Spelling suggestions: "subject:"balloon"" "subject:"walloon""
71 |
DESIGN AND MODELING OF A BALLOON ROBOT WITH WHEEL PADDLES FOR AGRICULTURAL USEXiaotong Huang (18524037) 09 May 2024 (has links)
<p dir="ltr">The research study of Design and Modeling of a Balloon Robot with Wheel Paddles for Agricultural Use (Huang, et al. 2023) presented the design, analysis, and simulation of an innovative agricultural robot that integrated a buoyancy system with a helium balloon and wheeled paddles for navigation, aiming to optimize crop health monitoring. The thesis research initiated with a comprehensive examination of the conceptual design, focusing on the robot's buoyancy mechanism and propulsion system. Detailed motion analysis and kinematic studies underpinned the development of a dynamic model, which was rigorously tested through MATLAB simulations. The MATLAB simulations assessed the unmanned vehicle's operational efficiency, maneuverability, and energy consumption in the environment setting of agricultural. The findings of the new design highlighted the robot's potential to surpass traditional agricultural robots in precision and adaptability, mitigating the limitations of ground and aerial alternatives. The thesis study of the balloon robot concluded with strategic recommendations for future enhancements, emphasizing scalability, payload capacity, and environmental adaptability, thus paving the way for advanced agricultural robotics.</p>
|
72 |
Investigating the vertical aerosol distribution above the Arctic sea ice with a tethered balloonPilz, Christian 11 October 2024 (has links)
Die Arktis erwärmt sich aus noch nicht vollständig geklärten Gründen drei- bis viermal schneller als der Rest der Erde. Wolken, die den Energiehaushalt der Oberfläche und den vertikalen Transport von Wärme und Feuchtigkeit über dem Meereis signifikant beeinflussen, werden durch die oft begrenzte Verfügbarkeit von tröpfchenbildenden Aerosolpartikeln beeinflusst. Diese Aerosol-Wolken-Wechselwirkungen sind schwer zu erfassen, da die untere Troposphäre zumeist komplex geschichtet ist. In dieser Doktorarbeit werden drei neue wissenschaftliche Veröffentlichungen vorgestellt, die unternommenen wurden, um die vertikale Aerosolverteilung über dem arktischen Meereis mit einem Fesselballon zu untersuchen.
Im ersten Schritt wurde eine neue Aerosolmessplattform, genannt CAMP, für Fesselballoneinsätze konzipiert. CAMP beinhaltet vier mobile Instrumente in einem Gehäuse, das vor Umwelteinflüssen schützt, zur Messung der Mikrophysik von Aerosolpartikeln. Die Sensoren wurden gründlich kalibriert und charakterisiert und die Leistung der Plattform in Feldtests bewertet. Im zweiten Schritt wurden während einer Forschungsexpedition in der zentralen Arktis Fesselballonmessungen von einer Eisscholle aus durchgeführt. Neben CAMP wurden vier weitere Instrumentenpakete mit dem Ballon geflogen, um die atmosphärische Grenzschicht zu charakterisieren. Die gewonnenen Daten wurden validiert und der wissenschaftlichen Gemeinschaft frei zur Verfügung gestellt. Im dritten Schritt wurden vierunddreißig Aerosolprofile analysiert und die Auswirkungen des Luftmassenursprungs und der Troposphärenstruktur auf die vertikale Aerosolverteilung bewertet. Die Ergebnisse der Studie zeigten, dass die Aerosolpartikel oberhalb der Grenzschicht für Wolken-Wechselwirkung von wesentlicher Bedeutung sind. Eine Analyse der Kopplung zwischen Wolke und Oberfläche zeigte deutlich, dass der vertikale Transport von Aerosolen von der Oberfläche zur Wolkenbasis in entkoppelten Wolkenfällen gehemmt war. Sekundäre Partikelbildung nach dem Transport von Vorläuferdämpfen von südlich des Eisrandes führte zu hohen Konzentrationen kleinerer Partikel oberhalb der Grenzschicht. In einem anderen Fall unterstützten hohe Mengen größerer Partikel die Bildung einer dichten Nebelschicht nach dem Ferntransport.
