• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 158
  • 12
  • 10
  • 10
  • 8
  • 7
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 245
  • 75
  • 59
  • 42
  • 41
  • 37
  • 35
  • 33
  • 31
  • 31
  • 27
  • 27
  • 26
  • 26
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Antenas planares multicamadas com materiais supercondutores e fot?nico para comunica??es m?veis

Alves, George Dennes Fernandes 04 August 2006 (has links)
Made available in DSpace on 2014-12-17T14:55:34Z (GMT). No. of bitstreams: 1 GeorgeDFA_Capa_ate_pag15.pdf: 8968407 bytes, checksum: 05f7b40d8df8312cf173aaad3ec43f83 (MD5) Previous issue date: 2006-08-04 / Recently, planar antennas have been studied due to their characteristics as well as the advantages that they offers when compared with another types of antennas. In the mobile communications area, the need for this kind of antennas have became each time bigger due to the intense increase of the mobile communications this sector. That needs of antennas which operate in multifrequency and wide bandwidth. The microstrip antennas presents narrow bandwidth due the loss in the dielectric generated by radiation. Another limitation is the radiation pattern degradation due the generation of surface waves in the substrate. In this work some used techniques to minimize the disadvantages (previously mentioned) of the use of microstrip antennas are presented, those are: substrates with PBG material - Photonic Bandgap, multilayer antennas and with stacked patches. The developed analysis in this work used the TTL - Transverse Transmission Line method in the domain of Fourier transform, that uses a component of propagation in the y direction (transverse to the direction real of propagation z), treating the general equations of electric and magnetic field as functions of Ey and Hy. One of the advantages of this method is the simplification of the field equations. therefore the amount of equations lesser must the fields in directions x and z be in function of components Ey and Hy. It will be presented an brief study of the main theories that explain the superconductivity phenomenon. The BCS theory. London Equations and Two Fluids model will be the theories that will give support the application of the superconductors in the microfita antennas. The inclusion of the superconductor patch is made using the resistive complex contour condition. This work has as objective the application of the TTL method to microstrip structures with single and multilayers of rectangular patches, to obtaining the resonance frequency and radiation pattern of each structure / Recentemente as antenas planares t?m despertado interesses devido ?s suas caracter?sticas, assim como pelas vantagens que oferecem quando comparadas com os demais tipos de antenas. Na ?rea de comunica??es m?veis a necessidade de antenas desse tipo tem-se tornado cada vez maior devido ao intenso crescimento desse setor, necessitando de antenas que operem em multifreq??ncia e em banda larga. As antenas de microfita apresentam largura de banda estreita devido ?s perdas no diel?trico geradas pela irradia??o. Outra limita??o ? a degrada??o do diagrama de irradia??o devido ? gera??o de ondas de superf?cie no substrato. Neste trabalho s?o apresentadas algumas t?cnicas usadas para tentar minimizar as desvantagens (citadas acima) do uso de antenas de microfita, sendo elas: substratos com material PBG - Photonic Bandgap, antenas em multicamadas e a utiliza??o de patches fabricados de materiais supercondutores. As an?lises desenvolvidas neste trabalho foram realizadas com a utiliza??o do m?todo LTT - Linha de Transmiss?o Transversa no dom?nio da transformada de Fourier, que utiliza uma componente de propaga??o na dire??o y (transversa ? dire??o real de propaga??o z), tratando assim as equa??es gerais dos campos el?tricos e magn?ticos em fun??es de Ey e Hy. Uma das vantagens desse m?todo ? a simplifica??o das equa??es de campo, pois a quantidade de equa??es ? menor devido os campos nas dire??es x e z ficarem em fun??o das componentes Ey e Hy. Ser? apresentado um breve estudo das principais teorias que explicam o fen?meno da supercondutividade. As teorias BCS, Equa??es de London e modelo dos Dois Fluidos ser?o as teorias que dar?o suporte a aplica??o dos supercondutores nas antenas microfita. A inclus?o do patch supercondutor ? feita utilizando-se a condi??o de contorno complexa resistiva. Este trabalho tem como objetivo a aplica??o do m?todo LTT ?s estruturas de microfita
212

