Spelling suggestions: "subject:"balancing selection"" "subject:"alancing selection""
1 |
Host-Parasite Interactions in Natural PopulationsHalvarsson, Peter January 2016 (has links)
Parasitism is one of the most common ways of living and it has arised in many taxa. Parasites feed and live inside or on their hosts resulting in both long and short term consequences for the host. This thesis is exploring the phenotypic and genotypic effects of animals living with parasitic infections. I have been studying three different parasite groups and their associated host species: the great snipe, a lekking freshwater wader bird that migrates between Africa and Northern Europe; the tree sparrow, a stationary passerine found close to human settlements and lastly the water vole, a large rodent living in riparian habitats. Avian malaria is one of the most commonly studied parasites affecting birds. Atoxoplasma, an intestinal protozoan parasite is less studied but is thought to be endemic in free-ranging birds. Given the freshwater habitat great snipes inhabit, a prevalence of 30% avian malaria infections is not high and that the prevalence fluctuated among years. Sequencing of the avian malaria cytochrome b gene revealed that parasites are similar to avian malaria parasites found in African birds suggesting that they were infected on the wintering grounds in Africa. Tree sparrows had few malaria infected individuals, a result that is consistent with other studies of stationary birds at high latitudes. Atoxoplasma infections were common in tree sparrows and capture-recapture analyses show decreased survival in infected compared to uninfected birds and signs of lower mating success among infected. Genetic analyses comparing the transcriptome between mated and unmated great snipe males revealed that the genotype is important for mating success and health status for some of the expressed genes. That variations in some of these genes are involved in maintaining a good health status and mating success supports handicap models for sexual selection in this lek mating system. The major histocompatibility complex (MHC) is a part of the immune system and it contains genes involved in immune response. In water voles, a number of new MHC alleles were identified. Based on their in silico phenotype they were grouped into supertypes to facilitate studies on how helminth infections affect the MHC diversity in the water voles. Some of these MHC supertypes provided resistance to one helminth species, but the same supertype caused the opposite effect for other helminth parasites. Overall, parasites are a driving force for maintaining genetic diversity and parasite infections lowers survival rate, which would lead to a lower lifetime breeding success.
|
2 |
European Black Grouse : MHC Genetic Diversity and Population StructureStrand, Tanja January 2011 (has links)
Black grouse Tetrao tetrix is a bird species composed of large, continuous as well as severely reduced and fragmented populations, making it an optimal species to investigate how genetic diversity is affected by habitat fragmentation. I have focused on genetic diversity in the Major Histocompatibility Complex (MHC) to measure the ability of the black grouse to respond to environmental changes. I partly characterized MHC class II in black grouse and found striking similarities with chicken MHC class II. I demonstrated that black grouse possess a similar compact MHC as chicken with few MHC class II B (BLB) and Y (YLB) loci. I did not find evidence of balancing selection in YLB so I concentrated further studies on BLB. I developed a PCR-based screening method for amplifying and separating expressed BLB alleles in European black grouse populations. Small fragmented populations had lost neutral genetic diversity (based on microsatellites and SNPs) compared to samples from the historical distribution and contemporary large populations. There was also a trend, albeit less pronounced, for reduced MHC diversity in these populations. Neutral markers in small isolated populations were affected by increased levels of genetic drift and were therefore genetically differentiated compared to other populations. MHC markers on the other hand, were not subjected to genetic drift to the same extent probably due a long historic process of balancing selection. Inferences of heterozygosity and evolutionary patterns as well as detailed correlations to reproductive success and diseases cannot be performed until MHC can be amplified in a locus-specific manner. Therefore, I developed a single locus sequence-based typing method for independently amplifying MHC class II B loci (BLB1 and BLB2). I found that BLB1 and BLB2 were duplicated in a common ancestor to chickens and black grouse and that these loci are subjected to homogenizing concerted evolution due to inter-genetic exchange between loci after species divergence. I could also verify that both BLB1 and BLB2 were transcribed in black grouse and under balancing selection. This collection of work has significance for future conservation of black grouse as well as research and management of zoonotic diseases.