Diese Arbeit hat gezeigt, dass es möglich ist, qualitativ hochwertige Aerosolmessungen mit Fesselballons in einer abgelegenen Region und unter schwierigen Umweltbedingungen durchzuführen. Die gewonnenen Daten und die bereitgestellten Analysen ermöglichen neue Einblicke in die vertikale Aerosolverteilung über dem Meereis. Zusammenfassend lässt sich sagen, dass diese Arbeit dazu beiträgt, unser Verständnis von Aerosol-Wolken-Wechselwirkungen über dem Arktischen Meereis zu erweitern.:Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Aerosol particles in the Arctic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The lower troposphere above the Arctic sea ice . . . . . . . . . . . . . . . . . . . . . 4
1.3 Aerosol measurements with tethered balloons . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 The cubic aerosol measurement platform (CAMP) . . . . . . . . . . . . . . . . . . . 9
2.1.1 Platform design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 First field deployments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Tethered balloon measurements above the Arctic sea ice . . . . . . . . . . . . . . . . 12
2.2.1 The MOSAiC expedition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Tethered balloon operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Deployed instrument packages . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.4 Data validation and availability . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Back trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Cloud borders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3 Inversion detection algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.4 Tropospheric structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1 First publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Second publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Third publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.1 First publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2 Second publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3 Third publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
A.1 Publications included in the Doctoral Thesis and Author’s contributions . . . . . . . i
A.2 Contributions to other publications as co-author during the PhD . . . . . . . . . . . iii
A.3 Colophon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv / The Arctic is warming three to four times faster than the rest of the Earth for reasons that are not yet fully understood. Clouds, which significantly affect the surface energy budget and the vertical transport of heat and moisture above sea ice, are influenced by the often limited availability of droplet-forming aerosol particles. However, aerosol-cloud interactions are challenging to assess due to the commonly complex structured lower troposphere. This doctoral thesis presents three novel scientific publications that detail the steps taken to investigate the vertical aerosol distribution above the Arctic sea ice with a tethered balloon.
In the first step, the new cubic aerosol measurement platform (CAMP) was designed for tethered balloon deployments. CAMP contains four mobile instruments in an environmentally robust housing for measuring aerosol particle microphysics. The sensors were thoroughly calibrated and characterized, and the platform performance was evaluated in field tests. Secondly, tethered balloon measurements were performed from an ice floe during a research expedition into the central Arctic. CAMP and four other instrument packages were deployed with the balloon to characterize the atmospheric boundary layer. The obtained data were validated and made freely available to the scientific community. Lastly, thirty-four aerosol profiles were analyzed, and the impact of the air mass origin and the lower tropospheric structure on the vertical aerosol distribution was evaluated. The study results showed that the aerosol particles above the boundary layer are essential for interactions with low-level clouds. An analysis of the cloud-surface coupling state clearly demonstrated inhibited vertical transport of aerosols from the surface to the cloud base in decoupled cloud cases. Secondary particle formation initiated by low-level transport of precursor vapors from south of the ice edge caused high concentrations of smaller particles above the boundary layer. In another case, high amounts of larger particles supported the formation of a dense fog layer after long-range transport.
This thesis demonstrated the feasibility of providing high-quality aerosol measurements with tethered balloons from a remote region under challenging environmental conditions. The obtained data and the provided analysis enable novel insights into the vertical aerosol distribution above the sea ice. In conclusion, this work contributes to expanding our understanding of aerosol-cloud interactions in the Arctic.:Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Aerosol particles in the Arctic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The lower troposphere above the Arctic sea ice . . . . . . . . . . . . . . . . . . . . . 4
1.3 Aerosol measurements with tethered balloons . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 The cubic aerosol measurement platform (CAMP) . . . . . . . . . . . . . . . . . . . 9
2.1.1 Platform design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 First field deployments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Tethered balloon measurements above the Arctic sea ice . . . . . . . . . . . . . . . . 12
2.2.1 The MOSAiC expedition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Tethered balloon operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Deployed instrument packages . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.4 Data validation and availability . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Back trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Cloud borders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3 Inversion detection algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.4 Tropospheric structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1 First publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Second publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Third publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.1 First publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2 Second publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3 Third publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
A.1 Publications included in the Doctoral Thesis and Author’s contributions . . . . . . . i
A.2 Contributions to other publications as co-author during the PhD . . . . . . . . . . . iii
A.3 Colophon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
|
73 |
Estimating the Surface Mixing Layer Height in the Arctic Atmospheric Boundary Layer Using Tethered Balloon-Borne ObservationsAkansu, Elisa Fatma 10 January 2025 (has links)
Diese Arbeit verwendet in situ Turbulenzmessungen aus Fesselballonbeobachtungen, um Methoden zur Ableitung der Höhe der bodennahen turbulenten Mischungsschicht (surface mixing layer, SML) in der arktischen atmosphärischen Grenzschicht zu bewerten. Die SML ist der unterste Teil der Atmosphäre, der turbulent ist und in dem selbst unter stabilen Bedingungen in der Arktis vertikale Vermischung und Transport von Wärme und Impuls stattfinden. Es werden zwei typische Zustände der Grenzschicht beobachtet: wolkenlos mit Temperaturinversionen am Boden und bewölkt mit Inversionen in der Höhe. Je nach Zustand variiert die vertikale Ausdehnung der SML erheblich. Die genaue Bestimmung der SML-Höhe ist entscheidend, da kleine Ungenauigkeiten einen erheblichen Einfluss auf die oft geringen SML-Höhen haben.
