• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Untersuchungen von Steinpapier in Kombination mit veganen Druckfarben: Bachelorarbeit

Friedrichs, Melina 16 June 2022 (has links)
Der immer stärker ansteigende Bedarf an Papier und die damit verbundenen Schäden für die Umwelt und das Klima zwingen immer mehr Menschen zu einem Umdenken. Auch die Druckbranche ist mit den Themen Nachhaltigkeit, Veganismus und Umweltbewusstsein konfrontiert. Vor allem im Bereich der Papieralternativen wird viel geforscht und sie erlangen eine immer größer werdende Beliebtheit bei den Endverbrauchern. Eine vorwiegend unbekanntere Alternative stellt hierbei das Steinpapier dar. Ein Werkstoff, der vollends auf die Nutzung von Bäumen und pflanzlichen Fasern verzichtet. Im Rahmen dieser Arbeit, soll die Bedruckbarkeit sowie weitere Eigenschaften der Weiterverarbeitung und Merkmale, die das Produkt Steinpapier kennzeichnen, in Kombination mit veganen Farben geprüft und die erstellten Ergebnisse ausgewertet werden. In Verbindung mit dem derzeitig auftretenden Trend der Nachhaltigkeit bildet den Abschluss der Arbeit die Untersuchung des Nachhaltigkeitsfaktors von Steinpapier im Vergleich mit dem der konventionellen Papiere.:1. Einleitung 1.1 Motivation des Themas der Arbeit 1.2 Zielsetzung und methodisches Vorgehen 1.3 Aufbau der Arbeit 1.4 Rahmenbedingungen 1.5 Gestaltungshinweise 2. Exkurs: Papier und Druckfarbe 2.1 Definition von Papier nach DIN 2.2 Bestandteile 2.3 Anwendungen 2.4 Papierkategorien nach MedienStandard Druck 2.5 Papierbedarf und aktuelle Zahlen 2.6 Alternative Papierrohstoffe 2.7 Definition Druckfarbe 2.8 Aufbau 3. Steinpapier 3.1 Geschichte 3.2 Struktur 3.6 Herstellung des Steinpapiers 3.7 Auszeichnende Eigenschaften von Steinpapier 3.8 Zertifizierungen 4. Vegane Druckfarbe 4.1 Definition Vegan im Allgemeinen Gebrauch 4.2 Nicht vegane Produkte aus der Druckbranche 4.3 Unterscheidung zu Nicht-veganen Druckfarben 4.4 Definition Vegan in Verwendung mit dieser Arbeit 5. Vorstellung und Durchführung der Prüfungen 5.1 Bedruckbarkeitsprüfung und optische Kennzahlen 5.2 Festigkeitsprüfungen 5.3 Lichtbeständigkeit 6. Auswertung der Prüfungsergebnisse 6.1 Bedruckbarkeitsprüfung und optische Kennzahlen 6.2 Festigkeitsprüfung 6.3 Lichtbeständigkeit 6.4 Fehlerbetrachtung 6.5 Auswertung der aufgestellten Thesen 7. Steinpapier und Nachhaltigkeit 7.1 Allgemeingültige Definition von Nachhaltigkeit 7.2 Bedeutung von Nachhaltigkeit in der Druckbranche 7.3 Nachhaltigkeit von Steinpapier 7.4 Experteninterview Nelson – Was sagt ein Entsorgungsunternehmen zu Steinpapier? 7.5 Finale Beurteilung der Nachhaltigkeit 8. Fazit 8.1 Zusammenfassung 8.2 Ausblick
2

Shapeable microelectronics

Karnaushenko, Daniil 04 July 2016 (has links) (PDF)
This thesis addresses the development of materials, technologies and circuits applied for the fabrication of a new class of microelectronic devices that are relying on a three-dimensional shape variation namely shapeable microelectronics. Shapeable microelectronics has a far-reachable future in foreseeable applications that are dealing with arbitrarily shaped geometries, revolutionizing the field of neuronal implants and interfaces, mechanical prosthetics and regenerative medicine in general. Shapeable microelectronics can deterministically interface and stimulate delicate biological tissue mechanically or electrically. Applied in flexible and printable devices shapeable microelectronics can provide novel functionalities with unmatched mechanical and electrical performance. For the purpose of shapeable microelectronics, novel materials based on metallic multilayers, photopatternable organic and metal-organic polymers were synthesized. Achieved polymeric platform, being mechanically adaptable, provides possibility of a gentle automatic attachment and subsequent release of active micro-scale devices. Equipped with integrated electronic the platform provides an interface to the neural tissue, confining neural fibers and, if necessary, guiding the regeneration of the tissue with a minimal impact. The self-assembly capability of the platform enables the high yield manufacture of three-dimensionally shaped devices that are relying on geometry/stress dependent physical effects that are evolving in magnetic materials including magentostriction and shape anisotropy. Developed arrays of giant magnetoimpedance sensors and cuff implants provide a possibility to address physiological processes locally or distantly via magnetic and electric fields that are generated deep inside the organism, providing unique real time health monitoring capabilities. Fabricated on a large scale shapeable magnetosensory systems and nanostructured materials demonstrate outstanding mechanical and electrical performance. The novel, shapeable form of electronics can revolutionize the field of mechanical prosthetics, wearable devices, medical aids and commercial devices by adding novel sensory functionalities, increasing their capabilities, reducing size and power consumption.
3

Shapeable microelectronics

Karnaushenko, Daniil 08 June 2016 (has links)
This thesis addresses the development of materials, technologies and circuits applied for the fabrication of a new class of microelectronic devices that are relying on a three-dimensional shape variation namely shapeable microelectronics. Shapeable microelectronics has a far-reachable future in foreseeable applications that are dealing with arbitrarily shaped geometries, revolutionizing the field of neuronal implants and interfaces, mechanical prosthetics and regenerative medicine in general. Shapeable microelectronics can deterministically interface and stimulate delicate biological tissue mechanically or electrically. Applied in flexible and printable devices shapeable microelectronics can provide novel functionalities with unmatched mechanical and electrical performance. For the purpose of shapeable microelectronics, novel materials based on metallic multilayers, photopatternable organic and metal-organic polymers were synthesized. Achieved polymeric platform, being mechanically adaptable, provides possibility of a gentle automatic attachment and subsequent release of active micro-scale devices. Equipped with integrated electronic the platform provides an interface to the neural tissue, confining neural fibers and, if necessary, guiding the regeneration of the tissue with a minimal impact. The self-assembly capability of the platform enables the high yield manufacture of three-dimensionally shaped devices that are relying on geometry/stress dependent physical effects that are evolving in magnetic materials including magentostriction and shape anisotropy. Developed arrays of giant magnetoimpedance sensors and cuff implants provide a possibility to address physiological processes locally or distantly via magnetic and electric fields that are generated deep inside the organism, providing unique real time health monitoring capabilities. Fabricated on a large scale shapeable magnetosensory systems and nanostructured materials demonstrate outstanding mechanical and electrical performance. The novel, shapeable form of electronics can revolutionize the field of mechanical prosthetics, wearable devices, medical aids and commercial devices by adding novel sensory functionalities, increasing their capabilities, reducing size and power consumption.

Page generated in 0.0286 seconds