• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 77
  • 18
  • 11
  • 8
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 163
  • 25
  • 21
  • 17
  • 14
  • 14
  • 13
  • 13
  • 12
  • 12
  • 10
  • 10
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Principles of the draw-bend springback test

Wang, Jianfeng 30 March 2004 (has links)
No description available.
72

Principles of the draw-bend springback

Jianfeng, Wang 18 June 2004 (has links)
No description available.
73

Aero-Structural Optimization of a 5 MW Wind Turbine Rotor

Vesel, Richard W., Jr. 19 June 2012 (has links)
No description available.
74

Experimental Investigation of Turbulent Flow in a Pipe Bend using Particle Image Velocimetry

Jain, Akshay January 2017 (has links)
The turbulent flow through a 90o pipe bend is complex with secondary flow that can affect pressure drop and heat/mass transfer. The mean and unsteady flow is studied using refractive index matched two-dimensional two-component (2D2C) Particle Image Velocimetry in a single 90o bend with Rc/D = 1.5 and at Re = 34800. The measurements were performed in a closed loop using a 1-inch diameter test section that was machined out of acrylic. The flow is imaged in the symmetric plane parallel to the axial flow and at different cross sectional planes including 0.25D and 1D upstream, 10o, 20o, 70o, 80o from the bend inlet and 0.25D and 1D downstream of the bend. The axial flow accelerates on the inner wall at the inlet and then moves towards the outer wall at 40o-50o. A shear layer is formed between high velocity fluid near the outer wall and the slower moving fluid at the inner wall side in the second half of the bend. The axial turbulent kinetic energy ((u^2 ) ̅+(v^2 ) ̅) is found to be high in regions corresponding to high velocity gradient regions: (i) at the outer wall near the inlet that extends up to the outlet, (ii) near the inner wall at 40o-50o, and (iii) at the shear layer formed near the inner wall. In the cross sectional planes, two vortices are formed and have a maximum strength at 80o from the bend inlet. The cross sectional turbulent kinetic energy ((v^2 ) ̅+(w^2 ) ̅) is found to be highest on the inner wall at the 80o plane. The snapshot Proper Orthogonal Decomposition (POD) technique is used to study the unsteady flow structures within the flow. There are long and short flow structures in the upstream pipe which can be related to Very Large Scale and Large Scale Motions. The secondary flow at 20o and further downstream cross sectional planes show evidence of unsteadiness as two vortices oscillate about the symmetry axis with low frequencies of St ~ 0.07, 0.13 and higher frequency at St ~ 0.3-0.6. The low frequency oscillations can be related to Very Large Scale Motions while high frequency oscillations are related to separation of the flow on the inner wall side. Evidence of swirl switching in the high frequency range (St ~ 0.3-0.5) is found at cross sectional plane 1D downstream. / Thesis / Master of Applied Science (MASc)
75

Large Eddy Simulations of Flow and Heat Transfer in the Developing and 180° Bend Regions of Ribbed Gas Turbine Blade Internal Cooling Ducts with Rotation - Effect of Coriolis and Centrifugal Buoyancy Forces

Sewall, Evan Andrew 04 December 2005 (has links)
Increasing the turbine inlet temperature of gas turbine engines significantly increases their power output and efficiency, but it also increases the likelihood of thermal failure. Internal passages with tiny ribs are typically cast into turbine blades to cool them, and the ability to accurately predict the flow and heat transfer within these channels leads to higher design reliability and prevention of blade failure resulting from local thermal loading. Prediction of the flow through these channels is challenging, however, because the flow is highly turbulent and anisotropic, and the presence of rotational body forces further complicates the flow. Large Eddy Simulations are used to study these flows because of their ability to predict the unsteady flow effects and anisotropic turbulence more reliably than traditional RANS closure models. Calculations in a stationary duct are validated with experiments in the developing flow, fully developed, and 180° bend regions to establish the accuracy and prediction capability of the LES calculations and to aid in understanding the major flow structures encountered in a ribbed duct. It is found that most flow and heat transfer calculations come to within 10-15% of the measurements, typically showing excellent agreement in all comparisons. In the developing flow region, Coriolis effects are found to destabilize turbulence and increase heat transfer along the trailing wall (pressure side), while decreasing leading wall heat transfer by stabilizing turbulence. Coriolis forces improve flow turning in the 180° bend by shifting the shape of the separated recirculation zone at the tip of the dividing wall and increasing the mainstream flow area. In addition, turbulence is attenuated near the leading wall throughout the bend, while Coriolis forces have little effect on trailing wall turbulence in the bend. Introducing and increasing centrifugal buoyancy in the developing flow region increases trailing wall heat transfer monotonically. Along the leading wall, buoyancy increases the size of the recirculation zones, shifting the peak heat transfer to a region upstream of the rib, which decreases heat transfer at low buoyancy parameters but increases it as the buoyancy parameter is increased beyond a value of 0.3. Centrifugal buoyancy in the 180° bend initially decreases the size of the recirculation zone at the tip of the dividing wall, increasing flow area and decreasing flow impingement. At high buoyancy, however, the recirculation zone shifts to the middle of the bend, increasing flow resistance and causing strong flow impingement on the back wall. The Boussinesq approximation is used in the buoyancy calculations, but the accuracy of the approximation comes into question in the presence of large temperature differences. A variable property algorithm is developed to calculate unsteady low speed flows with large density variations resulting from large temperature differences. The algorithm is validated against two test cases: Rayleigh-Bénard convection and Poiseuille-Bénard flow. Finally, design issues in rotating ribbed ducts are considered. The fully developed assumption is discussed with regard to the developing flow region, and controlling the recirculation zone in the 180° bend is considered as a way to determine the blade tip heat transfer and pressure drop across the bend. / Ph. D.
76