|
3 |
The Role of Demographic History in Shaping Genetic Diversity in the Galapagos Penguin (Spheniscus mendiculus) and the Magellanic Penguin (Spheniscus magellanicus)Arauco-Shapiro, Gabriella 26 July 2017 (has links)
No description available.
|
4 |
Local adaptation to parasites and selection on major histocompatibility genes in ecologically divergent populations of three-spine stickleback (Gasterosteus aculeatus)Stutz, William Edward 25 September 2013 (has links)
As individuals and populations diverge ecologically, they become exposed to new parasites and pathogens with potentially harmful fitness consequences. Populations are therefore expected to evolve resistance, possibly at a cost of less resistance to parasites rarely encountered parasites. This trade-off in resistance should generate local adaptation to parasites in different habitats. In chapter one, I show how local adaptation can potentially evolve in response to variation in parasite exposure among eighteen ecologically variable populations of threespine stickleback (Gasterosteus aculeatus). Within populations infection appeared to reflect morphology/diet based exposure differences among individuals. Among populations, however, these patterns were absent or reversed, consistent with the evolution of local adaptation. In chapters two and three I set out to test whether variation major histocompatibility (MHC) genes can underly such local adaptation in stickleback. MHC genes are important components of vertebrate immunity; however, there is little direct empirical support for spatially divergent selection driving local adaptation on MHC loci in the wild. In chapter two I tested for the action of parasite mediated balancing and divergent selection on on MHC loci using naturally infected stickleback in three replicate lake-stream pairs. Despite consistent divergence in parasites and MHC alleles, lakes tended to show decreased parasite burdens with increased allelic richness (consistent with balancing selection), while streams showed some support for divergent selection between lake and stream types. In chapter three I use the same lake-stream pairs to investigate how divergent selection could instead be reflected in variation in the effects of individual MHC alleles among populations. When comparing parapatric populations experiencing gene flow, MHC alleles maintained at relatively high frequency in one population were more likely to be associated with reduced, rather than increased, parasite abundances in that population. Allopatric populations experiencing no gene flow showed no such general relationship between allele frequency and resistance. These results are only consistent with spatially divergent selection, and imply that gene flow and environmental heterogeneity can be important for maintaining MHC diversity. / text
|
5 |
Statistical challenges in the detection of mutation and variation using high throughput sequencingPfeifer, Susanne January 2012 (has links)
The aim of this thesis is to obtain a better understanding of mutation rates within as well as between the genomes of humans and chimpanzees using data generated by high throughput sequencers. I will start with a review of the field and an overview of the technologies and protocols used to generate and analyse high throughput sequencing data. I apply some of the discussed techniques to show that there is evidence of a selective advantage of pathogenic de novo mutations in the Fibroblast Growth Factor Receptor 3 gene in the male germ line of humans. Furthermore, I use some of the methods to generate a map of genome-wide sequence variation in Western chimpanzees. Ever since Darwin [Darwin, 1871] and Huxley [Huxley, 1863] postulated more than a century ago that African great apes are our closest living evolutionary relatives, the study of chimpanzee individuals is of great scientific interest from an evolutionary point of view, as comparisons between the genomes of human and chimpanzee offer the potential to help to understand the molecular basis for similarities and differences between the two species. I use the generated data to explore the breadth of the nucleotide diversity in the chimpanzee genome in order to shed light on whether or not the local variation in mutation rate has been conserved since the divergence of the two species and to place human nucleotide diversity into perspective with an evolutionary closely related species. I explore the relationship of nucleotide diversity in chimpanzees with specific large-scale genome features to reveal a number of highly significant correlations which explain over 40% of the observed variation. I use data from the 1000 Genomes Project to examine the occurrence of ancestral polymorphisms shared between human and chimpanzee on a genome-wide scale. These ancestral polymorphisms do not only influence fine-scale divergence rates across the genome in very closely related species, they are also good candidates for regions under balancing selection and thus, they are a useful tool to study long-time population demographics and speciation. Using these variants, I postulate that long-term balancing selection may be more common than previously believed. I conclude with a discussion of the results contained in the body of the thesis and suggest a number of areas for future research.
