• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 153
  • 12
  • 10
  • 10
  • 8
  • 7
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 240
  • 73
  • 57
  • 42
  • 39
  • 35
  • 35
  • 31
  • 31
  • 29
  • 27
  • 26
  • 26
  • 26
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Smart Resistor: Control and Stabilization of DC Distribution Networks Utilizing Energy Storage with High Bandwidth Power Converters

Potty, Karun Arjun January 2020 (has links)
No description available.
192

Study of defects and doping in β-Ga2O3

Islam, Md Minhazul 01 September 2021 (has links)
No description available.
193

Planární antény se speciálními krycími vrstvami / Planar antennas with special superstrates

Zdráhal, Roman January 2008 (has links)
This diploma thesis deals with the modeling of planar antennas with special superstrates in the CST Microwave Studio. Attention is given to the electromagnetic bandgap (EBG) substrates. Firstly, the working principle of these special substrates and generally physical phenomena accompanying electromagnetic waves propagation in a periodic medium are analyzed. By modeling of basic EBG structures in CST their dispersion diagrams were obtained and afterwards compared to one another. The object of the second part of this thesis was modeling of a chosen antenna in CST. An Antenna placed first on the conventional and then on the EBG substrate - in both cases with special superstrates - is analyzed and compared to each other. In the third part of this thesis, the particle swarm optimization (PSO) technique was implemented in CST (VBA language), and was applied to the original design of the chosen antenna. In the final part of this thesis, the optimized antenna was modeled and analyzed in ANSOFT HFSS, and the results from both simulation programs are compared to each other.
194

A Heterogeneous Multirate Simulation Approach for Wide-bandgap-based Electric Drive Systems

Olatunji T Fulani (9581096) 27 July 2021 (has links)
<p>Recent developments in semiconductor device technology have seen the advent of wide-bandgap (WBG) based devices that enable operation at high switching frequencies. These devices, such as silicon carbide (SiC) metal-oxide-semiconductor field-effect transistors (MOSFETs), are becoming a favored choice in inverters for electric drive systems because of their lower switching losses and higher allowable operating temperature. However, the fast switching of such devices implies increased voltage edge rates (high <i>dv/dt</i>) that give rise to various undesirable effects including large common-mode currents, electromagnetic interference, transient overvoltages, insulation failure due to the overvoltages, and bearing failures due to</p> <p>microarcs. With increased use of these devices in transportation and industrial applications, it is imperative that accurate models and efficient simulation tools, which can predict these high-frequency effects and accompanying system losses, be established. This research initially focuses on establishing an accurate wideband model of a surface-mount permanent-magnet</p> <p>ac machine supplied by a WBG-based inverter. A new multirate simulation framework for predicting the transient behavior and estimating the power losses is then set forth. In this approach,</p> <p>the wideband model is separated into high- and low-frequency models implemented using two different computer programs that are best suited for the respective time scales. Repetitive execution of the high-frequency model yields look-up tables for the switching losses in the semiconductors, electric machine, and interconnecting cable. These look-up tables are then incorporated into the low-frequency model that establishes the conduction</p> <p>losses. This method is applied to a WBG-based electric drive comprised of a SiC inverter and permanent-magnet ac machine. Comparisons of measured and simulated transients are provided.</p>
195

Using Light to Study Liquid Crystals and Using Liquid Crystals to Control Light

Guo, Tianyi 22 July 2020 (has links)
No description available.
196

Development of embedded atom method interatomic potentials for Ge-Sn-Si ternary and constituent binary alloys for modeling material crystallization

Acharya, Sudip 01 September 2020 (has links)
No description available.
197

FIRST PRINCIPLES STUDY OF ELECTRONIC ANDVIBRATIONAL PROPERTIES OF WIDE BAND GAPOXIDE AND NITRIDE SEMICONDUCTORS

Ratnaparkhe, Amol 21 June 2021 (has links)
No description available.
198

Chemical vapor deposition of thin-film β-Ga2O3: an ultrawide bandgap semiconductor for next generation power electronics

Feng, Zixuan January 2021 (has links)
No description available.
199

Design, Fabrication and Thermal packaging of WBG power devices

Talesara, Vishank January 2022 (has links)
No description available.
200

A Comparison Between Applied Square and Ring CSRR on SIW Using the HOM Method

Nordengren, Carl, Bellbrant, Johan January 2022 (has links)
The rise of connected devices and the internet of things has increased the need for systems capable of transmitting high frequency signals wirelessly. An important part of these systems are the filters. Filters remove signals within unwanted frequency ranges. These filters can be implemented using e.g. periodic structures. In this article, we present a design for such a filter that aims to have a stopband between 3-6 [GHz] using square complementary split ring resonators (CSRR) on a substrate integrated waveguide (SIW). The design is based on a dimensional parametric study. An alternative design based on circular CSRR's is also presented and discussed. The design is validated using a commercially available software and a novel method simulating higher order of modes (HOM). The novel simulation method is shown to be advantageous due to its ability to evaluate the attenuation coefficient of a periodic filter. Additionally, a quadratic CSRR structure was shown to have a larger stopband and a similar attenuation coefficient when compared to circular CSRR structure when applied on a SIW. Furthermore, an impedance matching structure for the both CSRR filters were designed and both filters were simulated. / Förekomsten av uppkopplade enheter och användandet av sakernas internet har ökat behovet av system som kan sända högfrekventa signaler trådlöst. En viktig del av dessa system är filter, som eliminerar signaler inom oönskade frekvensband. Dessa filter kan implementeras med periodiska strukturer. I denna rapport presenterar vi en design för ett sådant filter med ett stoppband mellan 3-6 [GHz] som använder sig av kvadratiska "complementary split ring resonators" (CSRR) på en "substrate integrated waveguide" (SIW). Designen är baserad på en geometrisk parametrisk studie. En alternativ design som använder sig av cirkulära CSSRs presenteras och diskuteras. Den föreslagna designen valideras med en kommersiellt tillgänglig och en egenframställd metod vid namn "higher order of modes" (HOM) metoden. Den egenframställda simulationsmetoden visas vara fördelaktig då den är kapabel att evaluera filtrets attenuationskoefficient. Utöver detta visas att en design baserad på kvadratiska CSRRs vara fördelaktig då den genererar ett större stoppband och liknande attenuationskoefficient jämfört med den cirkulära CSSR designen vid tillämpning på en SIW. Fortsättningsvis presenteras en matchande struktur för båda filter varpå båda kompletta filter simuleras. / Kandidatexjobb i elektroteknik 2022, KTH, Stockholm

Page generated in 0.0367 seconds