Während der Multidisciplinary Drifting Observatory for the Study of Arctic Climate
(MOSAiC) Expedition wurden im Winter und Frühjahr vertikal hoch aufgelöste Profilmessungen mit einem Fesselballon durchgeführt, die vom Meereis bis in mehrere hundert Meter Höhe reichen. Diese Profile eignen sich für die Bestimmung einer Referenz-SML-Höhe, mit der andere häufig verwendete Methoden wie die auf der Bulk-Richardson-Zahl oder die auf bodennahen Austauschströmen basierenden Methoden bewertet werden können. Der kritische Wert von 0,12, der mithilfe der Turbulenzdaten bestimmt wird, ermöglicht eine genauere Abschätzung der SML-Höhen mit der Bulk-Richardson Methode. Dieser Ansatz wird auf Radiosondenaufstiege der MOSAiC-Expedition angewandt, um die Analyse zu erweitern.
Außerdem werden die beiden typischen Zustände der arktischen Grenzschicht im Winter analysiert und der Übergang von bewölkten zu wolkenlosen Bedingungen anhand eines Messbeispiels untersucht. Diese Arbeit unterstreicht das Potential der Fesselballon-Turbulenzmessungen und wie diese Daten Einblicke in die vertikale Struktur der arktischen Grenzschicht geben. Die Messungen tragen zum Verständnis der Stabilität, der vertikalen Verteilung der Turbulenz und des Einflusses von Wolken auf die Grenzschicht bei, deren vertikale Schichtung wesentlich für Rückkopplungsprozesse ist, die zu einer verstärkten Erwärmung der Arktis beitragen.:Contents
1 Introduction 1
2 Fundamentals 7
2.1 Atmospheric boundary layer (ABL) 7
2.1.1 General characteristics 7
2.1.2 Vertical stability 10
2.1.3 Surface mixing layer (SML) 12
2.1.4 Cloudy conditions 13
2.2 Special features in the Arctic 14
2.3 Bulk Richardson number 16
2.4 Monin-Obukhov similarity theory 18
2.5 Turbulent flows 19
2.5.1 Eddies 19
2.5.2 Turbulent kinetic energy 22
2.5.3 Inertial subrange and energy dissipation rate 26
3 Balloon-borne turbulence measurements 29
3.1 MOSAiC expedition 29
3.2 Tethered balloon-borne measurements 31
3.2.1 Balloon operation 31
3.2.2 Vaisala tethersonde 34
3.2.3 High-resolution wind and temperature measurements 35
3.2.4 Calibration of the hot-wire anemometer 37
3.2.5 Derivation of energy dissipation rates 41
4 Surface mixing layer height estimates 47
4.1 In situ turbulence method 47
4.2 Bulk Richardson number method 48
4.2.1 Profiles of bulk Richardson number 48
4.2.2 Determining the critical Bulk Richardson number 50
4.3 SML height estimates based on a mean critical Richardson number 52
4.4 Surface flux-based method 54
5 Two typical states of the Arctic ABL 61
5.1 Observations in cloudless and cloudy conditions 61
5.2 Vertical mean and turbulent structure of the Arctic ABL 63
5.3 Transition from cloudy to cloudless states 66
6 Summary and outlook 71
Appendix 75
List of Figures 77
List of Acronyms 80
List of Symbols 83
References 86 / This thesis uses in situ turbulence measurements from tethered balloon observations to evaluate methods for deriving the surface mixing layer (SML) height in the Arctic atmospheric boundary layer (ABL). The SML is the lowermost part of the atmosphere, which is turbulent and experiences vertical mixing and transport of heat and momentum even under stable conditions in the Arctic. Two typical states of the ABL are observed: cloudless conditions with surface-based temperature inversions and cloudy conditions with elevated inversions. Depending on the state, the SML’s vertical extent varies significantly. Accurately determining the SML height is crucial because small inaccuracies in altitude are significant to the often shallow SML heights.