Energy Cycle Optimization for Power Electronic Inverters and Motor Drives

Haque, Md Ehsanul 27 October 2022 (has links)
No description available.
213

Sources optiques fibrées solitoniques pour la spectroscopie et la microscopie non linéaires / Soliton-based fiber light sources for nonlinear spectroscopy and microscopy

Saint-Jalm, Sarah 25 November 2014 (has links)
Un des problèmes à résoudre lors de la réalisation d'un endoscope non linéaire pour des applications biomédicales concerne la propagation d'impulsions ultra courtes dans une fibre optique. Les processus non linéaires concernés nécessitent de grandes puissances d'excitation, réalisables seulement pour des impulsions de très courte durée qui sont déformés et allongés par la dispersion et les non linéarités des fibres. La plupart des techniques d'illumination fibrées pour la microscopie non linéaire emploient des systèmes de pré-compensation pour neutraliser les effets de ces phénomènes. Dans ce travail, nous explorons les possibilités offertes par la formation de solitons de grande énergie dans une fibre à bandes interdites photoniques à coeur solide. Les solitons optiques ont la propriété de conserver leur forme lors de leur propagation, et leur durée reste proche de la valeur minimum définie par la limite physique imposée par leur largeur spectrale, sans avoir besoin de recourir à un système de pré-compensation. De plus, la longueur d'onde et le retard relatif des solitons peuvent être accordés en changeant la puissance lumineuse en entrée de fibre. Plusieurs sources de lumière ont été conçues et réalisées, pour générer de nombreux contrastes non linéaires. Des images d'échantillons biologiques ont d'abord été réalisées en tirant profit de la courte durée des solitons. Puis, des mesures d'absorption transitoire ont été menées dans une configuration pompe-sonde en contrôlant le retard des solitons dans la fibre. Enfin, un montage de CRS basé sur le principe de focalisation spectrale a été réalisé, et son utilité a été démontrée en suivant un équilibre chimique. / One of the issues that has to be overcome to realize a nonlinear endoscope for biomedical applications is the propagation of ultra-short pulses in an optical fiber. Nonlinear processes require high peak powers in the focal volume in order to generate observable signals, so the pulses should be as short as possible. This makes them sensitive to the dispersion and nonlinearities of the fibers. Most of the existing techniques of ultra-short pulses fiber-delivery rely on complex pre-compensation systems to counteract these effects. In this work, we explore the possibilities offered by the generation of high-energy solitons in a custom-built solid-core photonic bandgap fiber, for nonlinear microscopy and spectroscopy. Optical solitons preserve their shape when they propagate in a fiber, and their duration remains close to the minimum value physically allowed by their bandwidth, without the need of any pre-compensation. Moreover, the wavelength and delay of the soliton can be tuned by changing the power at the input of the fiber. Several soliton-based light sources were designed and realized, generating contrast in the most prevalent nonlinear microscopy modalities. TPEF and SHG images of biological samples were first realized by taking advantage of the short duration of the solitons. By controlling the delay of the soliton, transient absorption measurements were then realized in a pump-probe configuration. Finally, the wavelength tunability of the soliton was used to generate the Stokes beam in a CRS setup based on the spectral focusing technique. The capabilities of this scheme were demonstrated by performing CRS microspectroscopy to monitor a chemical equilibrium.
214

Synthesis of Conjugated Polymers and Adhesive Properties of Thin Films in OPV Devices / Synthèse de Copolymères Conjugués et Mesure de l’Adhésion des Films Minces dans les Cellules Solaires Organiques