Life Prediction of Composite Armor in an Unbonded Flexible Pipe

Loverich, James S. 29 April 1997 (has links)
Composite materials are under consideration for the replacement of steel helical tendons in unbonded flexible pipes utilized by the offshore oil industry. Higher strength to weight ratios and increased corrosion resistance are the primary advantages of a composite material for this application. The current study focuses on the life prediction of a PPS/AS-4 carbon fiber composite proposed for the above employment. In order to accomplish this task, the properties of the material were experimentally characterized at varying temperatures, aging times and loadings. An analytic technique was developed to predict tensile rupture behavior from bend-compression rupture data. In comparison to tensile rupture tests, bend-compression rupture data collection are uncomplicated and efficient; thus, this technique effectively simplifies and accelerates the material characterization process. The service life model for the flexible pipe composite armor was constructed with MRLife, a well established performance simulation code for material systems developed by the Materials Response Group at Virginia Tech. In order to validate MRLife for the current material, experimental data are compared to life prediction results produced by the code. MRLife was then applied to predict the life of the flexible pipe composite armor in an ocean environment. This analysis takes into account the flexible pipe structure and the environmental and mechanical loading history of an ocean service location. Several parameter studies of a flexible pipe in a hypothetical environment were conducted. These analyses highlight certain loadings and conditions which are particularly detrimental to the life of the material. / Master of Science
77

Material Characterization and Life Prediction of a Carbon Fiber/Thermoplastic Matrix Composite for Use in Non-Bonded Flexible Risers

Russell, Blair Edward 05 January 2001 (has links)
In the effort to improve oil production riser performance, new materials are being studied. In the present case, a Polymer Matrix Composite (PMC) is being considered as a replacement for carbon steel in flexible risers manufactured by Wellstream Inc., Panama City, Florida. The Materials Response Group (MRG) at Virginia Tech had the primary responsibility to develop the models for long-term behavior, especially remaining strength and life. The MRG is also responsible for the characterization of the material system with a focus on the effects of time, temperature, and environmental exposure. The present work is part of this effort. The motivation to use a composite material in a non-bonded flexible riser for use in the offshore oil industry is put forth. The requirements for such a material are detailed. Strength analysis and modeling methods are presented with experimental data. The effect of matrix crystallinity on composite mechanical properties is shown. A new method for investigating matrix behavior at elevated temperatures developed. A remaining strength life prediction methodology is recalled and applied to the case of combined fatigue and rupture loading. / Master of Science
78

Downtown revitalization : a case study of two Indiana cities

Caligiuri, Kenneth J. January 1983 (has links)
This thesis looked into the background of downtown revitalization, historical cF3.ta about the decline of the downtown area, methods and models to reverse the decline and possible alternatives to the downtown as a center for retail trade.The thesis compared this finding to two Indiana cities' individual problems with downtown revitalization, the relationship of their solutions to the models, how their decision making influenced their moves and how successful they were with their solutions. / Department of Urban Planning
79

Control de erosión fluvial en la curva externa, haciendo uso de paletas sumergidas en los sectores La Perla-Florida y Cantagallo en el Rio Rímac aplicando modelamiento numérico