Vertically highly resolved in situ profile measurements were obtained with a tethered
balloon during the year-long Multidisciplinary Drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition in winter and spring, reaching from the sea ice to several hundred meters. These profiles are well suited to derive a reference SML height, which is used to evaluate other commonly used methods, such as the bulk Richardson number or surface flux-based method. A critical value of 0.12 is derived, leading to more accurate SML height estimates. This approach is applied to radiosonde ascents from the MOSAiC expedition to extend the analysis and bridge observational gaps without tethered balloon-borne profiles.
Further, the two typical states of the Arctic ABL in winter are analyzed, and the transition from cloudy to cloudless conditions is studied based on a measurement example. This work demonstrates the unique potential of the tethered balloon turbulence measurements and how these profiles provide insights into the vertical structure of the Arctic ABL. These measurements contribute to understanding the stability, the vertical distribution of turbulence, and the influence of clouds on the ABL. The ABL’s vertical stratification is essential for feedback processes, which contribute mainly to Arctic amplification.:Contents
1 Introduction 1
2 Fundamentals 7
2.1 Atmospheric boundary layer (ABL) 7
2.1.1 General characteristics 7
2.1.2 Vertical stability 10
2.1.3 Surface mixing layer (SML) 12
2.1.4 Cloudy conditions 13
2.2 Special features in the Arctic 14
2.3 Bulk Richardson number 16
2.4 Monin-Obukhov similarity theory 18
2.5 Turbulent flows 19
2.5.1 Eddies 19
2.5.2 Turbulent kinetic energy 22
2.5.3 Inertial subrange and energy dissipation rate 26
3 Balloon-borne turbulence measurements 29
3.1 MOSAiC expedition 29
3.2 Tethered balloon-borne measurements 31
3.2.1 Balloon operation 31
3.2.2 Vaisala tethersonde 34
3.2.3 High-resolution wind and temperature measurements 35
3.2.4 Calibration of the hot-wire anemometer 37
3.2.5 Derivation of energy dissipation rates 41
4 Surface mixing layer height estimates 47
4.1 In situ turbulence method 47
4.2 Bulk Richardson number method 48
4.2.1 Profiles of bulk Richardson number 48
4.2.2 Determining the critical Bulk Richardson number 50
4.3 SML height estimates based on a mean critical Richardson number 52
4.4 Surface flux-based method 54
5 Two typical states of the Arctic ABL 61
5.1 Observations in cloudless and cloudy conditions 61
5.2 Vertical mean and turbulent structure of the Arctic ABL 63
5.3 Transition from cloudy to cloudless states 66
6 Summary and outlook 71
Appendix 75
List of Figures 77
List of Acronyms 80
List of Symbols 83
References 86
|
74 |
JEM-EUSO prototypes for the detection of ultra-high-energy cosmic rays (UHECRs) : from the electronics of the photo-detection module (PDM) to the operation and data analysis of two pathnders / Prototypes de JEM-EUSO pour la détection des rayons cosmiques d’ultra-haute énergie (UHECRs) : de l’électronique du module de photo-détection (PDM) à l’exploitation et l’analyse des données de deux pathfindersJung, Aera 30 May 2017 (has links)
L’expérience JEM-EUSO (traduction de Observatoire spatial de l’univers extrême à bord du module de l'expérience japonaise) est conçu pour observer les UHECR en détectant la lumière fluorescente UV émise par la gerbe qui se développe lorsque les UHECR interagissent avec l'atmosphère terrestre. Les gerbes atmosphériques sont constituées de dizaines de milliards de particules secondaires ou plus traversant l'atmosphère quasiment à la vitesse de la lumière, excitant les molécules d'azote qui émettent ensuite de la lumière dans la gamme UV. Alors que cette « technique de fluorescence » est habituellement utilisée au sol, en opérant ainsi à partir de l'espace, JEM-EUSO, pour la première fois, fournira des statistiques élevées sur ces événements. Avec un large champ de vue de ± 30 °, JEM-EUSO pourra observer depuis l’espace un volume d'atmosphère beaucoup plus grand que ce qui est possible du sol, en collectant un nombre sans précédent d'événements UHECR aux plus hautes énergies.Pour les quatre prototypes d’expériences construites par la collaboration, nous avons développé un ensemble commun d'électronique, en particulier le système central d'acquisition de données capable de fonctionner au sol, sur des ballons à haute altitude et dans l'espace.Ces expériences utilisent toutes un détecteur composé d'un module de détection de photo (PDM) identique aux 137 qui seront présents sur la surface focale JEM-EUSO. La lumière UV générée par les gerbes atmosphériques à haute énergie passe le filtre UV et frappe les tubes à photomultiplicateurs multi-anodes (MAPMT). Les photons UV sont alors transformés en