau de la station d’épuration du Grand Nancy à Maxéville. La stratégie adoptée dans ce travail a permis de d’aborder l’ouvrage sous plusieurs angles : 1) d’abord l’étude de l’ouvrage seul en se focalisant sur l’ensemble de ses composantes unitaires (dessableurs, chambre d’injection des réactifs, réacteurs et décanteurs) ; 2) la partie physico-chimique (non opérationnelle jusqu’à présent) a fait l’objet de plusieurs compagnes d’analyse à travers les essais en Jar test effectués au laboratoire sur des eaux issues du bassin versant de Boudonville dont les caractéristiques couvrent toute la gamme que l’ouvrage Charles Keller peut traiter ; 3) ensuite l’ouvrage a été resitué dans l’ensemble du système de gestion des eaux pluviales (bassin versant - ouvrage Charles Keller - station d’épuration) et son fonctionnement simulé. Plusieurs configurations ont été testées pour reproduire les conditions réelles de fonctionnement de l’ouvrage. Les résultats obtenus ont montré d’abord la complexité de faire fonctionner dans la pratique un tel ouvrage, notamment avec sa partie coagulation/floculation mais a fait également ressortir des défauts de conception. / An online urban storm-water treatment system has been studied in this work. This system is able to treat the runoff from a highly impervious watershed (Boudonville) in Greater Nancy (North-East of France). It has a capacity of 7000 cubic meters. Some storage tanks are existing in the watershed. The treated water is discharged into the Meurthe River, while the sludge is treated in the Greater Nancy wastewater treatment plant in Maxéville.The strategy adopted in this work allowed for the consideration of the treat ment system from several angles:• first of all, the system is analyzed through its elementary components (sand removal unit, reagents injection and reactors for flocculation-coagulation and clarifiers): this has been done by observing the variations in water quality at the different treatment levels with online instrumentation. This has been completed with an offline characterization.• the flocculation-coagulation section, which was not yet operational during our work, was studied in the laboratory by jar tests. The water to be treated was sampled from the Boudonville watershed to be close to the conditions that should be observed in the Charles Keller treatment system.• finally the stormwater treatment was simulated as part of a full storm-water management system (watershed-Charles Keller treatment system-wastewater treatment plant).• The results that were obtained showed in the one hand the complexity of using such a treatment system in real-life conditions, especially with a coagulation / flocculation part to it, which has some conceptual issues.
|
5 |
Online-instrumentering på avloppsreningsverk : status idag och effekter av givarfel på reningsprocessen / Online sensors in wastewater treatment plants : status today and the effects of sensor faults on the treatment processAhlström, Marcus January 2018 (has links)
Effektiviteten av automatiserade reningsprocesser inom avloppsreningsverk beror ytterst på kvaliteten av de mätdata som fås från installerade instrument. Givarfel påverkar verkens styrning och är ofta anledningen till att olika reglerstrategier fallerar. Idag saknas standardiserade riktlinjer för hur instrumenteringsarbetet på svenska reningsverk bör organiseras vilket ger begränsade förutsättningar för reningsverken att resurseffektivt nå sina utsläppskrav. Mycket forskning har gjorts på att optimera olika reglerstrategier men instrumentens roll i verkens effektivitet har inte givits samma uppmärksamhet. Syftet med detta examensarbete har varit att undersöka hur instrumentering på reningsverk kan organiseras och struktureras för att säkerställa mätdata av god kvalitet och att undersöka effekter av givarfel på reningsprocessen. Inom arbetet genomfördes en litteraturstudie där instrumentering på reningsverk under-söktes. Effekter av givarfel på reningsprocessen undersöktes genom att simulera en fördenitrifikationsprocess i Benchmark Simulation Model no. 2 där bias och drift implementerades i olika givare. Simuleringar visade att positiva bias (0,10–0,50 mg/l) i en ammoniumgivare inom en kaskadreglering bidrar till att öka luftförbrukningen med cirka 4–25 %. Vidare resulterade alla typer av fel i DO-givare i den sista aeroba bassängen i en markant större påverkan på reningsprocessen än samma fel i DO-givare i någon av de tidigare aeroba bassängerna. Om den sista aeroba bassängen är designad för att hålla lägre syrehalter är DO-givaren i den bassängen den viktigaste DO-givaren att underhålla. Positiva bias (200–1 000 mg/l) i TSS-givare som används för att styra uttaget av överskottsslam bidrog till kraftiga ökningar av mängden ammonium med cirka 29–464 % i utgående vatten. Negativ drift i DO-givare visade att stora besparingar i luftningsenergi, cirka 4 %, var möjliga genom ett mer frekvent underhåll av DO-givarna. Huruvida ett instrument lider av ett positivt eller negativt givarfel, bias eller drift, kommer att påverka hur mycket och i vilken mån reningsprocessen påverkas. Studien av givarfel visade att effekten av ett positivt eller ett negativt fel varierade och att effekten på reningsprocessen inte var linjär. Effekten av givarfel på reningsprocessen kommer i slutändan att bero på den implementerade reglerstrategin, inställningar i regulatorerna och på den styrda processen. / The effectiveness of automated treatment processes within wastewater treatment plants ultimately depend on the quality of the measurement data that is given from the installed sensors. Sensor faults affect the control of the treatment plants and are often the reason different control strategies fail. Today there is a lack of standardized guidelines for how to organize and work with online sensors at Swedish wastewater treatment plants which limits the opportunities for treatment plants to reach their effluent criteria in a resource efficient manner. Much research has been done on ways to optimize control strategies but the role of sensors in the efficiency of the treatment plants has not been given the same level of attention. The purpose of this thesis has been to examine how instrumentation at wastewater treatment plants can be organized and structured to ensure good quality measurement data and to examine how sensor faults affect the treatment process. Within the thesis a literature study was conducted where instrumentation at wastewater treatment plants was examined. The effects of sensor faults were examined by simulating a pre-denitrification process in Benchmark Simulation Model no. 2 where off-sets (biases) and drift where added to measurements from different implemented sensors. The simulations showed that positive off-sets (0.10–0.50 mg/l) in an ammonium sensor within a cascaded feedback-loop adds to the energy consumption used for aeration by roughly 4-25%. It could further be shown that all types of faults in a DO sensor in the last aerated basin had significantly larger effect on the treatment process than the same fault in any of the other DO sensors in the preceding basins. If the last aerated basin is designed to have low DO concentrations the DO sensor in that basin is the most important DO sensor to maintain. Positive off-sets (200–1 000 mg TSS/l) in suspended solids sensors used for control of waste activated sludge flow contributed to large increases of ammonia, by 29-464%, in effluent waters. Negative drift in DO sensors showed that significant savings in aeration energy, roughly 4%, was possible to achieve with more frequent maintenance. Whether a sensor is affected by a positive or a negative fault, be it off-set or drift, will affect how much and in what way the treatment process will be affected. The study of sensor faults showed that the effect of a positive or a negative fault varied and that the effect on the treatment process was not linear. The effect of a sensor fault on the treatment process will ultimately depend on the implemented control strategy, settings in the controllers and on the controlled process.
|
Page generated in 0.0291 seconds