|
6 |
Seleção balanceadora no genoma humano: relevância biológica e consequências deletérias / Balancing selection in the human genome: biological relevance and deleterious consequenceBitarello, Bárbara Domingues 03 August 2016 (has links)
Seleção balanceadora é um processo evolutivo que engloba diversos mecanismos: vantagem do heterozigoto, seleção dependente de frequência, pressões seletivas que variam ao longo do tempo ou do espaço, e alguns casos de pleiotropia. O estudo desses mecanismos em si foi e ainda é um tópico de grande interesse para os biólogos evolutivos, e moldou o estudo da evolução ao longo do último século. Antes de a teoria neutra ter sido proposta, acreditava-se que a seleção balanceadora fosse comum. A descoberta de que muita da diversidade genética observada podia ser explicada por evolução neutra motivou, portanto, uma melhor compreensão da seleção balanceadora como um regime seletivo capaz de manter variantes vantajosas nas populações. O estudo da seleção balanceadora, em seus primórdios, foi restrito a organismos que podiam ser manipulados em laboratório. Com o advento de métodos que permitiam quantificar a variabilidade genética - tais como a eletroforese de proteínas, sequenciamento em pequena escala e re-sequenciamento genômico de milhares de indivíduos -, a variabilidade genética humana passou a ser ativamente estudada e interpretada. Diversos estudos buscaram por assinaturas de seleção natural - i.e., padrões de variação genômica deixadas por tais regimes seletivos - e avaliaram seu significado comparando-as com o que seria esperado sob um cenário estritamente neutro. A maior parte desses esforços foram concentrados no estudo da seleção positiva, tida como o principal mecanismo responsável pela evolução adaptativa. Poucos estudos buscaram assinaturas de seleção balanceadora no genoma humano. Isso se deve em parte à escassez de métodos com alto poder para detectar tais assinaturas. Adicionalmente, estudos prévios não analisaram dados em escala genômica, ou se concentraram principalmente nas regiões codificadoras de proteínas. Aqui, nós descrevemos um método simples e com alto poder para detectar assinaturas de seleção balanceadora. Em humanos, esse método supera outros comumente usados para a detecção de tais assinaturas e, em teoria, poderia ser usado para detectá-las em outras espécies, desde que seu poder seja avaliado caso-a-caso através de simulações neutras. Nosso método (\"Non-Central Deviation\", NCD) é apresentado em duas versões: NCD2, que requer informação acerca dos polimorfismos da espécie analisada e das substituições entre essa espécie e um grupo externo, e NCD1, que requer apenas informação acerca dos polimorfismos da espécie analisada. Embora em humanos NCD2 supere NCD1, este último pode ser utilizado para espécies para as quais não haja informação de um grupo externo. Quando aplicamos NCD2 a dados humanos, usando chimpanzé como grupo ex- terno, encontramos mais de 200 genes codificadores de proteínas com forte assinatura de seleção balanceadora, dos quais apenas 1/3 tinha evidência prévia de seleção balanceadora. Encontramos também um enriquecimento para diversas categorias de ontologia gênica, das quais cerca da metade é relacionada à imunidade. Verificamos que dentre os genes com evidências de seleção balanceadora há um excesso de casos de expressão preferencial em tecidos tais como \"adrenal\" e \"pulmão\", e também um excesso de genes com expressão mono-alélica. No geral, vimos que as regiões selecionadas no genoma humano incluem tanto sítios codificadores quanto regulatórios. Não encontramos um excesso de assinaturas de seleção balanceadora em regiões regulatórias, ao contrário do que reportaram outros estudos. Finalmente, encontramos um excesso de polimorfismos não-sinônimos em relação aos sinônimos nos genes selecionados. Tendo documentado a ocorrência de seleção balanceadora no genoma humano e identificado genes que foram potencialmente alvos deste regime seletivo, nós investi- gamos as consequências evolutivas desse processo. Nós partimos da hipótese que a seleção balanceadora sobre um sítio reduz a eficiência com a qual a seleção purificadora elimina variantes deletérias em sítios vizinhos. Esse processo é uma consequência do quanto a seleção sobre um loco afeta, através de ligação genética, as frequências de sítios não-neutros adjacentes. Testamos essa hipótese examinando se os genes sob seleção balanceadora apresentam um excesso de variantes deletérias em relação a expectativas derivadas a partir do restante do genoma. Usando três diferentes métricas para determinadas se e/ou o quão deletéria é uma dada variante, identificamos um excesso de variantes deletérias dentro dos genes sob seleção balanceadora, e mostramos que tal padrão não pode ser atribuído a efeitos confundidores. Esse achado mostra que, juntamente com os benefícios associados à variação adaptativa, a seleção balanceadora aumenta o fardo de mutações deletérias no genoma humano. De forma geral, nossos achados sugerem que a seleção balanceadora provavelmente mantém variantes