• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 6
  • 2
  • Tagged with
  • 21
  • 16
  • 15
  • 15
  • 10
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Exercise-induced changes in basal ganglia volume and their relation to cognitive performance

Becker, Linda, Kutz, D. F., Voelcker-Rehage, Claudia 14 November 2016 (has links)
Physical activity, especially cardiovascular fitness training, has been shown to enhance cognitive performance and to counteract age-related cognitive decline1-5. Furthermore, regular physical activity has been demonstrated to diminish age-related volume-shrinkage in several brain regions particularly in the prefrontal cortex and hippocampus6-10. In the same vein, physical activity and high levels of cardiovascular fitness seem to enhance neurocognition during childhood11-13. In this context, the basal ganglia and its components, the caudate nucleus, the putamen and the globus pallidus, are of special interest as animal research indicates that exercise also seems to influence the molecular architecture and the metabolic capacity of the basal ganglia14,15. Besides their fundamental role in motor execution16, the basal ganglia are also involved in many cognitive functions like mental flexibility17, task-switching ability18 and cognitive control19. Furthermore, age-related disorders like Parkinson’s disease are related to a decline in the dopamine circuits of the basal ganglia20,21. The striatum is the input nucleus of the basal ganglia and is composed of caudate nucleus and putamen. The pars interna of the globus pallidus is (together with the substantia nigra pars reticulata) the output region of the basal ganglia and conveys information from the striatum to the thalamus and back to the frontal areas22. The striatum, which is essential for cognitive flexibility and attentional control, shows an increase during childhood and adolescence23,24 and a particularly rapid and early age-related change9,25 in older adults. Furthermore, the described cognitive functions are essential for academic success of children and young adults. Thus, it is of particular interest to find appropriate interventions that could mitigate both the volume-shrinkage and the (presumably) related cognitive decline in older adults and/or that could support academic success in children. In this review, we will summarize research that investigated whether physical activity has the potential to be such an intervention. First, we will show that neuroplasticity in the basal ganglia is possible in principle. Second, we will report studies where the relationship between physical fitness level and volume of the basal ganglia and its relation to cognitive performance were investigated. Besides cross-sectional studies, we will report studies that investigated exercise-induced changes in the volume of the basal ganglia and related changes in cognitive performance after long-term fitness interventions.
12

Das dopaminerge System im Gehirn des Menschen: molekulare Grundlagen, Anatomie, Physiologie und Pathologie

Rillich, Jan 02 February 2023 (has links)
Diese Arbeit ist Teil des Toxnetz-Projekts des Fachbereichs Toxikologie an der Universität Leipzig und behandelt Themen rund um den Botenstoff Dopamin. Es wurden hierfür Texte und Essays zu Funktionen, Mechanismen, Hirnarealen und Krankheitsbildern geschrieben, die den Studierenden der Toxikologie als Lernhilfe und Wissensspeicher dienen sollen. Ausführliche Erläuterungen finden sich zu den vier dopaminergen Projektionsbahnen und ihren Interaktionen mit den Basalganglien, dem präfrontalen Cortex, dem Hippocampus und der Amygdala. Die Rolle von Dopamin bei Motivation, Belohnung, Lernen, Gedächtnisbildung und Aufmerksamkeit wird ebenso beleuchtet, wie die bei der Parkinson Krankheit, Schizophrenie, ADHS und Drogensucht.
13

Timing and expectation of reward: a neuro-computational model of the afferents to the ventral tegmental area

Vitay, Julien, Hamker, Fred H. January 2014 (has links)
Neural activity in dopaminergic areas such as the ventral tegmental area is influenced by timing processes, in particular by the temporal expectation of rewards during Pavlovian conditioning. Receipt of a reward at the expected time allows to compute reward-prediction errors which can drive learning in motor or cognitive structures. Reciprocally, dopamine plays an important role in the timing of external events. Several models of the dopaminergic system exist, but the substrate of temporal learning is rather unclear. In this article, we propose a neuro-computational model of the afferent network to the ventral tegmental area, including the lateral hypothalamus, the pedunculopontine nucleus, the amygdala, the ventromedial prefrontal cortex, the ventral basal ganglia (including the nucleus accumbens and the ventral pallidum), as well as the lateral habenula and the rostromedial tegmental nucleus. Based on a plausible connectivity and realistic learning rules, this neuro-computational model reproduces several experimental observations, such as the progressive cancelation of dopaminergic bursts at reward delivery, the appearance of bursts at the onset of reward-predicting cues or the influence of reward magnitude on activity in the amygdala and ventral tegmental area. While associative learning occurs primarily in the amygdala, learning of the temporal relationship between the cue and the associated reward is implemented as a dopamine-modulated coincidence detection mechanism in the nucleus accumbens.
14