électrons, qui sont multipliés par les MAPMT et le courant qu’ils créent est amplifié par des cartes ASIC de circuit intégré (EC-ASIC), qui effectuent également le comptage des photons et l'estimation de charge. Une carte FPGA nommé PDM board s'interface avec ces cartes ASIC, fournissant des paramètres d'alimentation et de configuration à ces cartes ASIC, collecte alors les données et exécute le déclenchement d’acquisition de niveau 1.Dans le cadre de ces travaux, je me suis occupée de la conception, du développement, de l'intégration et du test la carte FPGA PDM board pour les missions EUSO-TA et EUSO-Balloon ainsi que des tests d'algorithme de déclenchement autonomes d’acquisitions et j'ai également analysé les données de vol d’EUSO-Balloon et de la campagne sol EUSO-TA d’octobre 2015.Dans cette thèse, je donnerai un bref aperçu des rayons cosmiques à haute énergie, y compris de leur technique de détection et des principales expériences pour les détecter (chapitre 1), je décrirai JEM-EUSO et ses pathfinders (chapitre 2), je présenterai les détails de la conception et de la fabrication du PDM (chapitre 3) et de la carte FPGA PDM board (chapitre 4), ainsi que des tests d'intégration d’EUSO-TA et d’EUSO-Balloon (chapitre 5). Je ferai un rapport sur la campagne EUSO-Balloon de 2014 (chapitre 6) et sur ses résultats (chapitre 7), y compris une analyse spécifique développée pour rechercher des variations globales de l'émissivité UV au sol et j’appliquerai une analyse similaire aux données collectées sur le site de Telescope Array (Chapitre 8). Enfin, je présenterai la mise en œuvre et le test du déclencheur de premier niveau (L1) dans la carte de contrôle FPGA (chapitre 9). Un bref résumé de la thèse sera donné au chapitre 10. / The JEM-EUSO (Extreme Universe Space Observatory on-board the Japanese Experiment Module) international space mission is designed to observe UHECRs by detecting the UV fluorescence light emitted by the so-called Extensive Air Shower (EAS) which develop when UHECRs interact with the Earth’s atmosphere. The showers consist of tens of billions or more secondary particles crossing the atmosphere at nearly the speed of light, which excite nitrogen molecules which then emit light in the UV range. While this so-called “fluorescence technique'” is routinely used from the ground, by operating from space, JEM-EUSO will, for the first time, provide high-statistics on these events. Operating from space, with a large Field-of-View of ±30 °, allows JEM-EUSO to observe a much larger volume of atmosphere, than possible from the ground, collecting an unprecedented number of UHECR events at the highest energies.For the four pathfinder experiments built within the collaboration, we have been developing a common set of electronics, in particular the central data acquisition system, capable of operating from the ground, high altitude balloons, and space.These pathfinder experiments all use a detector consisting of one Photo-detection Modules (PDMs) identical to the 137 that will be present on the JEM-EUSO focal surface. UV light generated by high-energy particle air showers passes the UV filter and impacts the Multi-anode Photomultiplier Tubes (MAPMT). Here UV photons are converted into electrons, which are multiplied by the MAPMTs and fed into Elementary Cell Application-Specific Integrated Circuit (EC-ASIC) boards, which perform the photon counting and charge estimation. The PDM control board interfaces with these ASIC boards, providing power and configuration parameters, collecting data and performing the level 1 trigger. I was in charge of designing, developing, integrating, and testing the PDM control board for the EUSO-TA and EUSO-Balloon missions as well as the autonomous trigger algorithm testing and I also performed some analysis of the EUSO-Balloon flight data and data from the EUSO-TA October 2015 run.In this thesis, I will give a short overview of high-energy cosmic rays, including their detection technique and the leading experiments (Chapter 1), describe JEM-EUSO and its pathfinders including a description of each instrument (Chapter 2), present the details of the design and the fabrication of the PDM (Chapter 3) and PDM control board (Chapter 4), as well as the EUSO-TA and EUSO-Balloon integration tests (Chapter 5). I will report on the EUSO-Balloon campaign (Chapter 6) and results (Chapter 7), including a specific analysis developed to search for global variations of the ground UV emissivity, and apply a similar analysis to data collected at the site of Telescope Array (Chapter 8). Finally, I will present the implementation and testing of the first-level trigger (L1) within the FPGA of the PDM control board (Chapter 9). A short summary of the thesis will be given in Chapter 10.