genéticas envolvidas em uma miríade de processos biológicos além da imunidade e que ela foi mais comum no genoma humano do que se acreditava anteriormente, afetando entre 1-8% dos genes codificadores de proteínas, bem como diversas regiões não-codificadoras. Adicionalmente, a seleção balanceadora parece ser importante para a evolução humana não apenas por seu efeito sobre a aptidão, mas também por ter sido uma importante força capaz de moldar a diversidade genética observada atualmente em humanos e a susceptibilidade a doenças / Balancing selection is an evolutionary process that encompasses several mechanisms: heterozygote advantage, negative frequency dependent selection, selective pressure that fluctuates in time or in space, and some cases of pleiotropy. The study of these mechanisms .per se has been and still is a topic of great interest for evolutionary biologists, and has shaped the study of evolution throughout the last century. Before the proposition of the neutral theory of molecular evolution, it was believed that balancing selection was pervasive. The realization that much of the observed genetic diversity could be explained by neutral evolution thus motivated a better understanding of balancing selection as a selective regime capable of maintaining adaptive variants in populations. The study of balancing selection, in its early stages, was restricted to organisms that could be manipulated in the laboratory. With the advent of methods that allowed quantification of genetic variation - such as protein electrophoresis, small scale sequencing and genome-wide re-sequencing of thousands of individuals - human variation started to be actively studied and interpreted. Several studies have looked for signatures of natural selection - i.e., patterns of genomic variation that selective regimes leave in the genome - and evaluated their significance by comparing them to what would be expected under a strictly neutral scenario. Most of these efforts focused on the study of positive selection, thought of as the prime mechanism responsible for adaptive evolution. Only a few studies looked for signatures of balancing selection in the human genome. This is partially due to the paucity of powerful methods to detect its signatures. Moreover, previous studies either did not analyze data on genomic scale or focused primarily on protein-coding regions. Here, we describe a powerful and simple method to detect signatures of balancing selection. In humans, it outperforms other methods commonly used to detect such signatures and could in theory be used for other species, provided that its power is evaluated for each species through neutral simulations. Our method (\"Non-Central Deviation\", NCD) has two versions: NCD2, which requires polymorphism information on the ingroup species, as well as divergence information between the ingroup and an outgroup species, and NCD1, which only requires the ingroup information. Although NCD2 is more powerful for humans, NCD1 can be used for species that lack information from an outgroup. When applying NCD2 to human data, using chimpanzee as the outgroup, we found more than 200 protein-coding regions with strong signatures of balancing selection, only 1/3 of which had prior evidence for balancing selection. There was also an enrichment for several gene ontology categories, approximately half of which are related to immunity. We also found that among genes with evidence for balancing selection there was an excess of cases of preferential expression in specific tissues, such as \"adrenal\" and \"lung\", and an excess of genes with mono-allelic expression. Overall, we found that selected regions of the genome include both coding and regulatory sites. We failed to find a marked excess of balancing selection in regulatory regions, as reported in previous studies. Finally, we found an excess of nonsynonymous versus synonymous polymorphisms within the selected genes. Having documented the occurrence of balancing selection in the human genome and identified genes which were potential targets of this selective regime, we next investigated evolutionary consequences of this process. We hypothesized that balancing selection acting on a site reduces the efficiency with which purifying selection purges deleterious variants at nearby sites. This process is a consequence of how the dynamics of selection at one locus, mediated by linkage, can interfere with the frequencies of adjacent non-neutral sites. We tested this hypothesis by examining if the genes under balancing selection show an excess of deleterious variants with respect to expectations derived from the remainder of the genome. Using three different metrics to determine deleteriousness, we identified a significant excess of deleterious variants within balanced genes, and we show that this pattern cannot be attributed to confounding factors. This finding shows that together with the benefits associated with adaptive variation, balancing selection is increasing the burden of deleterious mutations in the human genome. Overall, our findings suggest that balancing selection likely maintains variation in a myriad of biological processes other than immunity and that it has been more common in the human genome than previously thought, affecting between 1-8% of human protein-coding genes, as well as a number of non-protein coding regions. Moreover, balancing selection appears to be important to human evolution not only because of its influence on fitness, but also because it has been an important force shaping current human genetic diversity and susceptibility to disease