A perspective on neural and cognitive mechanisms of error commission

Hoffmann, Sven, Beste, Christian 28 July 2015 (has links) (PDF)
Behavioral adaptation and cognitive control are crucial for goal-reaching behaviors. Every creature is ubiquitously faced with choices between behavioral alternatives. Common sense suggests that errors are an important source of information in the regulation of such processes. Several theories exist regarding cognitive control and the processing of undesired outcomes. However, most of these models focus on the consequences of an error, and less attention has been paid to the mechanisms that underlie the commissioning of an error. In this article, we present an integrative review of neuro-cognitive models that detail the determinants of the occurrence of response errors. The factors that may determine the likelihood of committing errors are likely related to the stability of task-representations in prefrontal networks, attentional selection mechanisms and mechanisms of action selection in basal ganglia circuits. An important conclusion is that the likelihood of committing an error is not stable over time but rather changes depending on the interplay of different functional neuro-anatomical and neuro-biological systems. We describe factors that might determine the time-course of cognitive control and the need to adapt behavior following response errors. Finally, we outline the mechanisms that may proof useful for predicting the outcomes of cognitive control and the emergence of response errors in future research.
15

Multidisziplinäre Untersuchung dopaminerger Mechanismen der repetitiven Störungen anhand von zwei Rattenmodellen dopaminerger Dysregulation

Reinel, Claudia 11 December 2015 (has links)
Repetitive Störungen manifestieren sich als Leitsymptom in der Zwangsstörung und dem Tourette-Syndrom. Die Symptome werden als enthemmte Stereotypien eines desinhibierten Basalganglien-thalamo-kortikalen (BGTC) Regelkreises verstanden. Überdies wird als neurochemisches Korrelat ein dysregulatives Dopamin (DA)-System innerhalb dieser Kerngebiete nahegelegt, welches über ein überaktives Dopamintransporter (DAT)-System erklärt werden könnte. In der Induktion repetitiver Erkrankungen ist die Interaktion des BGTC Regelkreises und des DA-Systems dennoch unklar. In der vorliegenden Arbeit wurden daher anhand von zwei Pathologiemodellen (Ratte) mit unterschiedlich induzierter Dysregulation des DA-Systems (transgen versus pharmakologisch) die dysfunktionalen Einheiten im BGTC Regelkreises vergleichend untersucht. Im transgenen Modell führte die zentralnervöse DAT-Überexpression: (1) zu einer verstärkten Genexpression des vesikulären Monoamintransporter 2 (VMAT2) sowie des DA-Rezeptors 1 und DA–Rezeptors 2 (DRD1, DRD2), (2) zu einem reduzierten DA-Spiegel mit erhöhter DA-Umsatzrate und veränderten serotonergen- und GABAergen-System, und (3) zu perserverativen Verhalten. Im Gegensatz dazu zeigte die chronische Applikation mit dem D2-Agonisten Quinpirol im pharmakologischen Modell: (1) eine Reduktion des DAT, VMAT2 und DRD2, (2) eine reduzierte DA-Umsatzrate und (3) zwanghaftes Kontrollverhalten. Die Ergebnisse legen nahe, dass die unterschiedlichen klinischen Subtypen der Zwangsstörung unterschiedlichen neurobiologischen Veränderungen zugrunde liegen könnten. Ferner bietet das hier vorgestellte transgene Modell erfolgsversprechende Ansatzpunkte um als neues valides Tiermodell der repetitiven Störungen etabliert zu werden. / Repetitive disorders manifest as the cardinal symptom in obsessive-compulsive disorder and Tourette syndrome. The symptoms are understood as disinhibited stereotypies of a basal ganglia-thalamo-cortical (BGTC) circuit. Furthermore, it is suggested that a dysregulated dopamine (DA) system within this circuit is the underlying neurochemical correlate which could be explained by an overactive dopamine transporter (DAT). At this point, it is still unclear how the BGTC circuit and the DA system interact in the induction of repetitive disorders. Therefore we investigated the dysfunctional unities within the BGTC circuit by comparing two pathological rat models (transgenic versus pharmacologic) with different induced dopaminergic dysregulation. The DAT overexpressing rat model showed: (1) increased gene expression of the vesicular monoamine transporter 2 (VMAT2), DA receptor D1 (DRD1) and DA receptor D2 (DRD2), (2) lower levels of DA with an increased DA metabolism and alterations in the serotonin- and GABA system, and (3) perseverative behavior. In contrast, the chronic application of the D2 receptor agonist quinpirole resulted in the pharmacologic model in: (1) lower gene expressions of the DAT, VMAT2 and DRD2, (2) reduced DA-turnover and (3) compulsive control behavior. These results suggest that different clinical subtypes of obsessive-compulsive disorder caused by different neurobiological alterations. In addition, the presented transgenic model provides the opportunity to be established as a new valid animal model of repetitive disorders.
16