|
75 |
Verbesserung der Herzinfarktversorgung durch standardisierte Datenerfassung und systematische Ergebnis-Rückkopplung / Eine prospektive Untersuchung aus dem Herzinfarktnetz Hildesheim-Leinebergland / Optimizing Systems of Care for Patients with Acute Myocardial Infarction by Formalized Data Assessment and Systematic Data Feedback / A Prospective Study of the STEMI Network Hildesheim-LeineberglandAhlersmann, Dorothe 17 November 2010 (has links)
No description available.
|
76 |
HIGH ALTITUDE TRANSMITTER FLIGHT TESTINGBrown, K. D., Sorensen, Trevor 10 1900 (has links)
International Telemetering Conference Proceedings / October 18-21, 2004 / Town & Country Resort, San Diego, California / This paper describes a high altitude experimental flight test platform developed by the University of Kansas (KU) and the National Nuclear Security Administration’s Kansas City Plant (NNSA’s Kansas City Plant) for high altitude payload flight testing. This platform is called the Kansas University Balloon Experiment Satellite (KUBESat). The paper describes the flight test platform and experimental flight test results captured at Fort Riley, KS from characterization of the KCP developed Distributed Transmitter (DTX).
|
77 |
Avaliação da função pulmonar em indivíduos obesos ou com sobrepeso e síndrome metabólica antes, três e seis meses após a colocação de balão intragástrico / Evaluation of pulmonary function in obese or overweight and metabolic syndrome before, three and six months after the placement of intragastric balloonThiago Thomaz Mafort 10 June 2015 (has links)
Neste trabalho, buscou-se avaliar se o uso do balão intragástrico (BI) durante um período de seis meses por pacientes obesos ou com sobrepeso e com síndrome metabólica (SM) traz melhora nos parâmetros de função pulmonar, distribuição da gordura corporal e SM. Trata-se de um estudo longitudinal e intervencionista com indivíduos adultos que foram submetidos à avaliação antropométrica, da bioquímica sérica, dos parâmetros de função pulmonar e do padrão de distribuição da gordura corporal, antes da instalação do BI, durante o acompanhamento de seis meses e após a sua retirada. Nos dados obtidos três meses após a colocação do BI, os pacientes apresentaram aumento da capacidade de difusão ao monóxido de carbono com correlação positiva entre esta e o percentual total de gordura corporal (rs=0,39; p=0,05), o padrão ginoide (rs=0,41; p=0,05) e o padrão torácico (rs=0,42; p=0,01). Também foi observado que, após três meses da colocação do BI, houve redução significativa do índice de massa corpórea (IMC) (p=0,0001) e da força muscular inspiratória (p=0,009). Também houve aumento significativo da capacidade vital forçada (CVF) (p=0,0001), da capacidade pulmonar total (CPT) (p=0,001) e do volume de reserva expiratório (VRE) (p=0,0001). Ao fim do estudo, foi observada elevação estatisticamente significante da CPT (p=0,0001), capacidade residual funcional (p=0,0001), volume residual (VR) (p=0,0005) e VRE (p=0,0001). Também foi observada redução significativa do IMC, cuja mediana passou de 39,1 kg/m2 no início da avaliação para 34,5 kg/m2 no final dos seis meses (p=0,0001). Ao fim do estudo, 31 pacientes (77,5%) não apresentavam mais critérios diagnósticos para SM. Em relação aos parâmetros de distribuição da gordura corporal, também houve mudanças importantes com redução significante (p=0,0001) do percentual de gordura nos quatro padrões analisados (tronco, androide, ginoide e total). Houve correlação significante entre o delta da CPT e o delta da circunferência abdominal (ρ=-0,34; p=0,03), entre o delta da CRF e o delta do IMC (ρ=-0,39; p=0,01) e entre o delta do VRE e os deltas do IMC (ρ=-0,44; p=0,005) e do colesterol HDL (ρ=-0,37; p=0,02). Também houve correlação significante entre o delta do VRE com os deltas das gorduras de tronco (ρ=-0,51; p=0,004), androide (ρ=-0,46; p=0,01), ginoide (ρ=-0,55; p=0,001) e total (ρ=-0,59; p=0,0005). / This work aimed to evaluate if the use of intragastric balloon (IB) for a period of six months in obese patients or overweight and metabolic syndrome (MS) brings improvement