|
7 |
Evolution of MHC Genes and MHC Gene ExpressionBerggren Bremdal, Karin January 2010 (has links)
Polymorphism in coding regions and regions controlling gene expression is the major determinant of adaptive differences in natural populations. Genes of the major histocompatibility complex (MHC) possess a high level of genetic variation, which is maintained by selection over long coalescence times. MHC genes encode antigen-presenting molecules in the adaptive immune system, which protects the host from infectious diseases. However, MHC molecules may also present self-peptides and for most autoimmune diseases there is a genetic factor associated with the MHC. MHC genes have been used to learn about the interplay of selection and historical population events. In domestic dogs and their progenitor, the wolf, I explored factors associated with domestication and breed formation and their influence not only on MHC coding regions but also on the haplotypic structure of the class II region. Polymorphism and strong selection was demonstrated in the proximal promoters of MHC genes in dogs and wolves. Hence, genetic variation associated with MHC gene expression may have at least equal importance for a well functioning immune system. Associations between promoter sequences and particular coding alleles suggested allele-specific expression patterns. SNP haplotypes of the MHC class II region revealed ancestral as well as convergent haplotypes, in which combinations of alleles are kept by selection. Interestingly, weaker allelic associations were found between different genes and between coding regions and promoters in dogs compared to wolves. Potentially, this could cause insufficient defense against infections and predispose dogs to autoimmune diseases. For example, I identified a site in the promoter region that showed a consistent difference between haplotypes conferring susceptibility and protection to diabetes in dogs, which should be investigated further. Furthermore, I investigated how selection and demographic changes associated with glacial and inter-glacial periods have affected MHC variation in European hedgehogs and extended the prevailing knowledge concerning their population history.
|
8 |
The evolutionary mechanisms promoting sex chromosome divergence within <i>Carica papaya</i>Brown, Jennifer Erin 04 December 2013 (has links)
No description available.
|
9 |
Human genetic diversity in genes related to host-pathogen interactionsFerrer i Admetlla, Anna 07 January 2009 (has links)
La tesi que teniu a les mans recull quatre treballs amb un objectiu comú; determinar si els patògens (virus, bacteris, paràsits.) han exercit pressions selectives sobre els genomes dels seus hostes (com per exemple els humans).Sabent que la detecció de l'empremta de la selecció permet identificar aquelles regions del genoma que han estat rellevants al llarg de l'evolució d'una espècie, ja que a nivell local és la variació funcional qui acaba essent objecte de la selecció, ens hem disposat a estudiar els possibles senyals de selecció en gens relacionats amb la interacció hoste-patògen. En concret, hem analitzat gens que codifiquen per: a) components del sistema immunitari innat i, b) enzims de glicosilació, la majoria dels quals s'inclouen en quatre de les principals rutes biosintètiques de glicans, en diferents poblacions humanes.Com a conclusió principal; ambdós conjunts de gens mostren clars senyals de selecció. A més hem vist que segons el context biològic on és troben certs gens és veuen més afectats per l'acció de la selecció natural. / The present thesis includes four studies with a common objective: determining whether pathogens (virus, bacteria, parasites.) have exerted selective pressures on the genome of their hosts (for example, humans).Detecting signatures of positive selection is a useful tool to identify functionally relevant genomic regions since selection locally shapes the functional variation. Based on this premise, we have studied the possible signatures of selection in genes related to host-pathogen interactions. Specifically, we have analyzed those genes encoding: a) components of the innate immunity response; and ii) glycosylation enzymes most of them involved in four major glycan biosynthesis pathways, in different human populations.The main conclusion obtained from these studies is that both studied gene categories show clear signatures of selection. Moreover, we have determined that according to their biological context certain genes are more prone to the action of selection.