Bazan Ravines, Mauricio Javier, Coronado Vargas, Jorge Daniel 21 January 2021 (has links)
La presente tesis tiene como objetivo evaluar una propuesta para el control de erosión fluvial de la curva externa del rio Rimác ubicada entre los sectores Cantagallo y La Perla en Chosica, verificando su eficacia a través de un modelamiento con fines de calcular la socavación producida para diferentes periodos de retorno y proponer como estructura de control a las paletas sumergidas, comparando ambos resultados obtenidos para evaluar sus beneficios. El tramo escogido presentó fallas en los muros de contención ubicados a lo largo del cauce según un estudio previo realizado por el INGEMMET, por lo que es necesario mejorar la infraestructura ya construida, por lo que la presencia de las paletas sumergidas podría actuar como tal. Por este motivo, el modelamiento hidráulico, realizado en el software Iber, nos permitirá conocer el comportamiento del río para obtener las variables de diseño y conocer los valores de velocidades y esfuerzos cortantes de fondo producidos en la curva externa. Se realizó la simulación para dos escenarios, uno considerando las máximas avenidas producidas en años previos y el segundo despreciando dichos valores. Esto nos permite comparar las dimensiones y comportamiento de ambas estructuras para un futuro diseño. Finalmente, en ambos escenarios se verificó que la presencia de las paletas sumergidas en la curva externa reduce los niveles de erosión local y general producido para los diferentes caudales simulados, por lo que resulta una estructura viable a ser aplicada como medida de control. / The objective of this thesis is to evaluate a proposal for the control of fluvial erosion of the external bend of the Rimac river located between the Cantagallo and La Perla sectors in Chosica, verifying its effectiveness through a modeling in order to calculate the undercut produced for different return periods and propose submerged vanes as a control structure, comparing both results obtained to evaluate their benefits. The chosen section presented failures in the retaining walls located along the channel according to a previous study carried out by INGEMMET, so it is necessary to improve the infrastructure already built, so the presence of the submerged vanes could act as such. For this reason, the hydraulic modeling, carried out in the Iber software, will allow us to know the behavior of the river to obtain the design variables and to know the values of speeds and shear stresses produced in the external bend. The simulation was performed for two scenarios, one considering the maximum avenues produced in previous years and the second disregarding these values. This allows us to compare the dimensions and behavior of both structures for a future design. Finally, in both scenarios it was verified that the presence of the submerged vanes in the external curve reduces the levels of local and general scour produced for the different simulated flows, making it a viable structure to be applied as a control measure. / Tesis
80

Improving Cable Logging Operations for New Zealand’s Steep Terrain Forest Plantations

Harrill, Hunter January 2014 (has links)
Cable logging will become more important as harvesting shifts to greater annual proportions on steep terrain in New Zealand. The costs of cable logging are considerably higher than that of conventional ground-based methods. Improving cost-effectiveness has been identified as key to ensuring the forestry industry remains cost competitive in the international market. This thesis focuses on ways to better understand and improve cable logging methods by specifically focusing on rigging configurations. The investigation was conducted through a comprehensive literature review, an industry survey to establish current use and preferences, a Delphi survey with experts to establish actual advantages and disadvantages, scale model testing to establish some fundamental knowledge of tension to deflection relationship, and finally a series of targeted case studies to establish both productivity and skyline tension in actual operations. Each of these aspects of the research topic employed different methodology. The literature review highlighted the most relevant research relating to cable logging world-wide spanning nearly a century. Various research papers, manuals, books and computer software were summarized. While many aspects of cable yarding operations have been investigated, much of it focusing on various aspects of operational efficiency through case studies, there is very limited information with regard to rigging configurations. The survey of 50 cable logging practitioners determined what rigging configurations were commonly used in New Zealand. It includes their perceived advantages and disadvantages for varying levels of deflection, but also for specific scenarios such as pulling away from native forest boundaries and flying logs over a stream. Results showed that there were many conflicting perceptions about rigging configuration options. Using an expert panel, a Delphi process was used to derive consensus on what advantages were truly unique to each configuration. This allowed the longer lists of perceived advantages from the industry survey to be pared down to a concise list of ad/disadvantages that will be used in the updating of the Best Practice Guidelines for Cable Logging. To increase our fundamental understanding of tension / payload / deflection relationships, an experiment was conducted in a controlled environment. Using a model yarder in a lab and continuous tension and video recording devices, the dynamic skyline behavior of three similar configurations were tested: North Bend, South Bend and Block in the Bight. The tensions were compared by use of a two-way analysis of variance, which indicated configuration and choker length were significant variables in some but not all of the dynamic load tests. Results also showed that some configurations performed better than others in minimizing the shock loads due to dropping into full suspension, impact with ground objects, and breakout during bridling. Finally, a series of eight studies were conducted on targeted logging operations where relevant stand and terrain parameters were related to the continuous skyline tension monitoring, and recording of productivity through time study. The three targeted configurations included (1) North Bend, (2) Standing skyline using a motorized slack-pulling carriage and (3) a live skyline using a motorized grapple carriage. Results showed that peak and average tensions, as well as amplification factors and the payload to tension relationship, varied between configurations. The study also showed that tensions could be collected to compute measures of payload and tension efficiency, which provided insight into operational performance. The safe working load was exceeded in 53% of all cycles studied and across seven of eight study sites and 14 of 16 spans. Cycle times were significantly different between rigging configurations and that production information could be used to compute measures of labor and energy consumption as well as payload and tension efficiency; which also provide insight into operational performance. The industry should give serious consideration to the use of tension monitors. Tension monitors have many benefits and have the potential to improve cable logging operations in New Zealand. Monitoring tensions can help one learn new techniques or methods (i.e. rigging configurations), help improve payload analysis software for future planning and help evaluate new technology and machinery.

Page generated in 0.1156 seconds