Gregori, Alberto 12 November 2015 (has links)
La production d’énergie avec des cellules photovoltaïques organiques (OPV) est une des applications les plus prometteuses des semi-conducteurs organiques, en raison de leur compatibilité avec les substrats flexibles permettant des produits légers, peu chers et décoratifs. Pendant longtemps, poly(3-hexylthiophène) (P3HT) a été le polymère de choix dans l’OPV combiné au [6,6]-phényl-C61-butanoate de méthyle (PC61BM) comme accepteur. Toutefois, des recherches récentes ont porté sur des polymères avec meilleures absorption et processabilité, qui peuvent assurer des rendements et des durées de vie plus élevés. Des rendements de conversion en puissance (PCE) au-dessus de 11% ont récemment été démontrés. Cette thèse rapporte sur la synthèse et la caractérisation de deux séries de polymères dits à faible bande interdite, LBGs "push-pull" (ou donneur-accepteur), constitués de l'unité donneuse 4,4-bis(2-ethylhexyl)-5,5'-dithieno[3,2-b:2',3'-d]silole (DTS) combinée au 3,6-dithiophén-2-yl-2,5-dihydro-pyrrolo[3,4-c]pyrrole-1,4-dione (DPP) ou au 5,7-di(thiényl)thiéno[3,4-b]pyrazines (DTP), comme unité acceptrice. Toutes les molécules et les polymères ont été caractérisés chimiquement et leur propriétés optoelectroniques, morphologiques et photovoltaïques ont été determinées. La série DTS-DPP a été choisie parce qu'elle est représentative d'un grand nombre de polymères LBG et a fourni un modèle facilement accessible pour évaluer l'importance de la chaîne latérale utilisée sur leur propriétés optoélectroniques et thermiques. Les premières études sur les dispositifs à base de DTS-DPP:PC61BM ont été menées, pour déterminer les propriétés photovoltaïques. Le meilleur dispositif permet d’obtenir un PCE de 1,7% avec JSC de 5,9 mA cm-2, VOC de 0,54 V et FF de 0,58. La série DTS-DTP a été choisie pour la stabilité chimique élevée des deux unités et pour la facilité de substitution des groupes latéraux. La polymérisation a partiellement abouti, en donnant seulement des oligomères. La caractérisation chimique a pu être effectuée, mais leur application dans l’OPV n'a pas été explorée. En termes de stabilité, les mécanismes de défaillance électrique des dispositifs OPV ont été étudiés, montrant une méconnaissance de leur stabilité mécanique. Les contraintes caractéristiques de chaque couche mince présentes dans les cellules solaires organiques constituent la force motrice à l’origine de la délamination des interfaces faibles ou même leur decohésion, causant une perte de l'intégrité et des performances du dispositif. Une technique pour sonder les couches ou les interfaces fragiles dans les cellules solaires polymère:fullerene est présentée. Elle a été développée par l'établissement d'un nouveau set-up pour le test pull-off, développé en utilisant un dispositif à géométrie inverse, de structure verre/ITO/ZnO/P3HT:PC61BM/PEDOT:PSS/Ag. Les dispositifs délaminés ont montré que le point le plus faible est localisé à l'interface AL/HTL, en bon accord avec la littérature. La technique a été étendue en variant les deux couches sensibles, en utilisant differents polymères LBG pour l’AL (PSBTBT et PDTSTzTz) en combinaison avec deux formulations de PEDOT:PSS, CleviosTM HTL Solar à base d'eau et un nouveau HTL Solar 2 à base de solvant organique. Une différence entre la contrainte à la rupture des dispositifs avec différentes combinaisons de AL et HTL est visible, suggérant différents chemins de fracture, tel que confirmé par la caractérisation de surface et qui pourrait être corrélée avec la différence de comportement de la couche active avec les deux formulations de PEDOT:PSS. Une autre voie adoptée, a été d’introduire une couche d’interface de copolymère à blocs amphiphile afin d'améliorer la compatibilité des deux couches. Cette stratégie n'a pas abouti et la nouvelle architecture présente une adhésion réduite. La poursuite de l’amélioration des procédés de fabrication de ces dispositifs pourrait faire de cette nouvelle architecture, une alternative viable. / Organic photovoltaic (OPV) devices are one of the most promising applications of organic semiconductors due to their compatibility with flexible plastic substrates resulting in light weight, inexpensive and decorative products. For a long time poly(3-hexylthiophene) (P3HT) has been the polymer of choice in OPV devices in combination with [6,6]-phenyl-C61-butyric acid methylester (PC61BM) as acceptor. However, recent research has focused on polymers with improved absorbance and processability that can ensure higher efficiencies and longer lifetimes (Low BandGap polymers (LBGs)). This has been fully demonstrated with a power conversion efficiency (PCE) above 11%. This thesis reports synthesis and characterization of two series of so-called “push-pull” (or donor-acceptor) LBGs based on the donor unit 4,4′-bis(2-ethylhexyl)-5,5’-dithieno[3,2-b:2′,3′-d]silole (DTS) and either 3,6-dithiophen-2-yl-2, 5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (DPP) or 5,7-di(thienyl)thieno[3,4-b]pyrazines (DTP), as acceptor unit. All π-conjugated molecules and polymers were characterized by chemical investigation and their optoelectronic, morphological, and photovoltaic properties are reported. The DTS-DPP series was chosen because representative of a large number of LBG polymers and provided an easily accessible and useful template to discover the importance of the type of side-chain used on the polymer optoelectronic and thermal properties. First studies on DTS-DPP:PC61BM devices have been conducted, in order to investigate any effect on their photovoltaic properties. The best device obtained had a PCE of 1.7% with JSC of 5.9 mA•cm-2, VOC of 0.54 V and FF of 0.58. The DTS-DTP series was chosen for the high stability of the two units and for the ease of substitution of the side-groups. The synthesis was partially successful and only oligomers were obtained. Nonetheless, chemical characterization was performed but their application in OPV was not explored. In terms of device stability, the electrical failure mechanisms in OPV devices have been investigated, while little is known about their mechanical stability. The characteristic thin film stresses of each layer present in organic solar cells, in combination with other possible fabrication, handling and operational stresses, provide the mechanical driving force for delamination of weak interfaces or even their de-cohesion, leading to a loss of device integrity and performance. A technique to probe weak layers or interfaces in inverted polymer:fullerene solar cells is presented. It was developed by establishing a new set-up for the pull-off test. The technique was developed using inverted device, with the structure glass/ITO/ZnO/P3HT:PC61BM/PEDOT:PSS/Ag. The delaminated devices showed that the weakest point was localized at the active layer/hole transporting layer interface, in good agreement with the literature. The technique was extended varying both sensitive layers, using different p-type low bandgap (co)polymers for the active layer (PSBTBT and PDTSTzTz) in combination with two different PEDOT:PSS formulations, the water based CleviosTM HTL Solar and a new organic solvent based HTL Solar 2. The half-devices produced upon destructive testing have been characterized by contact angle measurement, AFM and XPS to locate the fracture point. A difference in the stress at break for devices made with different combinations of active and hole transporting layers is visible, suggesting different fracture paths, as confirmed by surface characterization and could be correlated to the different behavior of the active layer with the two PEDOT:PSS formulations. Another solution adopted, it had been the introduction of amphiphilic block-copolymer interlayer to enhance the compatibility of the two layers. This strategy was not successful and the new architecture showed reduced adhesion strength. Further development of device processing could make this new architecture a viable alternative.
215