|
10 |
The role of the major histocompatibility complex in the wild : the case of the Alpine marmot (Marmota marmota) / Le rôle du complexe majeur d'histocompatibilité en milieu sauvage : le cas de la marmotte alpine (Marmota marmota)Ferrandiz-Rovira, Mariona 03 July 2015 (has links)
La diversité génétique intra-spécifique constitue le potentiel adaptatif des espèces et, à ce titre, elle est donc indispensable pour l'évolution de celles-ci. Chez les vertébrés, les gènes du complexe majeur d'histocompatibilité (CMH) sont une composante essentielle de quoi permet de faire face aux parasites en initiant une réponse immunitaire. La pression de sélection exercée par les parasites et la sélection sexuelle via le choix du partenaire devraient donc agir sur la diversité génétique du CMH. Cependant, la distinction empirique des pressions sélectives agissant sur la diversité génétique du CMH en milieu naturel nécessite de suivre un grand nombre individus tout au long de leur vie et d'effectuer leur génotypage. Le premier objectif de cette thèse a donc été développer et appliquer un protocole de génotypage chez la marmotte Alpine (Marmota marmota), sur quatre loci du CMH décrits précédemment. Ceci permet par la suite d'étudier, dans une population de marmottes Alpines vivant en milieu naturel, si les caractéristiques génétiques du CMH influencent (1) le choix de partenaire, (2) la présence et/ou l'abondance de trois espèces de parasites intestinaux et (3) leur survie juvénile. Ce travail a fourni une méthode appropriée pour la détermination de génotypes fiables sur un grand nombre d'échantillons en utilisant des techniques de séquençage de nouvelle génération. Ensuite, nous avons constaté l'existence d'un choix de partenaire basé sur le CMH mais aussi sur les caractéristiques de l'ensemble du génome. Par la suite, nous avons mis en évidence le faible rôle du CMH sur la présence et abondance de trois espèces de parasites intestinaux. Finalement, nous avons constaté que l'association entre la survie juvénile et les caractéristiques génétiques du CMH et de l'ensemble du génome ont changé au cours des vingt-trois ans de suivi de la population. Dans l'ensemble, cette thèse présente une approche intégrée de l'étude des rôles du CMH sur une population contemporaine de marmottes Alpines / Intra-specific genetic diversity represents the true potential of adaptation of species and is thus essential for evolutionary change. In vertebrates, the genes of the major histocompatibility complex (MHC) play a critical role in vertebrate disease resistance by initiating immune response. The selective pressure carried out by parasites and sexual selection via mate choice are supposed to maintain the extreme diversity found in the MHC. Yet, empirical differentiation of selective pressures acting on MHC in the wild requires individually based monitoring of a large number of individuals and genotyping them. The aim of this thesis was firstly to develop and apply a genotyping protocol in Alpine marmots (Marmota marmota) to genotype four previously described MHC loci. This allows subsequently to evaluate, in a wild population of Alpine marmots, if MHC characteristics play a role (1) on mate choice, (2) on the presence and/or abundance of three intestinal parasite species and (3) on juvenile survival. This work provided a suitable method to reliably genotype large number of individuals using next-generation sequencing techniques. Then, we found evidences for female mate choice based on MHC but also on neutral genetic characteristics. Subsequently, we evidenced the weak role of MHC characteristics on the presence and abundance of three intestinal parasites. Finally, we found evidences for a change of the effect of genetic diversity at both MHC and neutral loci on juvenile survival during the 23-year monitoring study. Overall, this thesis comprises an integrated approach for the study of the roles of MHC in a contemporaneous population of Alpine marmots
|
Page generated in 0.0942 seconds