in the parameters of pulmonary function, body fat distribution and MS. This is a longitudinal and interventional study with adults who underwent anthropometric measurements, serum biochemistry, pulmonary function parameters and the pattern of distribution of body fat before the IB installation, during follow-up of six months and after their withdrawal. In data obtained three months after the placing of BI we observed a statistically significant positive correlation between the capacity of diffusion and the percentage of whole-body fat mass (rs=0.39; p=0.05), gynoid fat mass (rs=0.41; p=0.05), and trunk fat mass (rs=0.42; p=0.01). It was also noted that, after three months of placement of BI, there was a significant reduction in the body mass index (BMI) (p=0.0001) and the maximal inspiratory pressure (p=0.009). We also observed a significant increase in the forced vital capacity (FVC) (p=0.0001), total lung capacity (TLC) (p=0.001), and expiratory reserve volume (ERV) (p=0.0001). At the end of the study it was observed that the TLC (p=0.0001), functional residual capacity (FRC) (p=0.0001), residual volume (p=0.0005), and ERV (p=0.0001) were significantly increased by IB. The BMI significantly decreased from a median of 39.1 kg/m2 at the beginning of the study to 34.5 kg/m2 at the end of the six-month period (p=0.0001). At this time, 31 participants (77.5%) no longer met the diagnostic criteria of MS. The parameters of body fat distribution also exhibited remarkable changes. The percentage of fat in all four investigated patterns of distribution (truncal, android, gynoid, and total) exhibited significant reductions (p=0.0001). Significant correlations were found between delta TLC and delta abdominal circumference (ρ=-0.34; p=0.03), delta FRC and delta BMI (ρ=-0.39; p=0.01), delta ERV and delta BMI (ρ=-0.44; p=0.005), and delta ERV and delta high-density lipoprotein (HDL) (ρ=-0.37; p=0.02). Significant correlations were also found between delta ERV and delta truncal (ρ=-0.51; p=0.004), android (ρ=-0.46; p=0.01), gynoid (ρ=-0.55; p=0.001), and total fat (ρ=-0.59; p=0.0005).
|
78 |
Extenderes : video-ações : experimentações do movimento do corpo na relação com vestíveis e balõesBastezini, Katerine January 2014 (has links)
Extenderes: vídeo-ações são ações registradas e apresentadas em vídeo, nas quais meu corpo estabelece relações com vestíveis e com balões no espaço de um quarto. Essas vídeo-ações foram desenvolvidas entre os anos de 2011 e 2013. Assim criei situações que levavam meu corpo a explorar outras formas de movimentação e percepção do espaço a minha volta. Ao longo desta dissertação são esmiuçados alguns conceitos que se referem à relação do meu corpo com o objeto no momento da ação, são eles o conceito de jogo tratado por Hans-Georg Gadamer, o conceito de secundidade desenvolvido por Charles Peirce e o conceito de tarefa introduzido na dança por Ana Halprin. Também são pensadas algumas questões presentes nessas ações do grupo Extenderes como a repetição, a vulnerabilidade do corpo e a exaustão. O processo de criação é abordado segundo a função do fantasma na psicanálise, e também, segundo a experimentação, e a ludicidade como forma de construção. / Extenderes: video-actions are actions recorded on video, in which my body establishes relationships with wearable pieces and balloons in the space of a room. This video-actions were developed between 2011 and 2013. So I created situations that led my body to explore others forms of movement and perception of the space around me. Throughout this dissertation are scrutinized some concepts that refer to the relationship of my body with the object at the time of action. They are the play concept by Hans Georg Gadamer, the concept of secondness developed by Charles Peirce and the concept of the task introduced in dance by Ana Halprin. Also are thought some questions present in those actions Extenderes group as repetition, body vulnerability and exhaustion. The creation process is discussed according to the function of the fantasy in psychoanalysis, and also according playfulness as a way of building.