Two-Dimensional Photonic Crystals in InP-based Materials

Mulot, Mikaël January 2004 (has links)
Photonic crystals (PhCs) are structures periodic in thedielectric constant. They exhibit a photonic bandgap, i.e., arange of wavelengths for which light propagation is forbidden.Engineering of defects in the PhC lattice offers new ways toconfine and guide light. PhCs have been manufactured usingsemiconductors and other material technologies. This thesisfocuses on two-dimensional PhCs etched in InP-based materials.Only recently, such structures were identified as promisingcandidates for the realization of novel and advanced functionsfor optical communication applications. The primary focus was on fabrication and characterization ofPhC structures in the InP/GaInAsP/InP material system. Thedemands on fabrication are very high: holes as small as100-300nm in diameter have to be etched at least as deep as 2µm. Thus, different etch processes had to be explored andspecifically developed for InP. We have implemented an etchingprocess based on Ar/Cl2chemically assisted ion beam etching (CAIBE), thatrepresents the state of the art PhC etching in InP. Different building blocks were manufactured using thisprocess. A transmission loss of 10dB/mm for a PhC waveguide, areflection of 96.5% for a 4-row mirror and a record qualityfactor of 310 for a 1D cavity were achieved for this materialsystem. With an etch depth of 4.5 µm, optical loss wasfound to be close to the intrinsic limit. PhC-based opticalfilters were demonstrated using (a) a Fabry-Pérot cavityinserted in a PhC waveguide and (b) a contra-directionalcoupler. Lag effect in CAIBE was utilized positively to realizehigh quality PhC taper sections. Using a PhC taper, a couplingefficiency of 70% was demonstrated from a standard ridgewaveguide to a single line defect PhC waveguide. During the course of this work, InP membrane technology wasdeveloped and a Fabry-Pérot cavity with a quality factorof 3200 was demonstrated. Keywords:photonic crystals, photonic bandgap materials,indium phosphide, dry etching, chemically assisted ion beametching, reactive ion etching, electron beam lithography,photonic integrated circuits, optical waveguides, resonantcavities, optical filtering, finite difference time domain,plane wave expansion.
216