Kir2 potassium channels in rat striatum are strategically localized to control basal ganglia function

Prüß, Harald 14 April 2004 (has links)
Der Morbus Parkinson ist die häufigste Erkrankung der Basalganglien und wird durch einen Abbau der dopaminergen Neurone in der Substantia nigra des Mittelhirns verursacht. Um Wege zu finden, die Nebenwirkungen bisheriger Therapien dieser Erkrankung zu vermeiden, sollten neue Angriffspunkte für pharmakologische Interventionen gesucht werden. Prinzipiell ist dabei jeder Schritt einer Signaltransduktions-Kaskade zu prüfen. Dazu gehören präsynaptische Transmitterfreisetzung, G-Protein-gesteuerte Effektormechanismen oder Veränderungen prä- und postsynaptischer Potentiale, wie sie durch ein bestimmtes lokales Ionenkanalmuster festgelegt werden. Aufgrund ihrer enormen molekularen Vielfalt bei gleichzeitig weiter, aber spezifischer Verbreitung, stellen Kaliumkanäle interessante Angriffspunkte für neue therapeutische Strategien dar. Die vorliegende Arbeit untersucht die zelluläre und subzelluläre Verteilung aller Mitglieder der Kir2-Familie, einer Gruppe von Proteinen, die einwärts-gleichrichtende Kaliumkanäle bildet. Zu diesem Zweck wurden polyklonale, monospezifische, affinitätsgereinigte Antikörper gegen den wenig konservierten carboxyterminalen Anteil der Kir2.1-, Kir2.2-, Kir2.3- und Kir2.4-Proteine hergestellt. Alle Untereinheiten der Kir2-Familie wurden an den Somata und Dendriten der meisten striatalen Neurone nachgewiesen. Zwei dieser Kanäle zeigten jedoch ein inhomogenes Verteilungsmuster: Das "patch"-Kompartiment des Striatums wurde von der Expression des Kir2.3-Kanals ausgespart, und das Kir2.4-Protein wurde am stärksten auf den tonisch aktiven, cholinergen striatalen Interneuronen exprimiert. Diese beiden Strukturen stellen die Schlüsselstellen für die Kontrolle und Regulation der dopaminergen und cholinergen Transmission im Striatum dar, weswegen ihnen eine zentrale Rolle für die efferenten Projektionen der Basalganglien zukommt. Die nachgewiesene heterogene Lokalisation der Kir2.3- und Kir2.4-Untereinheit an diesen strategisch relevanten Strukturen macht diese Kanäle zu viel versprechenden Angriffspunkten für zukünftige Pharmakotherapien. / Parkinson’s disease is the most frequent movement disorder caused by loss of dopaminergic neurons in the midbrain. Intentions to avoid side effects of conventional therapy should aim to identify additional targets for potential pharmacological intervention. In principle, every step of a signal transduction cascade, such as presynaptic transmitter release, type and occupation of postsynaptic receptors, G protein-mediated effector mechanisms, and the alterations of pre- or postsynaptic potentials as determined by the local ion channel composition, have to be considered. Due to their diversity and their widespread but distinct localizations, potassium channels represent interesting candidates for new therapeutic strategies. As a first step, the present report aimed to study the cellular and subcellular distribution of the individual members of the Kir2 family in the striatum, a group of proteins forming inwardly rectifying potassium channels. For this purpose polyclonal, monospecific, affinity purified antibodies against the less conserved carboxyterminal sequences from the Kir2.1, Kir2.2, Kir2.3, and Kir2.4 proteins were prepared. All subunits of the Kir2 family were detected on somata and dendrites of most striatal neurons. However, the distribution of two of them was not homogeneous. Striatal patch areas were largely devoid of the Kir2.3 protein, and the Kir2.4 subunit was most prominently expressed on the tonically active, giant cholinergic interneurons of the striatum. These two structures are among the key players in regulating dopaminergic and cholinergic neurotransmission within the striatum, and therefore are of major importance for the output of the basal ganglia. The heterogeneous localization of the Kir2.3 and the Kir2.4 subunits with respect to these strategic structures pinpoints these channel proteins as promising targets for future pharmacological efforts.
17