|
79 |
氣球載具航空攝影測量之研究 / AERIAL PHOTOGRAMMETRY USING A BALLOON PLATFORM林士淵, Lin, Shih Yuan Unknown Date (has links)
為有效了解地表資訊,可視研究目的而利用各種遙測方法獲取地面影像,但不論目前常用之飛機、或是以衛星為載具之空中攝影測量等相關研究,在影像獲取方面,常面臨成本費用、機動性、比例尺需求、後續影像處理等問題。因此,本研究選定一小流域面積之河川作為實驗區,並設計以氣球為載具之數值航空攝影方式,裝載CCD攝影機以及數位攝影機,透過CCD攝影機,即時無線傳輸地面影像至監視螢幕,調整氣球至預定之位置後,遙控啟動數位攝影機之快門裝置。
研究設計之攝影方式曾實際應用於偵測河道之變遷,由成果影像中檢核點之精度結果,以及套疊正射糾正並鑲嵌後之河道影像與地形圖之成果,證明氣球載具之數值航空攝影方式,確能有效應用於大比例尺製圖之研究。 / Using a flexible and efficient way to obtain aerial images has been the primary purpose of this study. The balloon platform was used to take aerial images. A video camera and a digital camera were fixed together in a durable plastic box, and hung on the balloon. The video camera was used to monitor the ground view, and its image could be telemetered remotely and displayed on a LCD monitor arranged on the ground. Once monitoring the area of interest shown on the LCD, the shutter button of the digital camera was then pushed remotely and the interested image was taken.
The resultant images were ortho-rectified for analysis and comparison. The accuracy of aerial images was examined by check points. The results showed that the images achieved sub-pixel accuracy and were well-matched with the 1/1000 digital topographic maps. This expressed that it was really a useful and efficient method of taking large-scale images for a small research area.
At last, post-classification comparison method was introduced to detect change of the ortho-rectified images which were taken in three different periods. The classification maps and the from-to change class information clearly indicated the change of river way among various periods.
|
80 |
Caractérisation des performances du nouveau mini compteur de particules LOAC embarqué sous ballon météorologique : application à l’étude de la variabilité spatiale et temporelle des aérosols de la haute troposphère et de la stratosphère / Characterisation of the capabilities of the new balloon-borne miniature particulate counter LOAC : application to the study of spatial and temporal variability of aerosols in the upper troposphere and stratosphereVignelles, Damien 24 November 2016 (has links)
L’étude des aérosols stratosphériques est importante pour comprendre le bilan radiatif terrestre. A l’heure actuelle, notre représentation des différents types de particules stratosphériques et leurs répartitions spatiale et temporelle n’est pas complète. Au cours de cette thèse, nous tentons de montrer que la mesure de la concentration en particules sous ballon météorologique au moyen d’un nouveau mini compteur de particules, le LOAC, pourrait permettre de rendre compte de la possible variabilité locale du contenu en aérosols stratosphériques dans la gamme de taille 0,2 à 100 μm en diamètre. La première partie de ce travail consiste à caractériser plus précisément les performances du LOAC sous ballon météorologique appliqué à la mesure en stratosphère. La seconde partie propose une analyse comparée du contenu en aérosols stratosphériques obtenu par LOAC, à partir de lâchers de ballons en France régulièrement depuis 3 ans et plus ponctuellement à l’étranger dans des situations particulières (volcan, mousson), et par d’autres types de données (Observations spatiales, lidar sol et simulation globale). Nous montrons alors que l’instrument possède une limite de détection rendant difficile la mesure des particules submicroniques lors de période de fond en moyenne stratosphère pour des concentrations de l’ordre d’une particule par cm3. Dans sa version actuelle, le LOAC permet de documenter les panaches volcaniques en troposphère ainsi qu’en basse stratosphère. En perspective, nous proposons des directions pour la calibration et l’analyse des futures données d’une nouvelle génération de l’instrument en développement. / The study of the stratospheric aerosols is important to our understanding of the terrestrial radiative budget. Our current comprehension of the different types of stratospheric particles and their spatial and temporal distribution is incomplete. In the present study, we try to show that measuring particle concentrations by the means of a new balloon-borne miniature particle counter, the LOAC, may allow us to determine the local variability in stratospheric aerosols in the size range 0.2 – 100 μm in diameter. In that respect, the PhD thesis consists of a first phase of a more accurate characterisation of the LOAC’s performances under balloon-borne measurement. A second phase consists of comparative analysis of stratospheric aerosol content based on a LOAC dataset obtained during a continuous campaign of balloon launches in France, along with some occasional flights abroad under particular circumstances (volcanic eruption, monsoon). Thus we show that the LOAC has a detection limit that restricts the measurement of submicronic particles in volcanic quiescent periods for concentrations lower than typically 1 particle per cm3. In its current version, the LOAC allows us to characterise aerosols in volcanic plumes in the troposphere and lower stratosphere. And, further, we propose directions concerning possible calibration and analysis strategies for the future data from the next generation of the LOAC currently in development.
|
Page generated in 0.0346 seconds