InP-based photonic crystals : Processing, Material properties and Dispersion effects

Berrier, Audrey January 2008 (has links)
Photonic crystals (PhCs) are periodic dielectric structures that exhibit a photonic bandgap, i.e., a range of wavelength for which light propagation is forbidden. The special band structure related dispersion properties offer a realm of novel functionalities and interesting physical phenomena. PhCs have been manufactured using semiconductors and other material technologies. However, InP-based materials are the main choice for active devices at optical communication wavelengths. This thesis focuses on two-dimensional PhCs in the InP/GaInAsP/InP material system and addresses their fabrication technology and their physical properties covering both material issues and light propagation aspects. Ar/Cl2 chemically assisted ion beam etching was used to etch the photonic crystals. The etching characteristics including feature size dependent etching phenomena were experimentally determined and the underlying etching mechanisms are explained. For the etched PhC holes, aspect ratios around 20 were achieved, with a maximum etch depth of 5 microns for a hole diameter of 300 nm. Optical losses in photonic crystal devices were addressed both in terms of vertical confinement and hole shape and depth. The work also demonstrated that dry etching has a major impact on the properties of the photonic crystal material. The surface Fermi level at the etched hole sidewalls was found to be pinned at 0.12 eV below the conduction band minimum. This is shown to have important consequences on carrier transport. It is also found that, for an InGaAsP quantum well, the surface recombination velocity increases (non-linearly) by more than one order of magnitude as the etch duration is increased, providing evidence for accumulation of sidewall damage. A model based on sputtering theory is developed to qualitatively explain the development of damage. The physics of dispersive phenomena in PhC structures is investigated experimentally and theoretically. Negative refraction was experimentally demonstrated at optical wavelengths, and applied for light focusing. Fourier optics was used to experimentally explore the issue of coupling to Bloch modes inside the PhC slab and to experimentally determine the curvature of the band structure. Finally, dispersive phenomena were used in coupled-cavity waveguides to achieve a slow light regime with a group index of more than 180 and a group velocity dispersion up to 10^7 times that of a conventional fiber. / QC 20100712
217

Silicon-germanium devices and circuits for high temperature applications

Thomas, Dylan Buxton 08 April 2010 (has links)
Using bandgap engineering, silicon-germanium (SiGe) BiCMOS technology effectively combines III-V transistor performance with the cost and integration advantages associated with CMOS manufacturing. The suitability of SiGe technology for cryogenic and radiation-intense environments is well known, yet SiGe has been generally overlooked for applications involving extreme high temperature operation. This work is an investigation into the potential capabilities of SiGe technology for operation up to 300°C, including the development of packaging and testing procedures to enable the necessary measurements. At the device level, SiGe heterojunction bipolar transistors (HBTs), field-effect transistors (FETs), and resistors are verified to maintain acceptable functionality across the temperature range, laying the foundation for high temperature circuit design. This work also includes the characterization of existing bandgap references circuits, redesign for high temperature operation, validation, and further optimization recommendations. In addition, the performance of temperature sensor, operational amplifier, and output buffer circuits under extreme high temperature conditions is presented. To the author's knowledge, this work represents the first demonstration of functional circuits from a SiGe technology platform in ambient temperatures up to 300°C; furthermore, the optimized bandgap reference presented in this work is believed to show the best performance recorded across a 500°C range in a bulk-silicon technology platform.
218