Striatal disorders dissociate mechanisms of enhanced and impaired response selection — Evidence from cognitive neurophysiology and computational modelling

Beste, Christian, Humphries, Mark, Saft, Carsten 15 July 2014 (has links) (PDF)
Paradoxically enhanced cognitive processes in neurological disorders provide vital clues to understanding neural function. However, what determines whether the neurological damage is impairing or enhancing is unclear. Here we use the performance of patients with two disorders of the striatum to dissociate mechanisms underlying cognitive enhancement and impairment resulting from damage to the same system. In a two-choice decision task, Huntington\'s disease patients were faster and less error prone than controls, yet a patient with the rare condition of benign hereditary chorea (BHC) was both slower and more error prone. EEG recordings confirmed significant differences in neural processing between the groups. Analysis of a computational model revealed that the common loss of connectivity between striatal neurons in BHC and Huntington\'s disease impairs response selection, but the increased sensitivity of NMDA receptors in Huntington\'s disease potentially enhances response selection. Crucially the model shows that there is a critical threshold for increased sensitivity: below that threshold, impaired response selection results. Our data and model thus predict that specific striatal malfunctions can contribute to either impaired or enhanced selection, and provide clues to solving the paradox of how Huntington\'s disease can lead to both impaired and enhanced cognitive processes.
18

Striatal disorders dissociate mechanisms of enhanced and impaired response selection — Evidence from cognitive neurophysiology and computational modelling

Beste, Christian, Humphries, Mark, Saft, Carsten 15 July 2014 (has links)
Paradoxically enhanced cognitive processes in neurological disorders provide vital clues to understanding neural function. However, what determines whether the neurological damage is impairing or enhancing is unclear. Here we use the performance of patients with two disorders of the striatum to dissociate mechanisms underlying cognitive enhancement and impairment resulting from damage to the same system. In a two-choice decision task, Huntington\'s disease patients were faster and less error prone than controls, yet a patient with the rare condition of benign hereditary chorea (BHC) was both slower and more error prone. EEG recordings confirmed significant differences in neural processing between the groups. Analysis of a computational model revealed that the common loss of connectivity between striatal neurons in BHC and Huntington\'s disease impairs response selection, but the increased sensitivity of NMDA receptors in Huntington\'s disease potentially enhances response selection. Crucially the model shows that there is a critical threshold for increased sensitivity: below that threshold, impaired response selection results. Our data and model thus predict that specific striatal malfunctions can contribute to either impaired or enhanced selection, and provide clues to solving the paradox of how Huntington\'s disease can lead to both impaired and enhanced cognitive processes.
19

A perspective on neural and cognitive mechanisms of error commission

Hoffmann, Sven, Beste, Christian 28 July 2015 (has links)
Behavioral adaptation and cognitive control are crucial for goal-reaching behaviors. Every creature is ubiquitously faced with choices between behavioral alternatives. Common sense suggests that errors are an important source of information in the regulation of such processes. Several theories exist regarding cognitive control and the processing of undesired outcomes. However, most of these models focus on the consequences of an error, and less attention has been paid to the mechanisms that underlie the commissioning of an error. In this article, we present an integrative review of neuro-cognitive models that detail the determinants of the occurrence of response errors. The factors that may determine the likelihood of committing errors are likely related to the stability of task-representations in prefrontal networks, attentional selection mechanisms and mechanisms of action selection in basal ganglia circuits. An important conclusion is that the likelihood of committing an error is not stable over time but rather changes depending on the interplay of different functional neuro-anatomical and neuro-biological systems. We describe factors that might determine the time-course of cognitive control and the need to adapt behavior following response errors. Finally, we outline the mechanisms that may proof useful for predicting the outcomes of cognitive control and the emergence of response errors in future research.
20

Differenzierung motorischer kortiko-subkortikaler Netzwerke mit funktioneller Magnetresonanztomographie / Human Corticostriatal Motor Circuits: Visualization by Functional Magnetic Resonance Imaging

August, Julia Margarethe 29 August 2012 (has links)
No description available.

Page generated in 0.2277 seconds