All-Fiber Sensing Techniques For Structural Health Monitoring And Other Applications

Madhav, Kalaga Venu 09 1900 (has links)
In this thesis, we explore the four aspects of fiber Bragg grating sensors: mathematical modeling of Fiber Bragg Grating response/spectral characteristics, fabrication using phase mask, application and interrogation. Applications of fiber Bragg gratings, also known as in-fiber gratings, with emphasis on their sensing capabilities, interrogation of an array of sensors and their performance in structural health monitoring scenario are documented. First, we study the process of photosensitivity phenomenon in glasses, in particular GeO2:SiO2 glasses. For mathematical modeling we consider the 1-D refractive index profile along the propagation axis of an optical fiber drawn from the preform of such glasses. These 1-D index structures exhibit a bandgap for propagation along the fiber axis. We show how the bandgap is dependent on the two structural parameters: index periodicity and effective refractive index. The mathematical model provides the characteristics of three sensor parameters -resonance wavelength also known as the Bragg wavelength (λB ), filter bandwidth (ΔλB ), and reflectivity (R). We show that the evolution of the index structure in germanosilicate glasses is dependent on the inscription parameters such as exposure time, intensity of the laser used for inscribing, the interference pattern, and coherence of the laser system. In particular, a phase mask is used as the diffffacting element to generate the required interference pattern, that is exposed on the photosensitive fiber. We present a mathematical model of the electromagnetic diffraction pattern behind the phase mask and study the effect of the limited coherence of the writing laser on the interference pattern produced by the diffracting beams from the mask. Next, we demostrate the sensing capabilities of the fiber Bragg gratings for measuring strain, temperature and magnetic fields. We report linearity of 99.7% and sensitivity of 10.35pm/◦C for the grating temperature sensor. An array of gratings assigned with non-overlapping spectral windows is inscribed in a single fiber and applied for distributed sensing of structural health monitoring of an aircraft’s composite air-brake panel. The performance of these sensors is compared with the industry standard resistance foil gauges. We report good agreement between the two gauges (FBG and RSG). In some applications it is more desirable to know the spectral content, rather than the magnitude of perturbation. Fiber Bragg gratings sensors can be used to track events that occur in a very small span of time and contain high frequencies. Such applications demand very high speed wavelength demodulation methods. We present two interrogation techniques: wavelength-shift time-stamping (WSTS) and reflectivity division multiplexing (RDM). WSTS interrogation method employs the multiple threshold-crossing technique to quantize the sensor grating fluctuations and in the process produces the time stamps at every level-cross. The time-stamps are assembled and with the a priori knowledge of the threshold levels, the strain signal is reconstructed. The RDM methodology is an extension of the WSTS model to address multiple sensors. We show that by assigning unique reflectivities to each of the sensors in an array, the time-stamps from each of the sensors can be tagged. The time-stamps are collected by virtue of their corresponding pulse heights, and assembled to reconstruct the strain signal of each of the array sensor. We demonstrate that the two interrogation techniques are self-referencing systems, i.e., the speed at which the signals are reconstructed is instantaneous or as fast as the signal itself.
219

Two-Dimensional Photonic Crystals in InP-based Materials

Mulot, Mikaël January 2004 (has links)
<p>Photonic crystals (PhCs) are structures periodic in thedielectric constant. They exhibit a photonic bandgap, i.e., arange of wavelengths for which light propagation is forbidden.Engineering of defects in the PhC lattice offers new ways toconfine and guide light. PhCs have been manufactured usingsemiconductors and other material technologies. This thesisfocuses on two-dimensional PhCs etched in InP-based materials.Only recently, such structures were identified as promisingcandidates for the realization of novel and advanced functionsfor optical communication applications.</p><p>The primary focus was on fabrication and characterization ofPhC structures in the InP/GaInAsP/InP material system. Thedemands on fabrication are very high: holes as small as100-300nm in diameter have to be etched at least as deep as 2µm. Thus, different etch processes had to be explored andspecifically developed for InP. We have implemented an etchingprocess based on Ar/Cl<sub>2</sub>chemically assisted ion beam etching (CAIBE), thatrepresents the state of the art PhC etching in InP.</p><p>Different building blocks were manufactured using thisprocess. A transmission loss of 10dB/mm for a PhC waveguide, areflection of 96.5% for a 4-row mirror and a record qualityfactor of 310 for a 1D cavity were achieved for this materialsystem. With an etch depth of 4.5 µm, optical loss wasfound to be close to the intrinsic limit. PhC-based opticalfilters were demonstrated using (a) a Fabry-Pérot cavityinserted in a PhC waveguide and (b) a contra-directionalcoupler. Lag effect in CAIBE was utilized positively to realizehigh quality PhC taper sections. Using a PhC taper, a couplingefficiency of 70% was demonstrated from a standard ridgewaveguide to a single line defect PhC waveguide.</p><p>During the course of this work, InP membrane technology wasdeveloped and a Fabry-Pérot cavity with a quality factorof 3200 was demonstrated.</p><p><b>Keywords:</b>photonic crystals, photonic bandgap materials,indium phosphide, dry etching, chemically assisted ion beametching, reactive ion etching, electron beam lithography,photonic integrated circuits, optical waveguides, resonantcavities, optical filtering, finite difference time domain,plane wave expansion.</p>
220

Organic modification of Metal/Semiconductor contacts

Henry Alberto, Mendez Pinzon 10 August 2006 (has links) (PDF)
In the present work a Metal / organic / inorganic semiconductor hybrid heterostructure (Ag / DiMe−PTCDI / GaAs) was built under UHV conditions and characterised in situ. The aim was to investigate the influence of the organic layer in the surface properties of GaAs(100) and in the electrical response of organic−modified Ag / GaAs Schottky diodes. The device was tested by combining surface−sensitive techniques (Photoemission spectroscopy and NEXAFS) with electrical measurements (current−voltage, capacitance−voltage, impedance and charge transient spectroscopies). Core level examination by PES confirms removal of native oxide layers on sulphur passivated (S−GaAs) and hydrogen plasma treated GaAs(100) (H+GaAs) surfaces. Additional deposition of ultrathin layers of DiMe−PTCDI may lead to a reduction of the surface defects density and thereby to an improvement of the electronic properties of GaAs. The energy level alignment through the heterostructure was deduced by combining UPS and I−V measurements. This allows fitting of the I−V characteristics with electron as majority carriers injected over a barrier by thermionic emission as a primary event. For thin organic layers (below 8 nm thickness) several techniques (UPS, I−V, C−V, QTS and AFM) show non homogeneous layer growth, leading to formation of voids. The coverage of the H+GaAs substrate as a function of the nominal thickness of DiMe−PTCDI was assessed via C−V measurements assuming a voltage independent capacitance of the organic layer. The frequency response of the device was evaluated through C−V and impedance measurements in the range 1 kHz−1 MHz. The almost independent behaviour of the capacitance in the measured frequency range confirmed the assumption of a near geometrical capacitor, which was used for modelling the impedance with an equivalent circuit of seven components. From there it was found a predominance of the space charge region impedance, so that A.C. conduction can only takes place through the parallel conductance, with a significant contribution of the back contact. Additionally a non linear behaviour of the organic layer resistance probably due to the presence of traps was deduced. ( ) ω ' R QTS measurements performed on the heterostructure showed the presence of two relaxations induced by deposition of the organic layer. The first one is attributed to the presence of a deep trap probably located at the metal / organic interface, while the second one has very small activation energy ( ~ 20 meV) which are probably due to disorder at the organic film. Those processes with small activation energies proved to be determinant for fitting the I−V characteristics of DiMe−PTCDI organic modified diodes using the expressions of a trapped charge limited current regime TCLC. Such a model was the best analytical approach found for fitting the I−V response. Further improving probably will involve implementation of numerical calculations or additional considerations in the physics of the device.

Page generated in 0.0266 seconds